JP6398911B2 - Permanent magnet and method for manufacturing the same - Google Patents

Permanent magnet and method for manufacturing the same Download PDF

Info

Publication number
JP6398911B2
JP6398911B2 JP2015166496A JP2015166496A JP6398911B2 JP 6398911 B2 JP6398911 B2 JP 6398911B2 JP 2015166496 A JP2015166496 A JP 2015166496A JP 2015166496 A JP2015166496 A JP 2015166496A JP 6398911 B2 JP6398911 B2 JP 6398911B2
Authority
JP
Japan
Prior art keywords
phase
permanent magnet
mnal
layer
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015166496A
Other languages
Japanese (ja)
Other versions
JP2017045824A (en
Inventor
岳 佐藤
佐藤  岳
金子 裕治
裕治 金子
哲 大砂
哲 大砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015166496A priority Critical patent/JP6398911B2/en
Publication of JP2017045824A publication Critical patent/JP2017045824A/en
Application granted granted Critical
Publication of JP6398911B2 publication Critical patent/JP6398911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、保磁力の向上を図れる永久磁石とその製造方法に関する。   The present invention relates to a permanent magnet capable of improving coercive force and a method for manufacturing the permanent magnet.

Nd等を用いた希土類磁石は非常に優れた磁気特性を発揮するが、稀少で高価な希土類元素(特にDy等)を使用するため、資源リスクが伴う。一方、フェライト磁石は、豊富なFeの酸化物からなるため資源リスクは殆どないが、磁気特性(特に保磁力)が不十分である。   Although rare earth magnets using Nd and the like exhibit very excellent magnetic properties, there are resource risks because they use rare and expensive rare earth elements (particularly Dy). On the other hand, ferrite magnets are composed of abundant Fe oxides, so there is almost no resource risk, but magnetic properties (particularly coercive force) are insufficient.

このような観点から、それらの代替となる種々の永久磁石が検討されており、その一つとしてMnAl系磁石がある。これに関連する記載が、例えば下記の文献にある。   From such a viewpoint, various permanent magnets as alternatives to them have been studied, and one of them is a MnAl-based magnet. There is a description related to this in the following literature, for example.

特開2001−217108号公報JP 2001-217108 A

Applied Physical Letter, 86, 122509 (2005).:SmCo系ナノコンポジット磁石Applied Physical Letter, 86, 122509 (2005) .: SmCo nanocomposite magnet Journal of Alloys and compounds, 434-435, 611-613 (2007).Journal of Alloys and compounds, 434-435, 611-613 (2007).

特許文献1は、Mn−B相とMn−Al相の両相を混在させることによって磁気特性の向上を図った Mn−B−Alからなる磁石組成物を提案している。   Patent Document 1 proposes a magnet composition composed of Mn—B—Al, which has improved magnetic properties by mixing both phases of Mn—B phase and Mn—Al phase.

非特許文献1は、高保磁力の硬質磁性相と高飽和磁化の軟質磁性相とを複合化した磁石の一つとして、SmCo系ナノコンポジット磁石を提案している。しかし、このような異種相の複合化により、現実的に保磁力を向上させた報告例は未だ無い。このように、複合(組織)化による永久磁石の特性向上(特に保磁力の向上)が検討されているが、現実的に有効な提案は未だ殆どないのが実情である。   Non-Patent Document 1 proposes an SmCo-based nanocomposite magnet as one of magnets in which a hard magnetic phase with high coercivity and a soft magnetic phase with high saturation magnetization are combined. However, there has been no report example that the coercive force has been actually improved by the composite of such different phases. As described above, improvement of the characteristics of the permanent magnet (particularly improvement of the coercive force) has been studied by making it into a composite (structure). However, there are still few practically effective proposals.

なお、非特許文献2には、永久磁石の組織の複合化とは無関係であるが、MnAl系永久磁石に関する記載がある。具体的にいうと、MnAl系永久磁石の主相となるL1型MnAl相(主相)が、非磁性相なAlMn相(γ相)とMn相(β相)へ相変態することを抑制するために、Cを微量添加する旨を提案している。この非特許文献2の記載からもわかるように、AlMn相(γ相)は非磁性材(フェロ磁性もフェリ磁性も示さない物質)と考えられてきた。 Non-Patent Document 2 has a description of a MnAl-based permanent magnet although it is not related to the composition of the permanent magnet structure. Specifically, MnAl based permanent magnet the main phase become L1 0 type MnAl phase (main phase) is the phase transformation to the non-magnetic phase of Al 8 Mn 5 phase (gamma-phase) and Mn phase (beta phase) In order to suppress this, it has been proposed to add a small amount of C. As can be seen from the description in Non-Patent Document 2, the Al 8 Mn 5 phase (γ phase) has been considered to be a non-magnetic material (a substance that exhibits neither ferromagnetism nor ferrimagnetism).

本発明は、このような事情に鑑みて為されたものである。すなわち、従来とは異なる複合化により、磁気特性(特に保磁力)の向上を図れる永久磁石と、その製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a permanent magnet capable of improving magnetic characteristics (particularly, coercive force) by combining different from the conventional one and a manufacturing method thereof.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、これまで非磁性材と考えられていたAlMn相(γ相)が、実際には、磁化レベルは小さくてもフェロ磁性またはフェリ磁性を示す磁性材であることを発見した。そして、このAlMn相と強磁性材とを組合わせることにより、その強磁性材の結晶磁気異方性エネルギーを高め、実際に永久磁石の保磁力を大幅に向上させることに成功した。この成果を発展させることにより、以降に述べるような本発明を完成するに至った。 As a result of extensive research and trial and error, the present inventor has studied Al 8 Mn 5 phase (γ phase), which has been considered as a nonmagnetic material, but actually has a low magnetization level. However, it was discovered that the magnetic material exhibits ferromagnetism or ferrimagnetism. Then, by combining this Al 8 Mn 5 phase with a ferromagnetic material, the crystal magnetic anisotropy energy of the ferromagnetic material was increased, and the coercive force of the permanent magnet was actually greatly improved. By developing this result, the present invention described below has been completed.

