JPH01315108A - Mn-al ferromagnetic-substance thin film and manufacture thereof - Google Patents

Mn-al ferromagnetic-substance thin film and manufacture thereof

Info

Publication number
JPH01315108A
JPH01315108A JP7060289A JP7060289A JPH01315108A JP H01315108 A JPH01315108 A JP H01315108A JP 7060289 A JP7060289 A JP 7060289A JP 7060289 A JP7060289 A JP 7060289A JP H01315108 A JPH01315108 A JP H01315108A
Authority
JP
Japan
Prior art keywords
film
thin film
ferromagnetic thin
content ratio
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7060289A
Other languages
Japanese (ja)
Other versions
JP2735276B2 (en
Inventor
Teruaki Takeuchi
輝明 竹内
Masaaki Futamoto
二本 正昭
Yukio Honda
幸雄 本多
Kazumasa Takagi
高木 一正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7060289A priority Critical patent/JP2735276B2/en
Publication of JPH01315108A publication Critical patent/JPH01315108A/en
Application granted granted Critical
Publication of JP2735276B2 publication Critical patent/JP2735276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain an Mn-Al ferromagnetic-substance thin film which has a phase tau inside the whole film and whose spontaneous magnetization is equal to that of a bulk alloy in such a way that an amount ratio of Mn in an Mn-Al film is nearly definite in a face direction of the film and is changed in a film- thickness direction within a specific range. CONSTITUTION:A thin film 11 on a substrate 12 is constituted in such a way that films containing a larger amount of Mn and films containing a larger amount of Al are laminated alternately. An amount ratio of Mn in this Mn-Al film 11 is nearly definite in a face direction of the film 11; when, in this thin film 11, the amount ratio of Mn is changed artificially in a film-thickness direction within a range of 45 to 65 atomic %, a phase tau can be formed preferentially. By this setup, it is possible to obtain an Mn-Al ferromagnetic-substance thin film whose spontaneous magnetization is equal to that of a bulk alloy.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、マンガンとアルミニウムの合金薄膜に係り、
特にバルク合金と同等の大きな自発磁化および磁気異方
性を発生させるのに好適な膜に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to an alloy thin film of manganese and aluminum,
In particular, the present invention relates to a film suitable for generating large spontaneous magnetization and magnetic anisotropy equivalent to that of bulk alloys.

【従来の技術] マンガン(M n )とアルミニウム(A Q )の合
金は、ある結晶構造の場合に強磁性体となることが知ら
れており、そのバルク結晶は永久磁石等に応用されてい
る。近年、この材料を薄膜化する試みもなされている。
[Prior art] It is known that an alloy of manganese (M n ) and aluminum (A Q ) becomes a ferromagnetic material when it has a certain crystal structure, and its bulk crystal is applied to permanent magnets, etc. . In recent years, attempts have been made to make this material thinner.

その−例は、ジャーナル・オブ・アプライド・フィジッ
クス、61 (1987年)第4281頁から第428
3頁(J、Appil。
Examples include Journal of Applied Physics, 61 (1987), pp. 4281-428.
3 pages (J, Appil.

Phys、61 (1987)、pp、4281−42
83)において論じられたスパッタ法により形成したM
 n −A 12合金膜で、MnとAflO比は膜内で
一定である。
Phys, 61 (1987), pp, 4281-42
M formed by the sputtering method discussed in 83)
In the n-A12 alloy film, the Mn to AflO ratio is constant within the film.

[発明が解決しようとする課題] 上記従来技術においては、成膜条件を種々変化させても
、得られた膜の自発磁化は最大のものでも120emu
/ccであり、バルク合金のそれの1/48度しかない
という問題があった。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, even if the film formation conditions are variously changed, the spontaneous magnetization of the obtained film is only 120 emu at the maximum.
/cc, which is only 1/48 degree of that of the bulk alloy.

この原因は、MnとAlの比率は一定でも得られた膜に
、強磁性を発生する構造(τ相)と共に5非磁性の構造
(ε相)が含まれているためである。
The reason for this is that even though the ratio of Mn and Al is constant, the obtained film contains a structure that generates ferromagnetism (τ phase) as well as a non-magnetic structure (ε phase).

本発明の第1の目的は、膜内金体にて相を有し、バルク
合金と同等の自発磁化を有するM n −A Q強磁性
体薄膜を得ることにある。
A first object of the present invention is to obtain a Mn-AQ ferromagnetic thin film that has a phase in the metal body within the film and has spontaneous magnetization equivalent to that of a bulk alloy.

さらに、磁性デバイスにおいては磁気異方性も重要な特
性であり、たとえば、垂直磁気記録においては、膜垂直
方向の異方性が不可欠である。
Furthermore, magnetic anisotropy is also an important property in magnetic devices; for example, in perpendicular magnetic recording, anisotropy in the direction perpendicular to the film is essential.

本発明の第2の目的は、上記従来技術においては得られ
なかった磁気異方性を発生させることにある。
A second object of the present invention is to generate magnetic anisotropy that could not be obtained with the above-mentioned prior art.

[課題を解決するための手段] 上記本発明の第1の目的は、M n −A Q膜中のM
nの分量比が該膜の面方向で概略一定であり、かつ45
−65at%の範囲内で膜厚方向で変動しているM n
 −A Q膜を作製することにより達成できる。
[Means for Solving the Problems] The first object of the present invention is to
The quantitative ratio of n is approximately constant in the plane direction of the film, and 45
M n fluctuating in the film thickness direction within a range of -65 at%
-Achieved by producing a Q film.

上記本発明の第2の目的は、Mn−Al膜中のMnの分
量比が該膜の面方向で概略一定であり。
A second object of the present invention is that the Mn content ratio in the Mn--Al film is approximately constant in the plane direction of the film.

膜厚方向で変動しており、かつ上記膜の膜厚方向の少な
くとも一部分で上記Mnの分量比が45−65at%の
範囲内にあり、かつ変動しているMn−Al膜を作製す
ることにより達成できる。
By producing an Mn-Al film in which the Mn content ratio varies in the film thickness direction and is within the range of 45-65 at% in at least a portion of the film thickness direction. It can be achieved.