《永久磁石》
(1)本発明の永久磁石は、MnとAlの正方晶であるL1 型MnAl結晶粒からなる第一相と、該第一相の結晶粒とは異なるAlMn結晶粒からなる第二相とが混在しており、該第一相と該第二相は共にX線回折法により検出され、保磁力が13kOe以上であることを特徴とする。
"permanent magnet"
(1) the permanent magnet of the present invention, first of different Al 8 Mn 5 grains a first phase consisting of L1 0 type MnAl grains tetragonal of Mn and Al, the crystal grains of the first phase and two phases and are mixed one phase and said second phase said are both detected by X-ray diffractometry, the coercive force, characterized in der Rukoto least 13 kOe.

(2)本発明の永久磁石は、いわゆる磁性材である第一相とAlMn結晶粒からなる第二相とが混在した複合相からなり、少なくとも第一相のみからなる従来の永久磁石(AlMn結晶粒を含まない永久磁石)よりも、高い保磁力を発揮する。従って本発明によれば、従来の永久磁石(希土類磁石、フェライト磁石等)の磁気特性向上の他、それらの代替となる新たな永久磁石の提案も可能となり得る。 (2) The permanent magnet of the present invention is a conventional permanent magnet composed of a composite phase in which a first phase, which is a so-called magnetic material, and a second phase composed of Al 8 Mn 5 crystal grains are mixed, and at least only the first phase. It exhibits a higher coercive force than (a permanent magnet not including Al 8 Mn 5 crystal grains). Therefore, according to the present invention, in addition to improving the magnetic characteristics of conventional permanent magnets (rare earth magnets, ferrite magnets, etc.), it may be possible to propose new permanent magnets that can replace them.

本発明の永久磁石により保磁力が大幅に向上し得る理由は、次のように考えられる。先ず、永久磁石の保磁力は、通常、それを構成する材質(磁石合金等)の結晶磁気異方性エネルギー(単に「磁気異方性」という。)や飽和磁化に強く依存している。そして磁気異方性や飽和磁化は、本来、結晶構造と構成元素で決定される制御困難な物性値である。従って、既存の永久磁石の保磁力を大幅に向上させることは非常に困難であると、これまで考えられてきた。   The reason why the coercive force can be greatly improved by the permanent magnet of the present invention is considered as follows. First, the coercive force of a permanent magnet usually depends strongly on the magnetocrystalline anisotropy energy (simply referred to as “magnetic anisotropy”) and saturation magnetization of the material (magnet alloy, etc.) constituting the permanent magnet. Magnetic anisotropy and saturation magnetization are inherently difficult to control physical values determined by the crystal structure and constituent elements. Therefore, it has been considered so far that it is very difficult to greatly improve the coercive force of existing permanent magnets.

しかし、メカニズムは必ずしも定かではないが、これまで着目されてこなかったAlMn結晶粒からなる第二相(適宜、単に「AlMn相」ともいう。)が、磁性材からなる第一相(適宜、単に「磁性相」ともいう。)に強く作用し、第一相の本来有する磁気異方性に加えて、第一相に誘導磁気異方性を生じさることが新たにわかった。これにより、磁性相とAlMn相が混在、共存または複合化した組織(適宜、単に「複合相」という。)は、大きな磁気異方性を発現し、ひいては永久磁石の保磁力の大幅な向上が可能になったと考えられる。なお、AlMn相が磁性相に誘導磁気異方性を生じさせることから、AlMn相は、これまで認識されてきたような非磁性材ではなく、磁性材と考える方が妥当である。 However, although the mechanism is not necessarily clear, the second phase composed of Al 8 Mn 5 crystal grains that has not been noticed so far (also referred to as simply “Al 8 Mn 5 phase” as appropriate) is made of a magnetic material. It has been newly found that it acts strongly on one phase (also referred to simply as “magnetic phase” as appropriate) and induces induced magnetic anisotropy in the first phase in addition to the magnetic anisotropy inherent in the first phase. It was. As a result, a structure in which the magnetic phase and the Al 8 Mn 5 phase are mixed, coexisting, or composited (appropriately simply referred to as “composite phase”) exhibits a large magnetic anisotropy, which in turn increases the coercivity of the permanent magnet. It is thought that a significant improvement has become possible. Since the Al 8 Mn 5 phase causes induced magnetic anisotropy in the magnetic phase, it is appropriate to consider the Al 8 Mn 5 phase as a magnetic material rather than a non-magnetic material that has been recognized so far. It is.

《永久磁石の製造方法》
本発明は永久磁石としてのみならず、その製造方法としても把握できる。例えば、MnAl系合金からなる永久磁石の場合であれば、本発明は、MnとAlからなる合金(適宜、「MnAl系合金」という。)を調製する調製工程と、該合金からL1型MnAl結晶粒とAlMn結晶粒を生成する生成工程とを備え、MnAl系永久磁石が得られることを特徴とする製造方法としても把握できる。
<< Permanent Magnet Manufacturing Method >>
The present invention can be grasped not only as a permanent magnet but also as a manufacturing method thereof. For example, in the case of permanent magnet consisting MnAl alloy, the present invention is an alloy consisting of Mn and Al (appropriately referred. "MnAl alloy") and the preparation step of preparing a, L1 0 type from alloy MnAl It can also be grasped as a manufacturing method characterized by comprising a crystal grain and a production step for producing Al 8 Mn 5 crystal grain, and obtaining a MnAl-based permanent magnet.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. Any numerical value included in various numerical values or numerical ranges described in the present specification can be newly established as a range such as “ab” as a new lower limit value or upper limit value.