【作用1 上記本発明の第1の目的を達成するに至った経緯は次の
とおりである。
[Action 1] The circumstances leading to the achievement of the first object of the present invention are as follows.

上記従来技術において自発磁化が小さいのは、強磁性構
造ので相が準安定状態にあることに起因しているので、
τ相の方がε相よりも安定に発生する条件を模索した。
The reason why the spontaneous magnetization is small in the above conventional technology is that the phase is in a metastable state due to the ferromagnetic structure.
We searched for conditions under which the τ phase occurs more stably than the ε phase.

その一つとして、自発磁化の異なる種々のM n −A
 Q合金を切断し、断面の組成を微視的に調べた。その
結果、自発磁化の大きなものはで相のみで構成されてお
り、自発磁化の/jf、3いものはτ相とε相が混在し
ているということが分かった。そして、このτ相が存在
する領域の組成を調べると、τ相内でのMnの分量比は
45〜65at%であり、かつ組成が変動していた。
One of them is various M n -A with different spontaneous magnetization.
The Q alloy was cut and the composition of the cross section was examined microscopically. As a result, it was found that those with large spontaneous magnetization are composed of only the phase, and those with /jf and three small spontaneous magnetizations are composed of a mixture of τ and ε phases. When the composition of the region where this τ phase exists was investigated, it was found that the molar ratio of Mn in the τ phase was 45 to 65 at %, and the composition varied.

以上の発見から薄膜においてもMnの分量比を45〜6
5at%の範囲で人工的に変動させることによってτ相
を優先的に形成すれば大きな自発磁化が得られると予想
し、薄膜の積層技術により上記組成の変動の実現を試み
た。
From the above findings, even in thin films, the Mn content ratio is 45 to 6.
It was predicted that a large spontaneous magnetization would be obtained by preferentially forming the τ phase by artificially varying the composition within a range of 5 at %, and an attempt was made to realize the above composition variation using thin film lamination technology.

すなわち、基板上にMnとAlを真空蒸着法等により交
互に積層し、これら2つのMnとAl元素を相互に拡散
させれば、膜の厚み方向でMnの分量比が変動すると考
えた。
That is, we thought that if Mn and Al were alternately layered on a substrate by vacuum evaporation or the like and these two elements of Mn and Al were diffused into each other, the Mn content ratio would vary in the thickness direction of the film.

この考えに基づき、蒸着速度、蒸着時間および基板の加
熱温度をパラメータとして、Mnの分量比の変動形態の
異なる種々の薄膜を作製した。
Based on this idea, various thin films with different variations in the Mn ratio were fabricated using the deposition rate, deposition time, and substrate heating temperature as parameters.

作製した薄膜の構造は、第1図(a)に示すような、M
n分量の多い膜、およびAf1分量の多い膜が交互に積
層した構造となっている。
The structure of the produced thin film is as shown in FIG. 1(a).
It has a structure in which films with a large amount of n and films with a large amount of Af1 are alternately stacked.

また、この薄膜のMnの分量比の膜厚方向の分布は第1
図(b)のようになっている。第1図(b)はMn分量
の多い(過剰)膜とAl分量の多い(過剰)膜とを積層
した状態のMn分量比の変動を示している。Alの分量
比は100at%がらMnの分量比を差引いたものであ
る。Mnの分量比の変動の範囲は0から100の範囲で
ある。
Moreover, the distribution of the Mn content ratio in the film thickness direction of this thin film is the first
It is as shown in figure (b). FIG. 1(b) shows the variation in the Mn content ratio in a state in which a film with a large (excessive) Mn content and a film with a large (excessive) Al content are laminated. The quantitative ratio of Al is 100 at % minus the quantitative ratio of Mn. The range of variation in the Mn ratio is from 0 to 100.

aとbの領域は各々MnとAlの相互拡散が起ってもM
nとAlが混ざらず純粋なMnおよびAlが残った領域
である。Cとdの領域はMnとAlの相互拡散が生じた
領域であり、Mnの分量比は除々に変わっている。層の
厚さが薄いとMnとAlの相互拡散はMn層とAl層の
全領域におよび、その結果、上記aおよびbの領域は存
在せず、Cおよびdの組成変動領域のみとなる。この場
合のMn分量比の膜厚方向の分布を第1図(c)に示す
。Mn分量比の変動範囲はX工からX2である。
In regions a and b, even if mutual diffusion of Mn and Al occurs, M
This is a region where n and Al do not mix and pure Mn and Al remain. Regions C and d are regions where mutual diffusion of Mn and Al occurs, and the quantitative ratio of Mn gradually changes. If the layer thickness is thin, the interdiffusion of Mn and Al will cover the entire region of the Mn layer and the Al layer, and as a result, the regions a and b will not exist, and only the composition variation regions of C and d will exist. The distribution of the Mn content ratio in the film thickness direction in this case is shown in FIG. 1(c). The variation range of the Mn content ratio is from X to X2.

第8図に後述の実施例で作製した薄膜の成膜条件、Mn
分量比の分布および自発磁化等の磁気特性を示す。
Figure 8 shows the deposition conditions of the thin film produced in the examples described later, Mn
Magnetic properties such as distribution of quantity ratio and spontaneous magnetization are shown.

試料No、1−11の薄膜では、自発磁化は450em
u/ccである。この値はバルク合金の自発磁化の値と
等しい。したがって、本発明の第1の目的を達成した薄
膜が実現していることがわかる。
In the thin film of sample No. 1-11, the spontaneous magnetization is 450 em
It is u/cc. This value is equal to the value of the spontaneous magnetization of the bulk alloy. Therefore, it can be seen that a thin film that achieves the first object of the present invention has been realized.