試料A0と試料A1に係る磁化曲線を示す図である。It is a figure which shows the magnetization curve which concerns on sample A0 and sample A1. 試料12と試料C0に係る磁気トルク曲線を示す図である。It is a figure which shows the magnetic torque curve concerning the sample 12 and the sample C0. 試料12と試料C0に係る回転ヒステリシス損失を示す図である。It is a figure which shows the rotation hysteresis loss concerning the sample 12 and the sample C0. 試料14に係る磁化曲線を示す図である。3 is a diagram showing a magnetization curve related to a sample 14. 第一相および第一相と第二相の複合相の磁化曲線と試料全体の磁化曲線との関係を説明する図である。It is a figure explaining the relationship between the magnetization curve of the 1st phase and the composite phase of the 1st phase and the 2nd phase, and the magnetization curve of the whole sample.

本明細書で説明する内容は、本発明の永久磁石のみならず、その製造方法にも該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。製造方法に関する構成要素は、一定の場合(構造または特性により「物」を直接特定することが不可能であるかまたは非実際的である事情(不可能・非実際的事情)等がある場合)、プロダクトバイプロセスとして「物」に関する構成要素ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can be applied not only to the permanent magnet of the present invention but also to the manufacturing method thereof. One or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. Constituent elements related to the manufacturing method are fixed (when it is impossible or impractical (impossible / unpractical circumstances), etc.) to directly identify the “product” by structure or characteristics It can also be a component related to “things” as a product-by-process. Note that which embodiment is the best depends on the target, required performance, and the like.

《第一相》
第一相は、フェロ磁性またはフェリ磁性を発現する結晶粒からなる磁性相であり、通常、主相である。第二相(AlMn相)による誘導磁気異方性により、第一相を主体とする永久磁石の保磁力が向上する限り、第一相の種類は問わない。例えば、第一相は、第二相と同系統なMnAl系合金からなるL1型MnAl結晶粒(MnとAlからなる正方晶)でもよい。この他、第一相は、各種のフェライト(鉄酸化物)や希土類磁石合金の結晶粒からなる場合も考えられる。
《First Phase》
The first phase is a magnetic phase composed of crystal grains that exhibit ferromagnetism or ferrimagnetism, and is usually the main phase. The type of the first phase is not limited as long as the coercive force of the permanent magnet mainly composed of the first phase is improved by the induced magnetic anisotropy due to the second phase (Al 8 Mn 5 phase). For example, the first phase, second phase and even better (tetragonal comprising Mn and Al) same type of MnAl system composed of an alloy L1 0 type MnAl grain. In addition, the first phase may be composed of various ferrite (iron oxide) or rare earth magnet alloy crystal grains.

《第二相》
第二相は、AlMn結晶粒からなり、当然、組成や結晶構造が第一相とは異なる。既述したように、第二相も第一相と同様に磁性相であって、磁化レベルは小さくても、大きな磁気異方性を発現すると考えられる。これにより本発明の永久磁石は大きな保磁力を発揮し得るが、第二相を構成するAlMn結晶粒が過小または過大であると、その効果は乏しい。そこでAlMn結晶粒は、結晶粒の平均粒径が10nm〜5μmさらには50nm〜1μmであると好ましい。なお、本明細書でいう平均粒径は、透過型電子顕微鏡(TEM)により得られた顕微鏡写真を画像処理して算出される。具体的には、視野(10μm×10μm)中に存在するそれぞれのAlMn結晶粒について、その面積に相当する円の直径の相加平均値として求めることができる。
《Second phase》
The second phase consists of Al 8 Mn 5 crystal grains, and of course, the composition and crystal structure are different from the first phase. As described above, the second phase is also a magnetic phase like the first phase, and is considered to exhibit a large magnetic anisotropy even if the magnetization level is small. As a result, the permanent magnet of the present invention can exhibit a large coercive force, but its effect is poor when the Al 8 Mn 5 crystal grains constituting the second phase are too small or too large. Therefore, the Al 8 Mn 5 crystal grains preferably have an average grain size of 10 nm to 5 μm, more preferably 50 nm to 1 μm. In addition, the average particle diameter as used in this specification is calculated by image-processing the microscope picture obtained with the transmission electron microscope (TEM). Specifically, for each Al 8 Mn 5 crystal grain present in the visual field (10 μm × 10 μm), it can be obtained as an arithmetic average value of the diameters of the circles corresponding to the area.

また第二相(AlMn相)が過少では効果が乏しく、過多では永久磁石としての磁化(磁束)が低下し得る。そこで永久磁石全体を100体積%として、AlMn相が5体積%以下であると好ましい。 Further, if the second phase (Al 8 Mn 5 phase) is too small, the effect is poor, and if it is excessive, the magnetization (magnetic flux) as a permanent magnet can be lowered. Therefore, the total permanent magnet is preferably 100% by volume, and the Al 8 Mn 5 phase is preferably 5% by volume or less.

永久磁石がMnAl系合金からなる場合であれば、その全体を100原子%(単に「%」という。)としたときに、Al:39〜46%、Al:40〜44%さらにはAl:41〜43%であり、残部がMnと任意な少量(例えば、合計で3%以下さらには2%以下)の改質元素(例えば、B、C、N、O等の侵入型元素、Fe、Ni等の強磁性元素)または不純物とからなるとよい。この場合、L1型MnAl結晶粒からなる第一相(適宜、単に「L1型MnAl相」ともいう。)と、AlMn結晶粒からなる第二相との複合相からなる高保磁力の永久磁石を得ることができる。なお、この複合相は、大部分を占めるL1型MnAl相と、少量のAlMn相がL1型MnAl相に隣接して微細に分散した状態の組織からなると好ましい。 If the permanent magnet is made of an MnAl-based alloy, Al: 39 to 46%, Al: 40 to 44%, and Al: 41 when the whole is 100 atomic% (simply referred to as “%”). ˜43%, the balance being Mn and an arbitrary small amount (for example, 3% or less, further 2% or less) of modifying elements (for example, interstitial elements such as B, C, N, O, Fe, Ni, etc.) Etc.) or impurities. In this case, L1 0 type MnAl first phase consisting of crystal grains (as appropriate, simply referred to as "L1 0 type MnAl phase".) And a high coercive force of a composite phase of the second phase consisting of Al 8 Mn 5 grains Permanent magnets can be obtained. Incidentally, the composite phase and L1 0 type MnAl phase occupying most, if small amounts of Al 8 Mn 5 phase consists finely dispersed state of the tissue adjacent to the L1 0 type MnAl phase preferred.

《永久磁石の製造方法》
本発明の永久磁石は、その製造方法を問わないが、例えば、MnAl系合金からなる永久磁石であれば、次のような調製工程と生成工程とを行うことにより得ることができる。
<< Permanent Magnet Manufacturing Method >>
The manufacturing method of the permanent magnet of the present invention is not limited. For example, if it is a permanent magnet made of an MnAl alloy, it can be obtained by performing the following preparation process and generation process.

(1)調製工程
調製工程は、例えば、永久磁石の所望組成に応じて用意されたターゲット原料に対してスパッタリングをして、基材(基板)上に合金層を形成する工程である。この合金層の組成は、例えば、上述したような範囲内とするとよい。合金層の厚さ、積層数等は適宜調整すればよい。複数の合金層を積層する場合、全体として所望組成となれば、各層毎の合金組成は異なっていてもよい。合金層を積層する場合、均質的な永久磁石を得るために、各層の厚さは、例えば5〜500nm内で調整するとよい。
(1) Preparation process A preparation process is a process of forming an alloy layer on a base material (board | substrate) by sputtering with respect to the target raw material prepared according to the desired composition of the permanent magnet, for example. The composition of this alloy layer may be within the range as described above, for example. What is necessary is just to adjust the thickness of an alloy layer, the number of lamination | stacking, etc. suitably. When laminating a plurality of alloy layers, the alloy composition for each layer may be different as long as it has a desired composition as a whole. When laminating alloy layers, the thickness of each layer may be adjusted within a range of, for example, 5 to 500 nm in order to obtain a homogeneous permanent magnet.

MnAl系合金の調製は、560〜750℃さらには580〜720℃の加熱下でなされると好ましい。この理由は、第一相であるL1型MnAl相および第二相であるAlMn相の結晶生成のため560℃以上の加熱が必要となり、また、750℃以上になるとAlの蒸発が顕著になり組成の制御が困難になるためと考えられる。MnAl系合金層を形成する場合なら、基材温度を上記の範囲内とするとよい。なお、調製工程は、酸化防止雰囲気(真空雰囲気、不活性ガス雰囲気、窒素ガス雰囲気等)でなされると好ましい。 The preparation of the MnAl-based alloy is preferably performed under heating at 560 to 750 ° C, further 580 to 720 ° C. This is because the first phase is a L1 0 type MnAl and second phases in which Al 8 Mn 5 above 560 ° C. For crystal formation of phase heating is required, also the Al evaporation becomes more than 750 ° C. This is considered to be conspicuous and difficult to control the composition. In the case of forming a MnAl-based alloy layer, the substrate temperature may be set within the above range. Note that the preparation step is preferably performed in an oxidation-preventing atmosphere (vacuum atmosphere, inert gas atmosphere, nitrogen gas atmosphere, or the like).

(2)生成工程
生成工程は、調製工程で得られたMnAl系合金から、晶出、析出、結晶成長等させることにより、第一相となるL1型MnAl結晶粒と第二相となるAlMn結晶粒とを得る工程である。結晶粒の晶出または析出は、調製工程後の高温なMnAl系合金を冷却したり、さらには熱処理を別途行うことにより可能である。
(2) generating step generating step, from MnAl alloy obtained in the preparation step, crystallization, precipitation, by crystal growth or the like, comprising L1 0 type MnAl crystal grains comprising a first phase and a second phase Al This is a step of obtaining 8 Mn 5 crystal grains. Crystallization or precipitation of crystal grains can be performed by cooling the high-temperature MnAl-based alloy after the preparation step, or by additionally performing heat treatment.

結晶成長によりL1型MnAl結晶粒またはAlMn結晶粒を得る場合なら、エピタキシャル成長により結晶方位が特定方向に揃った結晶粒が得られるような基材(基板)を選択し、その基材上に上述した合金層を形成すると好ましい。基材の選択は、例えば、基材側(または下地層)と合金層側との結晶格子定数、熱膨張係数等が近接するように行うとよい。このような基材として、例えば、酸化マグネシウム(MgO)の単結晶からなるMgO単結晶基材、W、Mo、Cu、Siの単結晶基材などがある。 If the case of obtaining an L1 0 type MnAl grain or Al 8 Mn 5 grain by crystal growth, to select the base material (substrate) such as crystal grains the crystal orientation is aligned in a specific direction by the epitaxial growth is obtained, the substrate It is preferable to form the alloy layer described above. The substrate is preferably selected so that the crystal lattice constant, thermal expansion coefficient, and the like of the substrate side (or underlayer) and the alloy layer side are close to each other. Examples of such a substrate include an MgO single crystal substrate made of a single crystal of magnesium oxide (MgO), a single crystal substrate of W, Mo, Cu, and Si.

また、合金層側の結晶面と整合的な結晶構造を有する下地層を基材上に形成しておいてもよい(下地層形成工程)。このような下地層には、シード層やバッファ層がある。シード層とはバッファ層の結晶成長を促進させる層であり、バッファ層とは合金層の形成を促進する土台となる層である。 このような下地材として、Mo、Ta、W、Ti、Cr、V、Nb、Pd、Pt、Ag、Auなどがある。なお、下地層もスパッタリングにより形成可能である。   Moreover, you may form the base layer which has a crystal structure consistent with the crystal plane by the side of an alloy layer on a base material (base layer formation process). Such an underlayer includes a seed layer and a buffer layer. The seed layer is a layer that promotes crystal growth of the buffer layer, and the buffer layer is a layer that serves as a foundation for promoting the formation of the alloy layer. Examples of such a base material include Mo, Ta, W, Ti, Cr, V, Nb, Pd, Pt, Ag, and Au. Note that the underlayer can also be formed by sputtering.