この時のMn分量比の最小値X□の内で最も小さい値は
、試料N093の45at%であり、最大値X2の内で
最も大きい値は、試料No、6.7の65at%である
。したがって、Mn分量比の変動範囲は45−65at
%である。また、積層数を50〜1000の範囲で変化
させても430emu/cCの自発磁化が得られ、周期
を8人〜20人の範囲で変化させても450emu/c
cの自発磁化が得られている。したがって、積jn数お
よび周期の異なる種々の構造の膜を作製してもバルク合
金と等しい自発磁化が得られることがわかる。さらに、
試料No、11の構造は、周期およびMn分量比の極小
値、極大値が膜厚方向にランダムな値をとっている。こ
のような構造の試料においてもL記3つのパラメータが
一定の試料と同じく自発磁化は450emu/ccであ
る。
At this time, the smallest value among the minimum values X□ of the Mn content ratio is 45 at% for sample No. 093, and the largest value among the maximum values X2 is 65 at% for sample No. 6.7. Therefore, the variation range of Mn content ratio is 45-65 at
%. Furthermore, even if the number of laminated layers is varied in the range of 50 to 1000, a spontaneous magnetization of 430 emu/cC can be obtained, and even if the period is varied in the range of 8 to 20, a spontaneous magnetization of 450 emu/c can be obtained.
A spontaneous magnetization of c was obtained. Therefore, it can be seen that spontaneous magnetization equal to that of the bulk alloy can be obtained even if films having various structures with different product jn numbers and periods are produced. moreover,
In the structure of sample No. 11, the period and the minimum and maximum values of the Mn content ratio take random values in the film thickness direction. In the sample with such a structure, the spontaneous magnetization is 450 emu/cc, as in the sample in which the three parameters listed in L are constant.

したがって、Mnの分量比が45−65at%の範囲内
にあれば、積層数、周期およびMn分量比の極小値、極
大値が異なる構造の膜であってもバルク合金の場合と等
しい自発磁化が得られることがわかる。
Therefore, if the Mn content ratio is within the range of 45 to 65 at%, even if the film has a structure in which the number of stacked layers, period, and minimum and maximum values of the Mn content ratio are different, the spontaneous magnetization will be the same as that of the bulk alloy. You can see what you can get.

また、試料No、12においては、膜の自発磁化が10
100e/ccとバルク合金に比べ小さい。この原因は
、この膜のMnの分量比がO〜100at%の範囲で変
化していることにあると考えられる。
In addition, in sample No. 12, the spontaneous magnetization of the film was 10
100e/cc, which is smaller than bulk alloys. The reason for this is thought to be that the Mn content ratio of this film varies in the range of O to 100 at%.

この膜の一部分であるMnの分量比が45〜65at%
の領域ではτ相が生じ、その自発磁化はバルク合金と同
じ値すなわち450emu/ccを有しているが、Mn
の分量比が上記範囲からはずれた領域ではε相が形成さ
れるため、そこでの自発磁化の値は零である。膜の自発
磁化は、これらの領域での値の平均値となる。この試料
では、τ相の領域とε相の領域とが1=3の膜厚比で存
在しているため、自発磁化の平均値は450X1/(1
+3)= 112emu/ccと算出される。この値は
上記10100e/ccと概略一致している。このこと
からもまたMnの分量比を45〜65at%の範囲内と
することが強磁性発生の条件であることがわかる。
The quantitative ratio of Mn, which is a part of this film, is 45 to 65 at%
In the region of
Since the ε phase is formed in a region where the proportion of . The spontaneous magnetization of the film is the average value of the values in these regions. In this sample, the τ phase region and the ε phase region exist at a film thickness ratio of 1=3, so the average value of spontaneous magnetization is 450X1/(1
+3)=112 emu/cc. This value roughly matches the above-mentioned 10100e/cc. This also shows that the condition for generating ferromagnetism is to keep the Mn content ratio within the range of 45 to 65 at%.

次に本発明の第2の目的を達成するための手段について
その作用を説明する。
Next, the operation of the means for achieving the second object of the present invention will be explained.

第8図かられかるように、全ての試料において異方性磁
界が発生しており、本発明の第2の目的を達成した薄膜
が実現していることがわかる。
As can be seen from FIG. 8, an anisotropic magnetic field was generated in all the samples, indicating that a thin film that achieved the second object of the present invention was realized.

特に、試料No、12では異方性磁界の値が60000
eと大きい。
In particular, in sample No. 12, the anisotropic magnetic field value was 60,000.
e and large.

なお、この試料では自発磁化の値が100 emu/c
cと小さい。しかし、光磁気記録用媒体等には使用可能
である。
In addition, in this sample, the value of spontaneous magnetization is 100 emu/c
c and small. However, it can be used for magneto-optical recording media and the like.

上記2つの試料の特徴はMn分量比の変化率が大きいこ
とにある。これはMn分量比の変化率と異方性磁界とが
、第8図の全試料において比例関係にあることかられか
る。
The above two samples are characterized by a large rate of change in the Mn content ratio. This can be seen from the fact that the rate of change in the Mn content ratio and the anisotropic magnetic field are in a proportional relationship in all the samples shown in FIG.

本発明のM n −A Q強磁性体薄膜の作製方法の一
つとして、真空中で200−350 ℃の基板加熱の下
で基板上にMnとAlを交互に被着する方法がある。基
板としては、(100)面のNaCl型単結晶が好まし
く、特に(101面のMg○単結晶が好ましい。
One method for producing the M n -A Q ferromagnetic thin film of the present invention is to alternately deposit Mn and Al on a substrate while heating the substrate at 200-350° C. in vacuum. As the substrate, a (100)-plane NaCl type single crystal is preferred, and a (101-plane Mg◯ single crystal is particularly preferred).

一般に、室温程度の低温で膜の形成を行なうと。Generally, the film is formed at a low temperature around room temperature.

結晶の乱れが大きく、良好な特性が得られない。Crystal disorder is large and good characteristics cannot be obtained.