さらに、調製工程後の合金表面、または生成工程後のL1型MnAl結晶粒とAlMn結晶粒の表面に、その酸化を抑止する保護層を形成すると好ましい(保護層形成工程)。保護層の形成も、前述したスパッタリングにより行える。このときのターゲットには、Cr、Ag、Au、Pd、Pt、Mo、Cu、Ti、Ta、Ru、V、Hf、W、Irなどの単体、合金または化合物などを用いることができる。このスパッタリングは、通常、室温域で行えば足りる。 Furthermore, the alloy surface after the preparation process or the L1 0 type MnAl crystal grains and Al 8 Mn 5 grains surface after generation step, it is preferable to form a protective layer for suppressing the oxidation (protective layer forming step). The protective layer can also be formed by the sputtering described above. As a target at this time, a simple substance such as Cr, Ag, Au, Pd, Pt, Mo, Cu, Ti, Ta, Ru, V, Hf, W, and Ir, an alloy, a compound, or the like can be used. Usually, it is sufficient to perform this sputtering at room temperature.

《永久磁石》
本発明の永久磁石は、その用途を問わず、種々の電磁機器に用いることができる。例えば、本発明の永久磁石は、電動機のロータやステータに配設されて界磁を構成し得る。なお、本発明の永久磁石は、薄膜法の他、溶解法、焼結法等によっても製造され得る。
"permanent magnet"
The permanent magnet of the present invention can be used for various electromagnetic devices regardless of its application. For example, the permanent magnet of the present invention can be arranged in a rotor or stator of an electric motor to constitute a field. In addition, the permanent magnet of the present invention can be manufactured not only by a thin film method but also by a melting method, a sintering method, or the like.

薄膜法により種々の試料を製造し、第二相となるAlMn相自体の特性と、AlMn相が、第一相である磁性相(特にその一例であるL1型MnAl相)に及ぼす影響を評価した。これらの実施例に基づいて本発明をより具体的に説明する。 To produce a variety of sample by thin film method, and characteristics of the Al 8 Mn 5 phase itself comprising a second phase, Al 8 Mn 5 phase, L1 0 type MnAl phase is a magnetic phase (particularly an example a first phase ) Was evaluated. The present invention will be described more specifically based on these examples.

《薄膜法》
MgO単結晶基板(適宜、単に「基板」ともいう。)を用意した。このMgO単結晶基板は、(001)面が成膜面になるように加工し、表面粗度を小さくするため研磨を行ったものである。特に断らない限り、その(001)面上へ、スパッタリングにより直接に成膜した。
<Thin film method>
An MgO single crystal substrate (also simply referred to as “substrate” as appropriate) was prepared. This MgO single crystal substrate is processed so that the (001) plane becomes a film-forming surface and polished to reduce the surface roughness. Unless otherwise specified, the film was formed directly on the (001) plane by sputtering.

実施例でいうスパッタリングは、特に断らない限り、マグネトロンスパッタ法に基づき、成膜前の到達真空度を5x10−8Pa以下、製膜形状をφ8mmとして行った。各膜厚は、成膜速度と成膜時間の積から算出した。ちなみに成膜速度は、本実施例では0.4〜1Å/sとした。 Unless otherwise specified, sputtering in the examples was performed based on a magnetron sputtering method with an ultimate vacuum before film formation of 5 × 10 −8 Pa or less and a film formation shape of φ8 mm. Each film thickness was calculated from the product of the film formation speed and the film formation time. Incidentally, the film formation rate was 0.4 to 1 cm / s in this example.

成膜後の基板を室温(35℃以下)まで冷却し、その室温域で、膜表面に酸化防止のためのTa層(保護層)を形成した(保護層形成工程)。   The substrate after film formation was cooled to room temperature (35 ° C. or lower), and a Ta layer (protective layer) for preventing oxidation was formed on the film surface in the room temperature region (protective layer forming step).

《第一実施例》
(1)試料の製造
AlMn 自体の特性を調べるため、上記の基板上に直接Fe層のみを形成した試料A0と、基板上に直接AlMn層を形成した後、その上にFe層を積層した試料A1とを用意した。Fe層の厚さはいずれも5nmと、AlMn層の厚さは45nmとした。試料A0およびAlのFe層成膜時の基板温度は50℃以下とし、試料A1のAlMn層の成膜時の基板温度は650℃とした。
<< First Example >>
(1) Manufacture of sample In order to investigate the characteristics of Al 8 Mn 5 itself, sample A0 in which only the Fe layer was directly formed on the substrate, and the Al 8 Mn 5 layer directly formed on the substrate, Sample A1 on which an Fe layer was laminated was prepared. The thickness of each Fe layer was 5 nm, and the thickness of the Al 8 Mn 5 layer was 45 nm. The substrate temperature at the time of forming the Fe layer of sample A0 and Al was 50 ° C. or less, and the substrate temperature at the time of forming the Al 8 Mn 5 layer of sample A1 was 650 ° C.

(2)測定
こうして得られた各試料を用いて、膜面に対して垂直方向の磁化を、振動試料型磁力計(VSM)で測定した。このとき得られた各試料に係る磁化曲線を図1に併せて示した。
(2) Measurement Using each sample thus obtained, the magnetization in the direction perpendicular to the film surface was measured with a vibrating sample magnetometer (VSM). The magnetization curve concerning each sample obtained at this time is also shown in FIG.

(3)評価
先ず、試料A0に係る磁化曲線から次のことがわかる。Feは結晶磁気異方性エネルギーが小さいが、試料A0に係るFe層(薄膜)は形状異方性の影響を強く受けて、その磁化容易方向は膜面に平行な方向(適宜、「面方向」という。)となっている。このためFe層は、測定している膜面に直交する方向(適宜、「面直方向」という。)が磁化困難方向となる。このため面直方向の磁化を測定して得られる磁化曲線は、図1に示すようになる。このFe層に係る磁化曲線から、磁化が飽和する磁界を読み取ると、試料A0に係るFe層の異方性磁界は約20kOeと見積もれる。
(3) Evaluation First, the following can be understood from the magnetization curve of sample A0. Fe has a small magnetocrystalline anisotropy energy, but the Fe layer (thin film) according to sample A0 is strongly influenced by shape anisotropy, and its easy magnetization direction is a direction parallel to the film surface (appropriately “plane direction” "). For this reason, in the Fe layer, the direction orthogonal to the film surface being measured (referred to as “the direction perpendicular to the plane” as appropriate) is the magnetization difficult direction. Therefore, the magnetization curve obtained by measuring the magnetization in the perpendicular direction is as shown in FIG. When the magnetic field at which the magnetization is saturated is read from the magnetization curve related to the Fe layer, the anisotropic magnetic field of the Fe layer related to the sample A0 can be estimated to be about 20 kOe.

次に、試料A1に係る磁化曲線から次のことがわかる。試料A1に係るFe層も、面直方向が磁化困難方向である点は、試料A0に係るFe層と同じである。但し、試料A1に係るFe層は、その下層側でAlMn層と隣接しており、その異方性磁界は約10kOeにまで減少している。これは、AlMn層により、Fe層が面直方向に磁化され易くなったことを示す。換言するなら、AlMn層によって、Fe層の磁気異方性が面直方向に誘導されたことがわかる。 Next, the following can be understood from the magnetization curve of the sample A1. The Fe layer according to sample A1 is also the same as the Fe layer according to sample A0 in that the perpendicular direction is the direction of magnetization difficulty. However, the Fe layer according to the sample A1 is adjacent to the Al 8 Mn 5 layer on the lower layer side, and the anisotropic magnetic field is reduced to about 10 kOe. This indicates that the Fe 8 layer is easily magnetized in the perpendicular direction by the Al 8 Mn 5 layer. In other words, it can be seen that the magnetic anisotropy of the Fe layer is induced in the perpendicular direction by the Al 8 Mn 5 layer.

このようにAlMnは、その隣接域または近傍域にある磁性材に誘導磁気異方性を生じさせることから、AlMnは、フェロ磁性材かフェリ磁性材であるかは別にして、磁性材であるといえる。また、本実施例に依り、AlMn相(第二相)が作用を及ぼす相手材(第一相)は、硬質磁性材(例えば、後述するMnAl系磁性材)に限らず、軟質磁性材でもよいことが明らかとなった。 As described above, Al 8 Mn 5 induces induced magnetic anisotropy in the magnetic material in the adjacent region or the adjacent region. Therefore, whether Al 8 Mn 5 is a ferromagnetic material or a ferrimagnetic material. It can be said that it is a magnetic material. Further, according to the present embodiment, the counterpart material (first phase) on which the Al 8 Mn 5 phase (second phase) acts is not limited to a hard magnetic material (for example, a MnAl-based magnetic material described later), but soft magnetism. It became clear that wood could be used.

《第二実施例》
(1)試料の製造
上述した薄膜法により、合金組成または成膜時の基板温度を種々変更した合金層を基板上に成膜した。こうして、表1に示す種々の試料を得た。なお、試料C0は、基板の(001)面上へスパッタリングによりCr層(下地層)を形成した後(下地層形成工程)、そのCr層上へMn−Al合金層を形成したものである。ちなみに、各合金層の膜厚は全体としてCr層10nm、MnAl層45nmとした。
<< Second Example >>
(1) Manufacture of a sample The alloy layer which changed various alloy compositions or the substrate temperature at the time of film-forming was formed into a film on the board | substrate by the thin film method mentioned above. Thus, various samples shown in Table 1 were obtained. Sample C0 is obtained by forming a Cr layer (underlying layer) on the (001) surface of the substrate by sputtering (underlying layer forming step) and then forming a Mn—Al alloy layer on the Cr layer. Incidentally, the film thickness of each alloy layer as a whole was 10 nm of Cr layer and 45 nm of MnAl layer.

《試料の観察・測定》
(1)組織
各試料に係る合金層について、X線回折法(XRD)を行うことにより、L1型MnAl結晶(第一相)とAlMn結晶(第二相)の生成の有無を確認した。XRD回折強度と共に相生成の有無を、表1に併せて示した。表1中の「○」は相生成がされていることを意味し、「×」は相生成がされていないことを意味する。
<< Observation and measurement of sample >>
(1) an alloy layer of tissue to each sample, by performing X-ray diffraction method (XRD), the presence or absence of generation of L1 0 type MnAl crystals (first phase) and Al 8 Mn 5 crystals (second phase) confirmed. Table 1 also shows the presence or absence of phase formation along with the XRD diffraction intensity. “◯” in Table 1 means that phase is being generated, and “×” means that phase is not being generated.

(2)磁気特性
表1に示す結果に基づき、両相からなる複合相が生成されている試料について、室温(23℃)における磁気特性(飽和磁化と保磁力)を振動試料型磁力計(VSM)で測定した。その結果も表1に併せて示した。
(2) Magnetic properties Based on the results shown in Table 1, the magnetic properties (saturation magnetization and coercivity) at room temperature (23 ° C.) of a sample in which a composite phase composed of both phases is generated are measured using a vibrating sample magnetometer (VSM ). The results are also shown in Table 1.

また、試料12と試料C0について、印加磁場:27kOeとしたときの磁気トルクの変化を図2に示した。また、それら試料に係る回転ヒステリシス損失Wrの印加磁場Hに対する変化を図3に示した。さらに、試料14に係る磁化曲線を図4Aに示した。   FIG. 2 shows the change in magnetic torque when the applied magnetic field is 27 kOe for Sample 12 and Sample C0. Moreover, the change with respect to the applied magnetic field H of the rotation hysteresis loss Wr which concerns on those samples was shown in FIG. Furthermore, the magnetization curve concerning the sample 14 is shown in FIG. 4A.