強磁性薄膜においては、自発磁化、異方性磁界等が減少
する等の影響がある。一方、膜形成時の温度が高すぎる
と膜組成が変化する等の悪影響が生じる。例えば、飽和
蒸気圧が異なる多種の元素を被着する場合、基板温度が
高すぎると飽和蒸気圧の高い元素が、被着中に基板より
再蒸発するために、所望の組成が得られない。
In a ferromagnetic thin film, there are effects such as a decrease in spontaneous magnetization, anisotropic magnetic field, etc. On the other hand, if the temperature during film formation is too high, adverse effects such as changes in film composition will occur. For example, when depositing various elements with different saturated vapor pressures, if the substrate temperature is too high, the elements with high saturated vapor pressures will reevaporate from the substrate during deposition, making it impossible to obtain the desired composition.

本発明のM n −A Q薄膜においては、第8図の結
果より明らかなように、基板を200℃〜350 ℃に
加熱して膜形成を行うことにより良好な結果が得られて
いる。
In the M n -A Q thin film of the present invention, as is clear from the results shown in FIG. 8, good results are obtained by heating the substrate to 200° C. to 350° C. to form the film.

なお、実施例においてはMnを先に被着した。In addition, in the examples, Mn was deposited first.

Aflを先に被着した場合には、実施例の場合より自発
磁化、および異方性磁界は少し劣るが、従来のM n 
−A Q薄膜よりは優れていることを確認している。
When Afl is deposited first, the spontaneous magnetization and anisotropic magnetic field are slightly inferior to those of the example, but compared to the conventional M n
-A It has been confirmed that it is superior to Q thin film.

[実施例] 実施例1゜ 本発明の実施例1を第2図及び第3図(a)。[Example] Example 1゜ Embodiment 1 of the present invention is shown in FIGS. 2 and 3 (a).

(b)により説明する。This will be explained using (b).

本実施例では、第2図に示す電子ビーム蒸着装置を用い
た。真空槽5に電子銃加熱装置1を2台置き、それぞれ
の電子銃加熱装置のるっぽ2oにマンガン(Mn)およ
びアルミニウム(Al)を入れて加熱し、  I X 
10−’ Torrの真空度の下で両者を同時に蒸着さ
せる。この状態で2つのシャッタ2を交互に開閉するこ
とにより、ステージ4に取付けられたガラス基板12に
MnとAlをMn、Aflの順で交互に被着させる。試
料1においては、被層速度はいずれも1秒あたり0.5
人で、それぞれ10秒おきにシャッタを開閉した。
In this example, an electron beam evaporation apparatus shown in FIG. 2 was used. Two electron gun heating devices 1 are placed in a vacuum chamber 5, and manganese (Mn) and aluminum (Al) are placed in the 2o of each electron gun heating device and heated.
Both are deposited simultaneously under a vacuum of 10-' Torr. In this state, by alternately opening and closing the two shutters 2, Mn and Al are deposited alternately on the glass substrate 12 attached to the stage 4 in the order of Mn and Afl. In sample 1, the coating speed was 0.5 per second in both cases.
A person opened and closed the shutter every 10 seconds.

したがって1回のシャッタ開放により、膜厚5人相当の
層が被着される。基板温度は250℃に保って1000
!積層した。
Therefore, by opening the shutter once, a layer equivalent to the thickness of five people is deposited. The substrate temperature was kept at 250°C and
! Laminated.

試料1の膜の断面構造及び膜厚方向の組成変化をそれぞ
れ第3図(a)、(b)に示す。被着層の厚さが5人で
あるとMnとAlの相互拡散はMn層とAl層の全領域
におよび、その結果、厚さが5人の組成が変動した領域
のみが存在する。
The cross-sectional structure of the film of sample 1 and the composition change in the film thickness direction are shown in FIGS. 3(a) and 3(b), respectively. If the thickness of the deposited layer is 5 mm, the interdiffusion of Mn and Al will cover the entire region of the Mn layer and the Al layer, and as a result, only the region where the composition has varied in thickness will exist.

この領域でのMn分量比の変動率は、Mn分量比の最大
値が54at%、最小値が46at%であることから、
  (54[at%] −46[at、%])15(人
]=1.6 [at%/人]である。この膜の磁気特性を測定した結
果、膜の自発磁化は、バルク合金と同等の450emu
/ccであり、異方性磁界は140008であった。
The variation rate of the Mn content ratio in this region is as follows: The maximum value of the Mn content ratio is 54 at% and the minimum value is 46 at%.
(54 [at%] -46 [at, %]) 15 (person) = 1.6 [at%/person].As a result of measuring the magnetic properties of this film, the spontaneous magnetization of the film was found to be different from that of the bulk alloy. Equivalent 450emu
/cc, and the anisotropic magnetic field was 140,008.

さらに、成膜条件を変えた種々の膜を作製した。Furthermore, various films were fabricated using different film formation conditions.

変化させた成膜条件は、作製時の基板温度、MnとAl
のシャッタ開放時間、蒸着レートR及び積層数Nである
。作製した試料No、2〜10の成膜条件を第8図に示
す。これらの試料におけるMn組成の分布及び異方性磁
界と自発磁化との2つの蒸気特性も第8図に示す、基板
は、試料No、 6−8では(100)面のMg○単結
晶であり、他の試料ではガラスである。この2種類の基
板上に基板温度200℃〜350℃の範囲の温度で、M
nとAl1を、シャッタ2の開閉によりM n 。
The film forming conditions that were changed were the substrate temperature during fabrication, Mn and Al
shutter opening time, vapor deposition rate R, and number of stacked layers N. FIG. 8 shows the film forming conditions for the prepared samples Nos. 2 to 10. The distribution of Mn composition and the two vapor characteristics of anisotropic magnetic field and spontaneous magnetization in these samples are also shown in Figure 8. In sample No. 6-8, the substrate was a (100)-plane Mg○ single crystal. , and glass in other samples. On these two types of substrates, M
M n and Al1 by opening and closing the shutter 2.

八〇の順に交互に被着した。蒸着レートは0.5人/s
ec及び1人/secであり、シャッタ開放時間は8〜
12秒の範囲である。
They were applied alternately in the order of 80. Deposition rate is 0.5 people/s
ec and 1 person/sec, and the shutter opening time is 8~
The range is 12 seconds.

Mn分量比の膜厚方向分布は、基板品度、シャッタ開放
時間、蒸着レートで決まるが、試料No。
The distribution of the Mn content ratio in the film thickness direction is determined by the substrate quality, shutter opening time, and vapor deposition rate.

2〜]−0においても、MnとAlの相互拡散はMn層
とAl層の釡領域に及び、その結果2組成が変動した領
域のみが存在する。この組成が変動した領域の幅すなわ
ち、第1図(c)におけるC及びdの値は、これらの試
料では4〜6人の範囲にある。また、Mn分量比は、い
ずれの試料でも45〜65at%の範囲内にあった。こ
れら試料No、2−10の膜の自発磁化は450emu
/ccであり、バルク合金と等しい値であった。なお、
試料1と試料2の比較、試料6と試料7の比較から明ら
かなように、積層数を変えても膜の自発磁化の値は変わ
らなかった。
2 to ]-0 as well, the interdiffusion of Mn and Al extends to the region of the Mn layer and the Al layer, and as a result, only the region where the two compositions have changed exists. The width of this region of compositional variation, ie, the values of C and d in FIG. 1(c), ranges from 4 to 6 for these samples. Moreover, the Mn content ratio was within the range of 45 to 65 at% in all samples. The spontaneous magnetization of these samples No. 2-10 was 450 emu.
/cc, which was the same value as the bulk alloy. In addition,
As is clear from the comparison between Sample 1 and Sample 2 and between Sample 6 and Sample 7, the value of the spontaneous magnetization of the film did not change even if the number of stacked layers was changed.

試料No、2〜10の異方性磁界は第8図に示したよう
に3000eから22000eにわたっている。これは
、同図に示したMn分量変化率に比例している。したが
って、Mn分量変化率が大きくなる成膜条件を選ぶこと
により、異方性磁界の向上が期待できる。
The anisotropic magnetic field of samples No. 2 to 10 ranges from 3000e to 22000e as shown in FIG. This is proportional to the Mn content change rate shown in the figure. Therefore, by selecting film-forming conditions that increase the rate of change in Mn content, an improvement in the anisotropic magnetic field can be expected.

実施例2゜ 本発明の実施例2を第4図(a)および第4図(b)に
より説明する。本実施例で示す試料No。
Example 2 A second example of the present invention will be explained with reference to FIGS. 4(a) and 4(b). Sample No. shown in this example.

11は第2図の電子ビーム蒸着装置を用いて作製した。No. 11 was produced using the electron beam evaporation apparatus shown in FIG.

ガラス基板12上に、MnおよびAnの蒸着速度0.5
人/see、基板温度250℃でMnとAnをMn,A
lの順に交互に合計100ON被着した。また本実施例
はMnおよびAlの蒸着時間をランダムに変えた。この
為、シャッタ開放時間を、Mnの場合は10秒から12
秒の範囲で変化させ、A11lの場合は8秒から10秒
の範囲で変化させた。
On the glass substrate 12, the vapor deposition rate of Mn and An is 0.5.
Mn and An at a substrate temperature of 250℃
A total of 100 ON layers were deposited alternately in this order. Further, in this example, the deposition times of Mn and Al were randomly changed. For this reason, the shutter opening time should be changed from 10 seconds to 12 seconds in the case of Mn.
The time was varied in the range of seconds, and in the case of A11l, it was varied in the range of 8 to 10 seconds.

この結果、第4図(a)に示すように、Mn過剰の層と
Al過剰層が交互に積層した強磁性体膜が作製される。
As a result, as shown in FIG. 4(a), a ferromagnetic film is produced in which Mn-excess layers and Al-excess layers are alternately laminated.

この時、各層の膜厚は実施例1の場合と異なり等しくな
い。また、第4図(b)に示すように、Mn分量比の極
大値および極小値もまた実施例1の場合と異なり一定で
はない。Mn分量比の最大値は58at%であり、最小
値は46at%である。
At this time, the film thicknesses of each layer are not equal, unlike in the first embodiment. Furthermore, as shown in FIG. 4(b), the maximum and minimum values of the Mn content ratio are also not constant, unlike in Example 1. The maximum value of the Mn content ratio is 58 at%, and the minimum value is 46 at%.

本実施例の強磁性体膜は、450emu/ccの自発磁
化を有していることがわかった。この値はバルク合金の
値と同等である。また、異方性磁界は10000eであ
った。
It was found that the ferromagnetic film of this example had a spontaneous magnetization of 450 emu/cc. This value is comparable to that of bulk alloys. Further, the anisotropic magnetic field was 10,000e.

実施例3゜ 磁気異方性を出現させるために行なった実施例3を第5
図(a)および第5図(b)により説明する。磁気異方
性は対称性に関係しているため、組成変化が大きいほど
大きくなる。この観点から、試料No、12では成膜条
件を選び、第5図(b)に示すように、Mnの比率が0
at%から1ooat%まで変化する急峻な構造とした
。第5図(a)はこの条件下で作製したMn過剰とAl
過剰の層から成る超格子構造膜11でガラス基板12上
に各層に厚さ20オングストローム〔人〕で、1000
層積層されている。
Example 3゜Example 3, which was carried out to make magnetic anisotropy appear, was repeated in the fifth example.
This will be explained with reference to FIG. 5(a) and FIG. 5(b). Since magnetic anisotropy is related to symmetry, it increases as the composition change increases. From this point of view, the film forming conditions were selected for sample No. 12, and as shown in FIG. 5(b), the Mn ratio was 0.
It had a steep structure varying from at% to 1ooat%. Figure 5(a) shows excess Mn and Al produced under these conditions.
A superlattice structure film 11 consisting of an excess of layers is deposited on a glass substrate 12 with each layer having a thickness of 20 angstroms and a thickness of 1,000 angstroms.
The layers are laminated.