《評価》
(1)図2から次のことがわかる。図2に示す磁気トルク曲線の起伏は磁気異方性を示しており、試料C0の場合、0°(360°)と180°で磁気トルクが正から負に変化している。このため、試料C0には、L1型MnAl相(表1参照)に起因する一つの磁化容易軸が存在することがわかる。これに対して、試料12の場合、180°付近で、試料C0の場合とは異なる新たな起伏を生じている。これは、AlMn相(表1参照)に起因して、L1型MnAl相の本来の磁気異方性とは別に、新たな磁気異方性(誘導磁気異方性)が付加されたためと考えられる。
<Evaluation>
(1) The following can be seen from FIG. The undulations of the magnetic torque curve shown in FIG. 2 indicate magnetic anisotropy, and in the case of the sample C0, the magnetic torque changes from positive to negative at 0 ° (360 °) and 180 °. Therefore, the sample C0 is seen that one of the easy axis of magnetization caused by the L1 0 type MnAl phase (see Table 1) is present. On the other hand, in the case of the sample 12, a new undulation different from the case of the sample C0 occurs around 180 °. This is due to the Al 8 Mn 5 phase (see Table 1), from the original magnetic anisotropy of L1 0 type MnAl phase separately, the new magnetic anisotropy (induced magnetic anisotropy) is added It is thought that it was because of.

図3から次のことがわかる。試料C0に係る回転ヒステリシス損失Wrは、飽和磁化を示す磁場に相当する異方性磁界Hに向かって減少している。一方、試料12に係る回転ヒステリシス損失Wrは、少なくとも同レベルの磁場内において、増加傾向のみを示している。このことから、複合相からなる試料12の異方性磁界Hは、単相からなる試料C0の異方性磁界Hよりも、かなり大きくなっていることがわかる。 The following can be seen from FIG. The rotational hysteresis loss Wr related to the sample C0 decreases toward an anisotropic magnetic field HA corresponding to a magnetic field showing saturation magnetization. On the other hand, the rotational hysteresis loss Wr related to the sample 12 shows only an increasing tendency at least in the same magnetic field. From this, it can be seen that the anisotropic magnetic field HA of the sample 12 composed of the composite phase is considerably larger than the anisotropic magnetic field HA of the sample C0 composed of the single phase.

(2)表1から次のことがわかる。上述の薄膜法で合金層を製造する場合、その全体組成と基板温度が所望の範囲にあるときに、L1型Mn相とAlMn相とからなる複合相が形成され易いことがわかる。 (2) Table 1 shows the following. When producing the alloy layer in the thin film method described above, when the overall composition and the substrate temperature is in the desired range, it can be seen that tends composite phase is formed consisting of L1 0 type Mn phase and Al 8 Mn 5 phase .

また、試料C0のようにL1型MnAl単相の保磁力は約4kOe程度であることから、試料11〜25のように複合相が形成されることによって、単相の場合よりも保磁力が大幅に増加することも表1からわかる。 Further, since the coercive force of the L1 0 type MnAl single phase as in Sample C0 is about 4 kOe, by complex phase as in Sample 11 to 25 are formed, the coercive force than the case of single-phase It can also be seen from Table 1 that it increases significantly.

さらに、L1型MnAl相とAlMn相とに係るXRD回折強度から、AlMn相はL1型MnAl相に対して僅かに存在する程度でも、全体としての保磁力は大幅に増加することがわかる。従って、L1型MnAl相とAlMn相が共存する複合相からなる永久磁石は、L1型MnAl相による高磁化と高保磁力を両立し得ることがわかる。 Further, L1 from XRD diffraction intensity according to the type-0 MnAl phase and Al 8 Mn 5 phase, even to the extent the Al 8 Mn 5 phase slightly exists for L1 0 type MnAl phase, coercive force as a whole significantly It can be seen that it increases. Therefore, the permanent magnets made of a composite phase L1 0 type MnAl phase and Al 8 Mn 5 phase coexist, it can be seen that is compatible with high magnetization and high coercive force by L1 0 type MnAl phase.

(3)このことは、一例として示した試料14に係る磁化曲線(図4A)からもわかる。すなわち、その磁化曲線では、二段階の磁化反転が起こっており、2種類の磁性相(複合相)が存在していることがわかる。そしてL1型MnAl相(第一相)により高磁化が発現されていると共に、AlMn相(第二相)との複合化により高保磁力が発現されている。特に保磁力に着目すると、L1型MnAl相の保磁力は約4kOe程度であるが、AlMn相の存在により、複合相の保磁力は40kOeを遙かに超えている。なお、図4Aに示した磁化曲線は、測定時の印加磁場の上限が50kOeであったため、完全に着磁した状態で測定されたものではない。それでも、AlMn相が生成されることにより、その生成量に依らず、複合相の保磁力が大幅に増大することは十分に確認できる。 (3) This can also be seen from the magnetization curve (FIG. 4A) of the sample 14 shown as an example. That is, in the magnetization curve, two-stage magnetization reversal occurs, and it can be seen that there are two types of magnetic phases (composite phases). And with high magnetization is expressed by L1 0 type MnAl phase (first phase), high coercive force by complexation with Al 8 Mn 5 phase (second phase) is expressed. With particular attention to the coercivity, coercivity of L1 0 type MnAl phase is about 4 kOe, the presence of Al 8 Mn 5 phase, the coercivity of the composite phase is far beyond the 40 kOe. The magnetization curve shown in FIG. 4A was not measured in a fully magnetized state because the upper limit of the applied magnetic field at the time of measurement was 50 kOe. Nevertheless, it can be sufficiently confirmed that the generation of the Al 8 Mn 5 phase greatly increases the coercive force of the composite phase regardless of the amount of generation.

このように、高磁化を発現する第一相と高磁気異方性を発現する第二相とが共存することにより、それぞれの高特性を兼ね備えた複合相からなる永久磁石が得られる。この機序を図4Aの磁化曲線を参考に模式的に示すと、図4Bのようになる。つまり、複合相からなる永久磁石の磁化曲線は、第一相の磁化曲線と複合相の磁化曲線とを融合させた形態となり、高磁化と高保磁力が両立され得る形態となり得ることがわかる。   Thus, the coexistence of the first phase exhibiting high magnetization and the second phase exhibiting high magnetic anisotropy makes it possible to obtain a permanent magnet composed of a composite phase having both high characteristics. This mechanism is schematically shown in FIG. 4B with reference to the magnetization curve of FIG. 4A. That is, it can be seen that the magnetization curve of the permanent magnet composed of the composite phase has a form in which the magnetization curve of the first phase and the magnetization curve of the composite phase are fused, and can have a form in which both high magnetization and high coercive force can be achieved.