以下、作製方法を説明する。蒸着装置は第2図に示した
電子ビーム蒸着装置を用いた。ガラス基板12上に、M
nおよびAlの蒸着速度0.5人/sec、基板温度2
00℃でMnとAlをM n 。
The manufacturing method will be explained below. The electron beam evaporation apparatus shown in FIG. 2 was used as the evaporation apparatus. On the glass substrate 12, M
Vapor deposition rate of n and Al: 0.5 people/sec, substrate temperature: 2
Mn and Al at 00°C.

Alの順に交互に合計1000層被着した。本実施例で
は、MnおよびAlの蒸着時間を40秒間と長くした。
A total of 1000 layers were deposited in alternating order of Al. In this example, the deposition time of Mn and Al was increased to 40 seconds.

また、基板加熱温度も200℃と低い加熱温度を選んだ
Furthermore, the substrate heating temperature was chosen to be as low as 200°C.

本実施例では、蒸着時間が長いので、各層の膜厚が大き
く蒸着中のMnとAlの相互拡散によってもMnとAl
が混合しない領域が存在する。この結果、Mn分量比は
0〜100at%まで変化し、Mn分量比が変化した領
域の厚さは15人となる。
In this example, since the evaporation time is long, the film thickness of each layer is large and the mutual diffusion of Mn and Al during evaporation can cause
There is a region where the two do not mix. As a result, the Mn content ratio changes from 0 to 100 at%, and the thickness of the region where the Mn content ratio changes becomes 15.

したがって、Mn分量比の変化率は・ 100 (at%)/15[人)=6.7(at%/人
〕であり、大きな変化率が得られる。この膜11の磁気
特性を測定した結果、60000 eと大きな異方性磁
界を確認した。
Therefore, the rate of change in the Mn content ratio is 100 (at%)/15 [person] = 6.7 (at%/person), which is a large rate of change.The results of measuring the magnetic properties of this film 11 are as follows. , a large anisotropic magnetic field of 60,000 e was confirmed.

また、膜11の自発磁化は100emu/ccであった
。この値は実施例1および2における値に比へて小さい
にれは、実施例1および2における膜中のMn分量比は
45−65at%の範囲にあるのに対し、本実施例にお
ける膜ではこの範囲からはずれた値の領域が存在する為
である。Mnの分量比が45−65at%の範囲にある
膜の領域はで相であり、この範囲からはずれた値の範囲
にある領域はε相である。これらの相は第5図(b)か
ら明らかなように層構造となっており、1つの層内は同
じ相から成っている。τ相は強磁性でその自発磁化は4
50emu/ccであるが、ε相は強磁性ではないため
自発磁化は零である。膜全体の自発磁化は、強磁性相の
層と非強磁性相の層がもつ自発磁化の平均値となる。
Further, the spontaneous magnetization of the film 11 was 100 emu/cc. Although this value is smaller than the values in Examples 1 and 2, the Mn content ratio in the films in Examples 1 and 2 is in the range of 45-65 at%, whereas in the film in this example, This is because there is a region of values outside this range. A region of the film in which the Mn content ratio is in the range of 45 to 65 at % is in the phase, and a region in which the Mn content ratio is outside this range is in the ε phase. As is clear from FIG. 5(b), these phases have a layered structure, and each layer is composed of the same phase. The τ phase is ferromagnetic and its spontaneous magnetization is 4
50 emu/cc, but since the ε phase is not ferromagnetic, the spontaneous magnetization is zero. The spontaneous magnetization of the entire film is the average value of the spontaneous magnetizations of the ferromagnetic phase layer and the non-ferromagnetic phase layer.

本実施例の膜においては、τ相の領域の厚さとε相の領
域の厚さは1:3であるため、自発磁化の平均値は45
0X1/(1+3)=、112emu/ccと算出され
、上記100 emu/ccと概略一致する。
In the film of this example, the thickness of the τ phase region and the thickness of the ε phase region are 1:3, so the average value of spontaneous magnetization is 45
0X1/(1+3)=112 emu/cc, which roughly matches the above 100 emu/cc.

実施例4゜ 本実施例では、第6図に示す電子ビーム蒸着装置を用い
る。電子銃加熱装置7内にある2つのるつぼ20に、そ
れぞれMnとAlを入れ、るつぼの位置を切換えてガラ
ス基板12にMnとAlをMn、Aflの順に交互に被
着させる。蒸着速度は膜厚換算でそれぞれ1秒あたり5
オングストロームとし、10秒毎に2つのるつぼ位置を
切換えた。
Embodiment 4 In this embodiment, an electron beam evaporation apparatus shown in FIG. 6 is used. Mn and Al are respectively put into two crucibles 20 in the electron gun heating device 7, and the positions of the crucibles are changed to deposit Mn and Al on the glass substrate 12 alternately in the order of Mn and Afl. The deposition rate is 5 per second in terms of film thickness.
angstrom, and the two crucible positions were switched every 10 seconds.

基板温度は250℃とし、合計1000層積層した。The substrate temperature was 250° C., and a total of 1000 layers were laminated.

本実施例では、蒸着速度が大きいので各層の膜厚が大き
く、実施例3と同様蒸着中のMnとAlの相互拡散によ
っても、MnとAflが混合しない領域が存在する。
In this example, since the evaporation rate is high, the film thickness of each layer is large, and as in Example 3, there is a region where Mn and Afl are not mixed due to mutual diffusion of Mn and Al during evaporation.

実施例5゜ 本実施例では、第7図に示すスパッタリング装置を用い
る。この装置はターゲットホルダ9に取り付けられたM
nとAlの2つのターゲット8からスパッタリングによ
りMn粒子とAΩ粒子を同時に飛出させ、ターゲット8
の表面に相対したステージ4を回転してステージに保持
された基板12にM nとAlとをMn,Alの順に交
互に被着させるものである。MnとAlの被着量が膜厚
換算で共に5オングストロームになるように、ステージ
4の回転速度とスパッタリング条件を調整した。基板温
度は250℃とし、1000層積暦し積層 本実施例では、実施例1の試料N001と同等の構造の
膜が得られ、自発磁化および異方性磁界の値も450o
mu/cc、14000eと同等の値が得られた。
Example 5 In this example, a sputtering apparatus shown in FIG. 7 is used. This device is mounted on the target holder 9.
Mn particles and AΩ particles are simultaneously ejected from two targets 8 of n and Al by sputtering.
The stage 4 facing the surface of the substrate 12 is rotated to deposit Mn and Al alternately in the order of Mn and Al onto the substrate 12 held on the stage. The rotational speed of stage 4 and sputtering conditions were adjusted so that the amount of Mn and Al deposited was both 5 angstroms in terms of film thickness. In this example, the substrate temperature was 250°C, 1000 layers were laminated, and a film with the same structure as sample N001 of Example 1 was obtained, and the values of spontaneous magnetization and anisotropic magnetic field were also 450°.
A value equivalent to mu/cc, 14000e was obtained.

なお、スパッタリング装置のステージ4の回転速度を変
えることにより層厚を種々変化させることができる。
Note that the layer thickness can be varied in various ways by changing the rotation speed of the stage 4 of the sputtering device.

[発明の効果] 本発明によれば、永久磁石材料であるM n −Al金
合金薄膜化しても自発磁化の減少を避けることができ、
また、磁気異方性を発生させることもできるので、種々
の磁気デバイスへの応用が可能となる。
[Effects of the Invention] According to the present invention, reduction in spontaneous magnetization can be avoided even when the permanent magnet material M n -Al gold alloy is made into a thin film.
Furthermore, since magnetic anisotropy can be generated, application to various magnetic devices becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の断面図、第1図(b)および第
1図(c)は本発明の組成分布を示す図、第2図は電子
ビーム蒸着装置の概略図、第3図(a)は本発明の実施
例1の断面図、第3図(b)は実施例1の組成分布を示
す図、第4図(a)は本発明の実施例2の断面図、第4
図(b)は実施例2の組成分布を示す図、第5図(a)
は本発明の実施例3の断面図、第5図(b)は実施例3
の組成分布を示す図、第6図は電子ビーム蒸着装置の概
略図、第7図はスパッタリング装置の概略図、第8図は
実施例1〜3で作製したM n −A Q強磁性体薄膜
の成膜条件、Mn分量比の分布および磁気特性を表わす
図である。 1・・・電子銃加熱装置、2・・・シャッタ、3・・・
基板、4・・ステージ、5・・・真空槽、6・・・排気
装置、7・・・3連弐電子銃加熱装置、8・・ターゲッ
ト、9・・・ターゲットホルダ、10・・・アパーチャ
、11・・・薄膜、12・・・基板、2o・・・るつぼ
。 代理人 弁理士 小用勝?(’i” 茅/11 (C) (゛、         N+−量遺ヒ(誌y、)箔2
)旦 テ ステージ      2D/1)−71↓゛るJ 
1]ζ良)    第31Σ(bン11  ゐ も( 多♀)図 3.2 (0+ン 熱k r C1)−)     子、#7¥lCb>l
ゝ′f4(鴫+(6しtシグーラ
FIG. 1(a) is a cross-sectional view of the present invention, FIG. 1(b) and FIG. 1(c) are diagrams showing the composition distribution of the present invention, FIG. 2 is a schematic diagram of an electron beam evaporation apparatus, and FIG. Figure (a) is a cross-sectional view of Example 1 of the present invention, Figure 3 (b) is a diagram showing the composition distribution of Example 1, Figure 4 (a) is a cross-sectional view of Example 2 of the present invention, and Figure 4 (a) is a cross-sectional view of Example 2 of the present invention. 4
Figure (b) shows the composition distribution of Example 2, Figure 5 (a)
is a sectional view of Example 3 of the present invention, and FIG. 5(b) is Example 3.
FIG. 6 is a schematic diagram of an electron beam evaporation device, FIG. 7 is a schematic diagram of a sputtering device, and FIG. 8 is a diagram showing the composition distribution of M n -A Q ferromagnetic thin films produced in Examples 1 to 3. FIG. 3 is a diagram showing film forming conditions, distribution of Mn content ratio, and magnetic properties. 1...Electron gun heating device, 2...Shutter, 3...
Substrate, 4... Stage, 5... Vacuum chamber, 6... Exhaust device, 7... Triple electron gun heating device, 8... Target, 9... Target holder, 10... Aperture , 11... Thin film, 12... Substrate, 2o... Crucible. Agent Patent Attorney Masaru Koyo? ('i' 茅/11 (C)
) Dante Stage 2D/1) -71↓゛ruJ
1]ζGood) 31stΣ(bn11ゐゐゐも(多♀)Figure 3.2 (0+N heat k r C1)-) Child, #7\lCb>l
ゝ'f4(Shigu+(6shitSigura)

Claims (12)

【特許請求の範囲】[Claims] 1.Mn−Al膜中のMnの分量比が該膜の面方向で既
略一定であり、膜厚方向で変動しており、かつ上記膜の
膜厚方向の少なくとも一部分において上記Mnの分量比
が45−65at%の範囲内にありかつ変動しているこ
とを特徴とするMn−Al強磁性体薄膜。
1. The Mn content ratio in the Mn-Al film is substantially constant in the plane direction of the film, and varies in the film thickness direction, and the Mn content ratio is 45 in at least a part of the film thickness direction. A Mn--Al ferromagnetic thin film characterized in that it is within a range of -65 at% and fluctuates.
2.上記Mnの分量比の最大値が100at%で、最小
値が0at%である請求項1記載のMn−Al強磁性体
薄膜。
2. The Mn--Al ferromagnetic thin film according to claim 1, wherein the maximum value of the Mn content ratio is 100 at% and the minimum value is 0 at%.
3.上記Mnの分量比は上記膜の全体に亘って45−6
5at%の範囲にある請求項1記載のMn−Al強磁性
体薄膜。
3. The quantitative ratio of Mn is 45-6 throughout the film.
The Mn--Al ferromagnetic thin film according to claim 1, wherein the Mn--Al ferromagnetic thin film is in the range of 5 at%.
4.上記Mnの分量比は上記膜厚方向に周期的に変動し
ている請求項1,2または3記載のMn−Al強磁性体
薄膜。
4. 4. The Mn--Al ferromagnetic thin film according to claim 1, wherein the Mn content ratio varies periodically in the film thickness direction.
5.上記Mnの分量比は上記膜厚方向にランダムに変動
している請求項1,2または3記載のMn−Al強磁性
体薄膜。
5. 4. The Mn--Al ferromagnetic thin film according to claim 1, wherein the Mn content ratio varies randomly in the film thickness direction.
6.上記Mn−Al膜はNaCl型単結晶基板の{10
0}面上に形成されている請求項1,2または3記載の
Mn−Al強磁性体薄膜。
6. The above Mn-Al film is a {10
4. The Mn--Al ferromagnetic thin film according to claim 1, wherein the Mn--Al ferromagnetic thin film is formed on a 0} plane.
7.上記NaCl型単結晶はMgO単結晶である請求項
6記載のMn−Al強磁性体薄膜。
7. 7. The Mn--Al ferromagnetic thin film according to claim 6, wherein said NaCl type single crystal is a MgO single crystal.
8.請求項1記載のMn−Al強磁性体薄膜を真空中で
、200−350℃の範囲内に加熱した基板上にMnと
Alを交互に被着させることにより形成することを特徴
とするMn−Al強磁性体薄膜の製造方法。
8. The Mn-Al ferromagnetic thin film according to claim 1 is formed by alternately depositing Mn and Al on a substrate heated within a range of 200 to 350° C. in a vacuum. A method for producing an Al ferromagnetic thin film.
9.上記被着はMn,Alの順に行なう請求項8記載の
強磁性体薄膜の製造方法。
9. 9. The method of manufacturing a ferromagnetic thin film according to claim 8, wherein said deposition is performed in the order of Mn and Al.
10.上記基板はNaCl型単結晶から成り、上記被着
面は{100}面である請求項9記載のMn−Al強磁
性体薄膜の製造方法。
10. 10. The method of manufacturing a Mn--Al ferromagnetic thin film according to claim 9, wherein the substrate is made of NaCl type single crystal, and the adhered surface is a {100} plane.
11.上記NaCl型単結晶はMgO単結晶である請求
項10記載のMn−Al強磁性体薄膜の製造方法。
11. 11. The method of manufacturing a Mn--Al ferromagnetic thin film according to claim 10, wherein the NaCl type single crystal is a MgO single crystal.
12.上記被着は真空蒸着法による請求項8記載のMn
−Al強磁性体薄膜の製造方法。
12. The Mn according to claim 8, wherein the deposition is performed by a vacuum evaporation method.
- A method for producing an Al ferromagnetic thin film.
JP7060289A 1988-03-25 1989-03-24 Mn-Al ferromagnetic thin film and method for producing the same Expired - Lifetime JP2735276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7060289A JP2735276B2 (en) 1988-03-25 1989-03-24 Mn-Al ferromagnetic thin film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-69414 1988-03-25
JP6941488 1988-03-25
JP7060289A JP2735276B2 (en) 1988-03-25 1989-03-24 Mn-Al ferromagnetic thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01315108A true JPH01315108A (en) 1989-12-20
JP2735276B2 JP2735276B2 (en) 1998-04-02

Family

ID=26410619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7060289A Expired - Lifetime JP2735276B2 (en) 1988-03-25 1989-03-24 Mn-Al ferromagnetic thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2735276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045824A (en) * 2015-08-26 2017-03-02 株式会社豊田中央研究所 Permanent magnet and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045824A (en) * 2015-08-26 2017-03-02 株式会社豊田中央研究所 Permanent magnet and manufacturing method of the same

Also Published As

Publication number Publication date
JP2735276B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US5158933A (en) Phase separated composite materials
US4743491A (en) Perpendicular magnetic recording medium and fabrication method therefor
GB1599161A (en) Magnetic recording medium and method of making the same
KR20060050456A (en) Sputter target material for improvedd magnetic layer
Kato et al. Magneto-optical effect in MnPt3 alloy films
US5231294A (en) Manganese-aluminum and manganese-silicon magnetic films, and magnetic recording medium
JPH01315108A (en) Mn-al ferromagnetic-substance thin film and manufacture thereof
JPH0451963B2 (en)
JPH02263416A (en) Manufacture of soft magnetic alloy film
US6346175B1 (en) Modification of in-plate refractory metal texture by use of refractory metal/nitride layer
JPH0279210A (en) Magnetic recording thin film and its production
Nakagawa et al. Preparation of soft magnetic and thermally stable Fe–Co–Ta: N/Ti multilayered films by sputter deposition
Miyamoto et al. Investigations of GMR characteristics and crystal structures for Ni/sub 81/Fe/sub 19//Cu multilayers with Ar ion bombardment on interfaces
Hoshi et al. Magnetic properties of Fe-N/Si-N multilayer films
JPS61242321A (en) Magnetic recording medium
JP2871990B2 (en) Magnetoresistive element thin film
JPH03265105A (en) Soft magnetic laminate film
JPH04127508A (en) Mn-al ferromagnetic thin film and manufacture thereof
Miyamoto et al. MR characteristics of Ni/sub 81/Fe/sub 19//Cu multilayers deposited by Kr sputtering with Ar ion bombardment on interfaces
JPS6379253A (en) Magneto-optical material
Miyamoto et al. Deposition of [Ni–Fe/Al–O/Co–Fe] films with tunneling magnetoresistance effect using the interfacial modulation technique
Cadieu et al. Enhanced magnetic properties of nanophase SmCo/sub 5/film dispersions
Kubota et al. Magnetism and crystal structure of Fe/Si multilayered films prepared by ion beam sputtering
Miyamoto et al. Effects of ion bombardment to interfaces on residual internal stress and crystallite structures on multilayered films
Ishii et al. Deposition of ferromagnetic metal thin films by ion beam sputtering