Claims (6)

MnとAlの正方晶であるL1 型MnAl結晶粒からなる第一相と、
該第一相の結晶粒とは異なるAlMn結晶粒からなる第二相とが混在しており、
該第一相と該第二相は共にX線回折法により検出され、
保磁力が13kOe以上であることを特徴とする永久磁石。
A first phase consisting of tetragonal there L1 0 type MnAl grain Mn and Al,
The second phase consisting of Al 8 Mn 5 crystal grains different from the crystal grains of the first phase is mixed ,
The first phase and the second phase are both detected by X-ray diffraction;
Permanent magnet coercive force, characterized in der Rukoto least 13 kOe.
前記第二相は、永久磁石全体を100体積%として5体積%以下である請求項1に記載の永久磁石。2. The permanent magnet according to claim 1, wherein the second phase is 5% by volume or less based on 100% by volume of the entire permanent magnet. AlMn結晶粒は、平均粒径が10nm〜5μmである請求項1または2に記載の永久磁石。 Al 8 Mn 5 grains, the permanent magnet according to claim 1 or 2 having an average particle diameter of 10 nm to 5 [mu] m. 全体を100原子%(単に「%」という。)としたときに、Al:39〜46%、Mn:残部であるMnAl系合金からなる請求項1〜のいずれかに記載の永久磁石。 The whole when 100 atomic% (referred to simply as "%".) And, Al: 39~46%, Mn: permanent magnet according to any one of claims 1 to 3, the balance is a MnAl alloy. MnとAlからなる合金を調製する調製工程と、
該合金からL1型MnAl結晶粒とAlMn結晶粒を生成する生成工程とを備え、
請求項4に記載の永久磁石が得られることを特徴とする永久磁石の製造方法。
A preparation step of preparing an alloy comprising Mn and Al;
And a generating step of generating an L1 0 type MnAl crystal grains and Al 8 Mn 5 grains from the alloy,
A method for producing a permanent magnet, wherein the permanent magnet according to claim 4 is obtained.
前記調製工程は、560〜750℃でなされる請求項5に記載の永久磁石の製造方法。   The said preparation process is a manufacturing method of the permanent magnet of Claim 5 made at 560-750 degreeC.
JP2015166496A 2015-08-26 2015-08-26 Permanent magnet and method for manufacturing the same Expired - Fee Related JP6398911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015166496A JP6398911B2 (en) 2015-08-26 2015-08-26 Permanent magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015166496A JP6398911B2 (en) 2015-08-26 2015-08-26 Permanent magnet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017045824A JP2017045824A (en) 2017-03-02
JP6398911B2 true JP6398911B2 (en) 2018-10-03

Family

ID=58209929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015166496A Expired - Fee Related JP6398911B2 (en) 2015-08-26 2015-08-26 Permanent magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6398911B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261508B2 (en) 2017-03-22 2022-03-01 Tdk Corporation MnAl alloy
JP7234518B2 (en) 2018-06-30 2023-03-08 Tdk株式会社 MnAl alloy and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226346A (en) * 1975-08-25 1977-02-26 Kobe Steel Ltd Hot lubrication extruding method for mangan aluminum magnetized alloys
DD205189A1 (en) * 1982-04-23 1983-12-21 Adw Ddr FINE POWDER FOR MAGNETIC TRANSMITTERS
JP2735276B2 (en) * 1988-03-25 1998-04-02 株式会社日立製作所 Mn-Al ferromagnetic thin film and method for producing the same
US20100218858A1 (en) * 2005-10-27 2010-09-02 Ian Baker Nanostructured mn-al permanent magnets and methods of producing same
CN104593625B (en) * 2015-01-06 2017-02-22 同济大学 Preparation method of non-rare earth MnAl permanent magnetic alloy

Also Published As

Publication number Publication date
JP2017045824A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6256360B2 (en) Permanent magnet and method for manufacturing the same
US10096412B2 (en) Rare earth based magnet
TWI673732B (en) R-Fe-B based sintered magnet and manufacturing method thereof
JP6411630B2 (en) Quenched alloy for rare earth magnet and method for producing rare earth magnet
US10199145B2 (en) Rare-earth magnet and method for producing the same
CN105122388B (en) permanent magnet, motor and generator
Younsi et al. Structure and magnetic properties of nanocrystalline PrCo3
JP2010074084A (en) Permanent magnet and method for manufacturing permanent magnet
JP2011187624A (en) Rare-earth system permanent magnet and method of manufacturing the same
JP2015119130A (en) Rare earth magnet
Sellmyer et al. Novel structures and physics of nanomagnets
JP6117706B2 (en) Rare earth nanocomposite magnet
JP5732877B2 (en) Magnetic material and method for producing the same
CN105336488A (en) Preparation method of material for improving intrinsic coercive force of Fe3B/Nd2Fe14B magnetic alloy
JP6398911B2 (en) Permanent magnet and method for manufacturing the same
CN104733145A (en) Rare earth based magnet
JP2015038951A (en) Rare-earth magnet
JP5565497B1 (en) R-T-B permanent magnet
Tong et al. Investigations on low energy product of MnAl magnets through recoil curves
WO2002015206A1 (en) Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
Hou et al. Effects of Nb substitution for Zr on the phases, microstructure and magnetic properties of Co80Zr18− xNbxB2 melt-spun ribbons
US20150125341A1 (en) Non-Rare Earth Magnets Having Manganese (MN) and Bismuth (BI) Alloyed with Cobalt (CO)
JP6255977B2 (en) Rare earth magnets
JP5390996B2 (en) Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet
JP7166615B2 (en) Rare earth magnets, films, laminates, methods of manufacturing rare earth magnets, motors, generators, and automobiles.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees