WO2002015206A1 - Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet - Google Patents

Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet Download PDF

Info

Publication number
WO2002015206A1
WO2002015206A1 PCT/JP2001/006562 JP0106562W WO0215206A1 WO 2002015206 A1 WO2002015206 A1 WO 2002015206A1 JP 0106562 W JP0106562 W JP 0106562W WO 0215206 A1 WO0215206 A1 WO 0215206A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
permanent magnet
film
thin
transition metal
Prior art date
Application number
PCT/JP2001/006562
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Yamashita
Ken Makita
Original Assignee
Sumitomo Special Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co., Ltd. filed Critical Sumitomo Special Metals Co., Ltd.
Priority to DE60134564T priority Critical patent/DE60134564D1/en
Priority to US10/343,480 priority patent/US7285338B2/en
Priority to EP01984520A priority patent/EP1329912B1/en
Priority to JP2002520247A priority patent/JP4697570B2/en
Publication of WO2002015206A1 publication Critical patent/WO2002015206A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3222Exchange coupled hard/soft multilayers, e.g. CoPt/Co or NiFe/CoSm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/007Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/28Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • Y10T428/1129Super lattice [e.g., giant magneto resistance [GMR] or colossal magneto resistance [CMR], etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/115Magnetic layer composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12868Group IB metal-base component alternative to platinum group metal-base component [e.g., precious metal, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • Y10T428/325Magnetic layer next to second metal compound-containing layer

Definitions

  • the present invention relates to a thin-film rare-earth permanent magnet, comprising forming a rare-earth element monoatomic layer on a substrate of a nonmagnetic material having excellent surface roughness and flatness like a single-crystal silicon wafer, and then forming a transition metal element.
  • the present invention relates to a thin-film rare-earth permanent magnet having a configuration having at least one atomic stack unit in which a plurality of monoatomic layers are stacked, having an easy axis of magnetization in the stacking direction, and obtaining a thin-film magnet having high magnetic properties, and a method of manufacturing the same.
  • thin-film rare-earth permanent magnets have been produced mainly by laminating Nd-Fe-B-based materials by vacuum evaporation or sputtering. Since the crystal structure of the laminate obtained by this method is polycrystalline, the axis of easy magnetization is random, and only magnetic isotropic permanent magnet properties are obtained. There is a problem that the magnetic properties are significantly lower than those of magnets and only magnetic properties can be obtained.
  • a method of repeatedly laminating a Nd—Fe—B-based magnet layer and a transition metal layer with a predetermined thickness is disclosed in Japanese Patent Laid-Open No. 6-151226.
  • the growth direction of the c-axis which is the axis of easy magnetization of Nd-Fe-B, varies depending on the crystal direction of the underlying transition metal layer, so that it is very difficult to align them all in the stacking direction.
  • a perpendicular magnetic film has been proposed in which at least one transition metal film selected from Fe, Co, Ni, Cr, and Cu is alternately laminated in at least two layers (JP-A-61-112112). issue).
  • the perpendicular magnetization film is laminated on a substrate in the order of a transition metal film and a rare earth metal film to improve magnetic properties.
  • the perpendicular magnetization film is assumed to be used as a magnetic medium, it has a very low coercive force (about IkOe) and cannot be used as a permanent magnet.
  • An object of the present invention is to provide an anisotropic thin film rare earth permanent magnet having high magnetic properties by anisotropically forming a thin film by vapor deposition in the laminating direction.
  • the present inventors have conducted various studies on high-magnetization of thin-film rare-earth permanent magnets.After laminating a monoatomic layer of a rare-earth element on a substrate of non-magnetic material, multiple monoatomic layers of a transition metal element were formed. By stacking one or more stacked atomic stack units, the stack unit has an easy axis of magnetization in the stacking direction, and when the content ratio of the transition metal element to the rare earth element is increased, the residual magnetic flux density decreases. We have found that it will improve dramatically.
  • the inventors have found that after stacking of the atomic stack unit is completed, one or more rare earth element monolayers are formed on the transition metal element monolayer, which is the uppermost layer, thereby suppressing the generation of reverse magnetic domains.
  • this heat treatment dramatically improves magnetic properties, especially coercive force, and enables the production of thin-film rare-earth permanent magnets with excellent magnetic properties.
  • the present invention has been completed.
  • the present invention provides a method for forming a plurality of monoatomic layers of a transition metal element on a monoatomic layer of a rare earth element on a substrate made of a non-magnetic material having a surface roughness (arithmetic average roughness Ra) of ⁇ . ⁇ or less.
  • a thin-film rare-earth permanent magnet comprising one or more stacked atomic stack units, and having one or more rare-earth monoatomic layers on the uppermost transition metal monoatomic layer. .
  • the rare earth element is at least one of Nd, Tb, and Dy, and the transition metal element is
  • a configuration in which a protective film is formed on the entire laminate is also proposed.
  • the inventors have proposed a step A for forming a monoatomic layer of a rare earth element on a substrate made of a nonmagnetic material, and a step of forming a monoatomic layer of a transition metal element on a monoatomic layer of a rare earth element.
  • Step B to be repeated a plurality of times;
  • Step A and Step B to be repeated one or more times to form one or more rare earth element monoatomic layers on the uppermost transition metal element monoatomic layer
  • the present invention proposes a method for producing a thin film rare earth permanent magnet, characterized by including a step of performing heat treatment at 600K to 900K in a vacuum or in an inert gas atmosphere. Description of the drawings
  • FIG. 1 is an explanatory diagram showing a configuration of a thin-film rare earth permanent magnet according to the present invention.
  • FIG. 1A shows an atomic laminated unit
  • FIG. 1B shows a constitution in which a plurality of atomic laminated units are stacked.
  • the magnetic anisotropy of a conventionally known Nd—Fe—B permanent magnet is generated from the magnetic anisotropy of Nd atoms at 4f site and 4g site.
  • the nearest neighbor atoms of the Nd 4f site consist of Nd2, B2, and Fe2
  • the nearest neighbor atoms of the Nd 4g site are Nd3, B1 And Fe2
  • the charge sign of Fe is unknown, but at least both Nd and B have positive charges.
  • the wave function of Nd's four-pair electrons has an unpan type (oblate type, oblate type), and the magnetic moment due to the orbital angular momentum is perpendicular to the spread of the wave function.
  • a monoatomic layer 2 of Nd which is a rare earth element, is formed on a nonmagnetic material substrate 1 (see FIG. 1A).
  • Nd atoms are aligned on the same plane, like Nd 2 Fei 4 B, magnetic moment due to Nd 4f electrons has an easy axis of magnetization in the direction perpendicular to the plane, but magnetic moment At this stage, nothing can be said at this stage, because what happens to the magnetic structure is determined by the interaction between the magnetic moments.
  • the atomic stack unit 5 is repeatedly mounted based on the atomic stack unit 5 in which the Fe atomic stack 4 is provided on the Nd monoatomic layer 2, that is, the Nd monoatomic layer 2 described above.
  • the Fe atomic stack 4 is provided on the Nd monoatomic layer 2, that is, the Nd monoatomic layer 2 described above.
  • the thin-film rare-earth permanent magnet of the present invention is based on an atomic stack unit 5 composed of a monoatomic layer 2 of Nd and an atomic stack 4 of Fe in which a plurality of monoatomic layers 3 of Fe are stacked thereon. It is formed by forming one or more on the substrate 1.
  • the present invention provides the above-described atomic stack unit, wherein the ferromagnetic interaction between Fe-Fe and Fe-Nd, that is, the atomic stack of Fe 4 is easily magnetized in the stacking direction of the monoatomic layer 3
  • the generation of the reverse magnetic domain is suppressed by being sandwiched between the Nd monoatomic layers 2 and 2, and a strong coercive force is generated.
  • the residual magnetic flux density is increased. Was found to be dramatically improved, and high magnetic properties were developed.
  • the rare earth element In the atomic stack unit described above, the rare earth element must be a monoatomic layer, and the transition metal element must have a plurality of monoatomic layers.
  • the monolayer of the transition metal element which is the uppermost layer of the unit, it is possible to suppress the generation of reverse magnetic domains and prevent oxidation, and to apply a vacuum or inert gas.
  • Heat treatment can be performed at a temperature of 900K or less in the atmosphere, and further improvement in coercive force can be achieved.
  • the rare earth element is preferably at least one of Nd, Tb, and Dy
  • the transition metal element is preferably at least one of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. .
  • the raw material used is an ingot of a rare earth element and a transition metal element with a purity of 99% or more.
  • the oxygen content is preferably 0.05 wt% or less, and the carbon content is preferably 0.01 wt% or less. When these oxygen and carbon elements are included, the coercive force decreases significantly.
  • a thin film manufacturing method and a thin film manufacturing apparatus there are a sputtering method, a vapor deposition method, an ion plating method, a molecular beam epitaxy (MBE) method, a thin-film plasma method, and the like.
  • a sputtering method a vapor deposition method, an ion plating method, a molecular beam epitaxy (MBE) method, a thin-film plasma method, and the like.
  • MBE molecular beam epitaxy
  • ion plasma methods are superior.
  • Arithmetic average roughness Ra defined by JIS B 0601 or ISO 468 is preferably ⁇ . ⁇ or less, preferably 0.5 ⁇ or less, more preferably O.lpm or less. .
  • the flatness of the substrate is preferably as flat as possible. However, the definition varies depending on the area of the substrate to be measured.
  • single crystal Si wafers for semiconductor device fabrication have extremely good surface roughness and flatness.
  • e-wafers ⁇ .8 ⁇ or less
  • RaO.lpm or less ⁇ .8 ⁇ or less
  • flatness SFQR (max) are about 0.2 ⁇ or less / 25X25mm, which can be used.
  • the atomic layered body of Fe has an easy axis of magnetization in the direction of stacking of the monoatomic layers, and the generation of reverse magnetic domains is suppressed by being sandwiched between the monoatomic layers of Nd.
  • the atomic layer of the transition metal element and the atomic layer of the rare earth element are aligned at the bonding interface.If this is disturbed, the coercive force will decrease, and the surface of the substrate will be reduced. Roughness and flatness are particularly important.
  • the substrate the above-mentioned single crystal with particularly excellent surface roughness, flatness, and crystallinity
  • RB 2 C 2 R: rare earth element
  • RB 2 C 2 has the feature that it is easily cleaved at the rare earth atomic plane and BC plane.
  • FIG. 1B After a monoatomic layer 10 of a rare earth element is formed on the substrate 1, a plurality of monoatomic layers 11 of a transition metal element are laminated. An atomic stack 12 is produced.
  • the operation of stacking a plurality of units is repeated with one unit of the atomic stack 13 including the monoatomic layer 10 of the rare earth element and the stacked body 12 of the monoatomic layer 11 of the transition metal element.
  • one unit of the atomic stack 13 including the monoatomic layer 10 of the rare earth element and the stacked body 12 of the monoatomic layer 11 of the transition metal element.
  • Fig. 1B three units are mounted, and one or more rare earth element monolayers 14 are provided on the transition metal element monolayer 11, which is the uppermost layer, and finally a film of several ⁇ to several ⁇ Thick and thin permanent magnets are manufactured.
  • the rare earth element (excluding the top layer) is a monoatomic layer, and that the transition metal element is a stack of multiple monoatomic layers. For example, if a plurality of rare earth element monoatomic layers are stacked, and if the transition metal element is only a monoatomic layer, high magnetic properties cannot be obtained.
  • X exceeds 7, it becomes higher than the R 2 Fei 4 B phase, which is the main phase of the R-Fe-B sintered magnet.
  • the residual magnetic flux density is reduced due to the effect of the demagnetizing field. It also changes depending on the number of knits stacked. Therefore, in order to obtain high magnetic properties, it is desirable to appropriately select the optimal content ratio and the number of unit laminations.
  • a film in which a large number of monoatomic layers are stacked tends to cause point defects and lattice distortion at the junction, and if these remain, the coercive force is reduced and the magnetic properties are significantly reduced.
  • the temperature of the above heat treatment varies depending on the composition and film thickness, but is preferably 600K to 900K. If heat treatment is performed at a low temperature for a long time, the mutual diffusion between the rare earth element and the transition metal element can be suppressed. Is easy to obtain a material having high magnetic properties. If the heat treatment temperature exceeds 900 ⁇ , interdiffusion between the rare earth element and the transition metal element tends to occur, and if the heat treatment temperature is lower than 600 ⁇ , defects and strains will not be repaired sufficiently and will not improve magnetic properties. .
  • the surface of the thin-film rare-earth permanent magnet according to the present invention is covered with a rare-earth element to prevent oxidation, but in order to further prevent oxidation in the atmosphere, it is necessary to perform a surface treatment for forming a protective film on the surface.
  • a resin film can be used in addition to the metal film described below having excellent corrosion resistance and strength, and a polyimide film or the like can be used.
  • A1 coating by vapor-phase growth or Ni plating by a known plating method is preferable, and a relatively thin protective film is preferable so as not to lower the volume magnetic properties. Whether surface treatment is performed before processing into the final product or surface processing after processing may be selected according to the product shape and application.
  • Nd and Fe ingots shown in Table 1 were used as raw materials.
  • a commercially available 200 mm silicon wafer for integrated circuits (equivalent to the Japan Electronics Industry Development Association JAIDA standard) was used as the substrate material for the Si single crystal wafer as a substrate material.
  • an atomic layer unit in which a plurality of monolayers of Nd and a plurality of monolayers of Fe were laminated alternately was laminated to obtain a thin-film rare-earth permanent magnet having a monolayer of Nd as the uppermost layer.
  • Table 2 shows the thickness and the number of layers of the obtained thin-film rare earth permanent magnet. After heat treatment of the obtained laminated film in vacuum at a temperature shown in Table 2, their magnetic properties were measured with a sample vibration type magnetometer. The results are shown in Table 2.
  • a thin film obtained by increasing the content ratio of a transition metal element to a rare earth element and stacking a plurality of unit stacks of atomic stacks composed of a single atomic layer of a rare earth element and a transition metal element by vapor phase growth has a magnetization direction Since it has an easy axis and can be anisotropic in the stacking direction and can be heat-treated at a temperature of 900K or less, it is clear from the examples that anisotropic thin-film rare-earth permanent magnets that exhibit high magnetic properties are used. Can be provided.

Abstract

A thin film rare earth permanent magnet capable of making the thin film by vapor growth anisotropic ina lamination direction, and a method for manufacturing the permanent magnet. There are repeated a number of operations to form atomic laminate units (13) by laminating a monoatomic layer (10) of a rare earth element on a substrate (1) of a non-magnetic material having a flat smoothness and then by laminating an atomic laminate (12) of a transient metal element having a plurality of monoatomic layers (11) of a transient metal element, so that the atomic laminate units (13) of a characteristic construction are laminated in a plurality of layers. As a result, each atomic laminate (12) has an easily magnetizable axis in the laminate direction of the monoatomic layers (11), and is sandwiched between the monoatomic layers (10, 10) of the rare earth element so that an inverse magnetic domain is suppressed to establish a strong coercive force. Moreover, the content of the transient metal element to the rare earth metal is raised to improve the residual magnetic flux density drastically.

Description

明 細 書  Specification
薄膜希土類永久磁石とその製造方法 技術分野  Thin-film rare-earth permanent magnet and its manufacturing method
この発明は、 薄膜希土類永久磁石に係り、 単結晶シリコンゥェ一ハのごとく 優れた表面粗さ、 平坦度の非磁性材料の基板上に、 希土類元素の単原子層を設 けた後、 遷移金属元素の単原子層を複数積層した原子積層体ユニットを 1以上 有する構成で、 積層方向に磁化容易軸を有して高磁気特性を有する薄膜磁石を 得る薄膜希土類永久磁石とその製造方法に関する。 背景技術  The present invention relates to a thin-film rare-earth permanent magnet, comprising forming a rare-earth element monoatomic layer on a substrate of a nonmagnetic material having excellent surface roughness and flatness like a single-crystal silicon wafer, and then forming a transition metal element. The present invention relates to a thin-film rare-earth permanent magnet having a configuration having at least one atomic stack unit in which a plurality of monoatomic layers are stacked, having an easy axis of magnetization in the stacking direction, and obtaining a thin-film magnet having high magnetic properties, and a method of manufacturing the same. Background art
薄膜希土類永久磁石は、 従来、 主に Nd-Fe-B系の材料を真空蒸着法やスパッ タ一法で積層することにより行われていた。 この方法によって得られる積層体 の結晶組織は多結晶であるために、 磁化容易軸もランダムになり、 磁気特性的 には等方性の永久磁石特性しか得られず、 異方性の焼結永久磁石に比べて大幅 に低 、磁気特性しか得られないという問題があつた。  Conventionally, thin-film rare-earth permanent magnets have been produced mainly by laminating Nd-Fe-B-based materials by vacuum evaporation or sputtering. Since the crystal structure of the laminate obtained by this method is polycrystalline, the axis of easy magnetization is random, and only magnetic isotropic permanent magnet properties are obtained. There is a problem that the magnetic properties are significantly lower than those of magnets and only magnetic properties can be obtained.
磁気特性の向上対策として、 Nd-Fe-B系磁石層と遷移金属層を所定の厚みで 繰リ返し積層する方法が特開平 6-151226で開示されている。 この方法では、 Nd-Fe-Bの磁化容易軸である c軸は下地の遷移金属層の結晶方向によって成長 方向が変わるために、 積層方向に全部揃えることは非常に難しいという問題が あ 。  As a measure for improving magnetic properties, a method of repeatedly laminating a Nd—Fe—B-based magnet layer and a transition metal layer with a predetermined thickness is disclosed in Japanese Patent Laid-Open No. 6-151226. In this method, the growth direction of the c-axis, which is the axis of easy magnetization of Nd-Fe-B, varies depending on the crystal direction of the underlying transition metal layer, so that it is very difficult to align them all in the stacking direction.
また、 Gd,Tb,Dyから選ばれる少なくとも 1種の希土類金属膜と、  And at least one rare earth metal film selected from Gd, Tb, and Dy;
Fe,Co,Ni,Cr,Cuから選ばれる少なくとも 1種の遷移金属膜とが交互に少なくと も全体で 2層以上積層されている垂直磁化膜が提案されている (特開昭 61- 108112号)。 この垂直磁化膜は基板上に遷移金属膜、 希土類金属膜の順で積層することに よって、 磁気特性の向上を図っている。 しかし、 上記垂直磁化膜は、 磁気媒体 として用いられることを前提とするため、 保磁力が非常に低く(IkOe程度)、 永 久磁石として使用することはできない。 A perpendicular magnetic film has been proposed in which at least one transition metal film selected from Fe, Co, Ni, Cr, and Cu is alternately laminated in at least two layers (JP-A-61-112112). issue). The perpendicular magnetization film is laminated on a substrate in the order of a transition metal film and a rare earth metal film to improve magnetic properties. However, since the perpendicular magnetization film is assumed to be used as a magnetic medium, it has a very low coercive force (about IkOe) and cannot be used as a permanent magnet.
従来、 スパッタリング法、 蒸着法、 イオンプレーティング法などによる薄膜 永久磁石の製法は種々提案されているが、 いずれの製法で作製した磁石も、 得 られる磁気特性が異方性の焼結永久磁石に比べて大幅に低 、結果となってい た。 発明の開示  Conventionally, various methods for producing thin-film permanent magnets by sputtering, vapor deposition, ion plating, and the like have been proposed.However, magnets produced by any of these methods can be used to produce sintered permanent magnets with anisotropic magnetic properties. The result was significantly lower than that. Disclosure of the invention
この発明は、 気相成長による薄膜を積層方向に異方化することによって、 高 磁気特性を有する異方性薄膜希土類永久磁石を提供することを目的としてい る。  An object of the present invention is to provide an anisotropic thin film rare earth permanent magnet having high magnetic properties by anisotropically forming a thin film by vapor deposition in the laminating direction.
発明者らは、 薄膜希土類永久磁石の高磁石特性化について種々検討した翁 果、 非磁性材料の基板上に、 希土類元素による単原子層を積層した後、 遷移金 属元素の単原子層を複数積層した原子積層体ュニットを 1又は複数積層するこ とにより、 該積層ユニット体が積層方向に磁化容易軸を有し、 しかも希土類元 素に対する遷移金属元素の含有比率を高めると、 残留磁束密度が飛躍的に向上 することを知見した。  The present inventors have conducted various studies on high-magnetization of thin-film rare-earth permanent magnets.After laminating a monoatomic layer of a rare-earth element on a substrate of non-magnetic material, multiple monoatomic layers of a transition metal element were formed. By stacking one or more stacked atomic stack units, the stack unit has an easy axis of magnetization in the stacking direction, and when the content ratio of the transition metal element to the rare earth element is increased, the residual magnetic flux density decreases. We have found that it will improve dramatically.
さらに発明者らは、 原子積層体ユニットの積層完了後、 最上層となる遷移金 属元素の単原子層上に希土類元素の単原子層を 1層以上成膜することにより、 逆磁区発生の抑制と酸化防止が実現できるとともに、 特に 900K以下の温度で 熱処理が可能になり、 この熱処理により磁気特性、 とりわけ保磁力が飛躍的に 向上し、 磁気特性にすぐれた薄膜希土類永久磁石が作製できることを知見し、 この発明を完成した。 すなわち、 この発明は、 表面粗さ (算術平均粗さ Ra)が Ι.Ομπι以下である非磁 性材料からなる基板上に、 希土類元素の単原子層上に遷移金属元素の単原子層 を複数積層した原子積層体ユニットを 1又は複数有し、 かつ最上層となる遷移 金属元素の単原子層上に 1層以上の希土類元素の単原子層を有することを特徴 とする薄膜希土類永久磁石である。 In addition, the inventors have found that after stacking of the atomic stack unit is completed, one or more rare earth element monolayers are formed on the transition metal element monolayer, which is the uppermost layer, thereby suppressing the generation of reverse magnetic domains. In addition to realizing heat treatment at temperatures below 900 K, it has been found that this heat treatment dramatically improves magnetic properties, especially coercive force, and enables the production of thin-film rare-earth permanent magnets with excellent magnetic properties. Thus, the present invention has been completed. That is, the present invention provides a method for forming a plurality of monoatomic layers of a transition metal element on a monoatomic layer of a rare earth element on a substrate made of a non-magnetic material having a surface roughness (arithmetic average roughness Ra) of Ι.Ομπι or less. A thin-film rare-earth permanent magnet comprising one or more stacked atomic stack units, and having one or more rare-earth monoatomic layers on the uppermost transition metal monoatomic layer. .
また、 発明者らは、 上記の薄膜希土類永久磁石の構成において、  In addition, the inventors have stated that in the configuration of the thin-film rare earth permanent magnet described above,
非磁性材料からなる基板が、 単結晶シリコンゥェ一ハ、 RB2C2(R:希土類元素) の劈開面を有するゥエーハである構成、 A configuration in which the substrate made of a nonmagnetic material is a single crystal silicon wafer, a wafer having a cleavage plane of RB 2 C 2 (R: rare earth element),
希土類元素が、 Nd,Tb,Dyの少なくとも 1種、 遷移金属元素が、 The rare earth element is at least one of Nd, Tb, and Dy, and the transition metal element is
Ti,V,Cr,Mn,Fe,Co,Ni,Cuの少なくとも 1種選択された構成、 At least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu
積層体全体に保護膜を成膜した構成、 を併せて提案する。 A configuration in which a protective film is formed on the entire laminate is also proposed.
さらに、 発明者らは、 非磁性材料からなる基板上に、 希土類元素の単原子層 を成膜する A工程、 希土類元素の単原子層上に遷移金属元素の単原子層を成膜 する工程を複数回繰リ返す B工程、 前記 A工程と B工程を 1回以上繰リ返すェ 程、 最上層となる遷移金属元素の単原子層上に 1層以上の希土類元素の単原子 層を成膜する工程を含むか、 あるいはさらに薄膜希土類永久磁石に真空中又は 不活性ガス雰囲気中で 600K~900Kの熱処理を施す工程を含むことを特徴とす る薄膜希土類永久磁石の製造方法を提案する。 図面の説明  Further, the inventors have proposed a step A for forming a monoatomic layer of a rare earth element on a substrate made of a nonmagnetic material, and a step of forming a monoatomic layer of a transition metal element on a monoatomic layer of a rare earth element. Step B to be repeated a plurality of times; Step A and Step B to be repeated one or more times to form one or more rare earth element monoatomic layers on the uppermost transition metal element monoatomic layer The present invention proposes a method for producing a thin film rare earth permanent magnet, characterized by including a step of performing heat treatment at 600K to 900K in a vacuum or in an inert gas atmosphere. Description of the drawings
図 1は、 この発明による薄膜希土類永久磁石の構成を示す説明図であり、 図 1Aは原子積層体ュニット、 図 1Bは複数の原子積層体ュニットを積層配置した 構成を示す。 発明を実施するための最良の形態 FIG. 1 is an explanatory diagram showing a configuration of a thin-film rare earth permanent magnet according to the present invention. FIG. 1A shows an atomic laminated unit, and FIG. 1B shows a constitution in which a plurality of atomic laminated units are stacked. BEST MODE FOR CARRYING OUT THE INVENTION
発明者らが知見した、 希土類元素と遷移金属元素からなる薄膜を積層方向に 異方化して薄膜希土類永久磁石の磁気特性を向上させる方法は、 以下の知見経 緯を経て完成したものである。 なお、 以下の説明においては、 希土類元素とし て Ndを、 遷移金属元素として Feを例にとって説明する。  The method of improving the magnetic properties of a thin-film rare-earth permanent magnet by anisotropically forming a thin film composed of a rare earth element and a transition metal element in the laminating direction, which the inventors have found, has been completed through the following findings. In the following description, Nd is used as a rare earth element, and Fe is used as a transition metal element.
従来周知の Nd-Fe-B系永久磁石の磁気異方性は、 4fサイトと 4gサイトの Nd 原子の磁気異方性から発生している。 該磁石の主相となる Nd2Fe14B結晶構造 では、 Ndの 4fサイトの最隣接原子は Nd2個、 B2個、 Fe2個からなり、 また Nd の 4gサイトの最隣接原子は Nd3個、 B1個、 Fe2個からなり、 Feの電荷符号は 不明であるが、 少なくとも Ndと Bはいずれも正の電荷をもつ。 The magnetic anisotropy of a conventionally known Nd—Fe—B permanent magnet is generated from the magnetic anisotropy of Nd atoms at 4f site and 4g site. In the Nd 2 Fe 14 B crystal structure that is the main phase of the magnet, the nearest neighbor atoms of the Nd 4f site consist of Nd2, B2, and Fe2, and the nearest neighbor atoms of the Nd 4g site are Nd3, B1 And Fe2, and the charge sign of Fe is unknown, but at least both Nd and B have positive charges.
Ndの 4坏対電子の波動関数はアンパン型 (oblate型、 偏球型)の広がりをも ち、 しかも軌道角運動量による磁気モ一メントは波動関数の広がりに垂直であ るために、 アンパン型の広がりをもった波動関数は周囲のイオンによって作ら れる結晶場の影響を受けて c面内に拡がリ、 c軸方向の大きな磁気異方性力得ら れている。  The wave function of Nd's four-pair electrons has an unpan type (oblate type, oblate type), and the magnetic moment due to the orbital angular momentum is perpendicular to the spread of the wave function. The wave function with a broadening spreads in the c-plane under the influence of the crystal field created by surrounding ions, and a large magnetic anisotropic force in the c-axis direction is obtained.
発明者らは、 この磁気異方性の原理を薄膜希土類磁石に適用すれば、 薄膜希 土類永久磁石の高特性化が可能になると考えた。 つまり、 非磁性材料の基板 1 上に、 まず希土類元素である Ndの単原子層 2を形成する (図 1A参照)。  The inventors thought that if the principle of the magnetic anisotropy is applied to a thin film rare earth magnet, it is possible to improve the characteristics of the thin film rare earth permanent magnet. That is, first, a monoatomic layer 2 of Nd, which is a rare earth element, is formed on a nonmagnetic material substrate 1 (see FIG. 1A).
同一平面上に Nd原子が並んでいる場合には、 Nd2Fei4Bと同様に、 Ndの 4f 電子による磁気モ一メントは面に垂直方向に磁化容易軸をもつが、 磁気モ一メ ントの磁気構造がどうなるかは磁気モ一メント間の相互作用で決まるので、 こ の段階では何とも言えない。 When Nd atoms are aligned on the same plane, like Nd 2 Fei 4 B, magnetic moment due to Nd 4f electrons has an easy axis of magnetization in the direction perpendicular to the plane, but magnetic moment At this stage, nothing can be said at this stage, because what happens to the magnetic structure is determined by the interaction between the magnetic moments.
ここで、 この Ndの単原子層 2の上に Feの単原子層 3を何層か積層した Feの原 子積層体 4を設けると、 Fe-Fe間と Fe-Nd間の強い強磁性相互作用によリ前述の Ndの磁気モーメントは Feの磁気モーメントと平行になる。 しかし、 この状態 では最上層の単原子層 3nの磁気モーメントは弱い磁場で簡単に逆磁区を生み出 すために、 保磁力も弱く永久磁石にはならない。 Here, when an atomic layer stack 4 of Fe in which several monolayers 3 of Fe are laminated on the monolayer 2 of Nd is provided, a strong ferromagnetic mutual interaction between Fe-Fe and Fe-Nd is obtained. By the action, the magnetic moment of Nd is parallel to the magnetic moment of Fe. But this state Then, the magnetic moment of the uppermost monolayer 3n easily generates a reverse magnetic domain with a weak magnetic field, so the coercive force is weak and it does not become a permanent magnet.
次に、 この Feの最上層の単原子層 3nの上にまた Ndの単原子層 2を形成する と、 この逆磁区発生が抑えられて強い保磁力が発生し、 ちょうど Nd2Fei4Bの 結晶構造に似た積層構造を有するため、 強い永久磁石になる。 Next, when an Nd monolayer 2 is formed again on the uppermost monolayer 3n of Fe, the generation of the reverse magnetic domain is suppressed and a strong coercive force is generated, and the Nd 2 Fei 4 B Because it has a laminated structure similar to a crystal structure, it becomes a strong permanent magnet.
Ndの単原子層 2の上に Feの原子積層体 4を設けた原子積層体ュニット 5を基 本として、 原子積層体ユニット 5を繰り返して載置する、 すなわち、 上記の Nd の単原子層 2上に Feの単原子層 3を何層か積層した Feの原子積層体 4を設けるこ とを繰り返すことによって、 より優れた磁気特性を有する薄膜希土類永久磁石 を得ることができる。  The atomic stack unit 5 is repeatedly mounted based on the atomic stack unit 5 in which the Fe atomic stack 4 is provided on the Nd monoatomic layer 2, that is, the Nd monoatomic layer 2 described above. By repeatedly providing the Fe atomic stack 4 in which several monoatomic layers 3 of Fe are laminated, a thin-film rare earth permanent magnet having more excellent magnetic properties can be obtained.
この発明の薄膜希土類永久磁石は、 Ndの単原子層 2とその上に Feの単原子層 3を複数積層した Feの原子積層体 4とからなる原子積層体ュニット 5を基本とし て、 それを基板 1上に 1又は複数形成することによって構成される。  The thin-film rare-earth permanent magnet of the present invention is based on an atomic stack unit 5 composed of a monoatomic layer 2 of Nd and an atomic stack 4 of Fe in which a plurality of monoatomic layers 3 of Fe are stacked thereon. It is formed by forming one or more on the substrate 1.
要するにこの発明は、 上記原子積層体ユニットの構成において、 Fe-Fe間と Fe-Nd間の強磁性相互作用、 すなわち、 Feの原子積層体 4が単原子層 3の積層方 向に磁化容易軸を有し、 かつ Ndの単原子層 2,2に挟まれて逆磁区発生が抑えら れて強い保磁力が発生し、 しかも希土類元素に対する遷移金属元素の含有比率 を高めることにより、 残留磁束密度が飛躍的に向上し、 高磁気特性が発現する ことを知見し、 完成したものである。  In short, the present invention provides the above-described atomic stack unit, wherein the ferromagnetic interaction between Fe-Fe and Fe-Nd, that is, the atomic stack of Fe 4 is easily magnetized in the stacking direction of the monoatomic layer 3 In addition, the generation of the reverse magnetic domain is suppressed by being sandwiched between the Nd monoatomic layers 2 and 2, and a strong coercive force is generated. In addition, by increasing the content ratio of the transition metal element to the rare earth element, the residual magnetic flux density is increased. Was found to be dramatically improved, and high magnetic properties were developed.
上述した原子積層体ュニットにおいて、 希土類元素は単原子層でなければな らず、 また遷移金属元素は、 その単原子層を複数積層することが必要である。 そして、 該ュニットの最上層となる遷移金属元素の単原子層上に希土類元素の 単原子層を 1層以上設けることにより、 逆磁区発生の抑制と酸化防止ができ、 かつ真空中または不活性ガス雰囲気中において 900K以下の温度で熱処理が可 能になり、 さらなる保磁力の向上が達成できる。 この発明において、 希土類元素は Nd,Tb,Dyの少なくとも 1種が好ましく、 遷 移金属元素は Ti,V,Cr,Mn,Fe,Co,Ni,Cuの少なくとも 1種からなることが好まし い。 使用原料は、 純度 99%以上の希土類元素と遷移金属元素のインゴットを使 用し、 特に酸素含有量が 0.05wt%以下、 炭素含有量は 0.01wt%以下が好まし い。 これらの酸素、 炭素元素が含まれると、 著しく保磁力が低下する。 In the atomic stack unit described above, the rare earth element must be a monoatomic layer, and the transition metal element must have a plurality of monoatomic layers. By providing one or more monolayers of a rare earth element on the monolayer of the transition metal element, which is the uppermost layer of the unit, it is possible to suppress the generation of reverse magnetic domains and prevent oxidation, and to apply a vacuum or inert gas. Heat treatment can be performed at a temperature of 900K or less in the atmosphere, and further improvement in coercive force can be achieved. In the present invention, the rare earth element is preferably at least one of Nd, Tb, and Dy, and the transition metal element is preferably at least one of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. . The raw material used is an ingot of a rare earth element and a transition metal element with a purity of 99% or more. The oxygen content is preferably 0.05 wt% or less, and the carbon content is preferably 0.01 wt% or less. When these oxygen and carbon elements are included, the coercive force decreases significantly.
この発明において、 薄膜作製方法、 薄膜作製装置としてはスパッタリング 法、 蒸着法、 イオンプレーティング法、 分子線ェピタキシャル (MBE)法、 ィ才 ンブラズマ法等があるが、 単原子層〜複数の単原子層からなる原子積層体のよ うな超薄膜を積層する場合は、 分子線ェピタキシャル (MBE)法、 イオンプラズ マ法が優れている。  In the present invention, as a thin film manufacturing method and a thin film manufacturing apparatus, there are a sputtering method, a vapor deposition method, an ion plating method, a molecular beam epitaxy (MBE) method, a thin-film plasma method, and the like. When stacking ultra-thin films, such as atomic stacks of layers, molecular beam epitaxy (MBE) and ion plasma methods are superior.
基板としては、 非磁性材料でかつ平面平滑性にすぐれた材料が好ましい。 基 板の表面粗さは、 JIS B 0601又は ISO 468で定義される、 算術平均粗さ Raが Ι.Ομπι以下であることが望ましく、 好ましくは 0.5μπι以下、 より好ましくは O.lpm以下である。 また、 基板の平坦度は、 より平坦であるほど望ましいが、 測定する基板面積により定義が変化するため、 特に規定はしない。  As the substrate, a nonmagnetic material and a material having excellent planar smoothness are preferable. Arithmetic average roughness Ra defined by JIS B 0601 or ISO 468 is preferably Ι.Ομπι or less, preferably 0.5 μπι or less, more preferably O.lpm or less. . The flatness of the substrate is preferably as flat as possible. However, the definition varies depending on the area of the substrate to be measured.
工業的には、 半導体デバイス作製用の単結晶 Siゥエーハは、 表面粗さ、 平坦 度が極めてすぐれており、 例えば (社)日本電子工業振興協会 (JAIDA)の規格相 当品の 200mni単結晶 Siゥエーハでは、 ΤΤνθ.8μπι以下、 LTV0.5pm以下、 RaO.lpm以下、 平坦度 SFQR(max)はおよそ 0·2μπι以下/ 25X25mmであリ、 こ れらを利用することができる。  Industrially, single crystal Si wafers for semiconductor device fabrication have extremely good surface roughness and flatness.For example, 200mni single crystal Si equivalent to the standard of Japan Electronics Industry Development Association (JAIDA) In e-wafers, Δνθ.8μπι or less, LTV 0.5pm or less, RaO.lpm or less, and flatness SFQR (max) are about 0.2μπι or less / 25X25mm, which can be used.
すなわち、 先にこの発明の磁石は、 Feの原子積層体が単原子層の積層方向に 磁化容易軸を有し、 かつ Ndの単原子層に挟まれて逆磁区発生が抑えられて強 い保磁力が発生すると述べたように、 遷移金属元素の原子層と希土類元素元素 の原子層が接合界面で整列していることが特徴で、 これが入リ乱れると保磁力 が低下するため、 基板の表面粗さ、 平坦度は特に重要となる。 基板としては、 特に表面粗さ、 平坦度、 結晶性に優れた前述の単結晶That is, in the magnet of the present invention, the atomic layered body of Fe has an easy axis of magnetization in the direction of stacking of the monoatomic layers, and the generation of reverse magnetic domains is suppressed by being sandwiched between the monoatomic layers of Nd. As described above, the atomic layer of the transition metal element and the atomic layer of the rare earth element are aligned at the bonding interface.If this is disturbed, the coercive force will decrease, and the surface of the substrate will be reduced. Roughness and flatness are particularly important. As the substrate, the above-mentioned single crystal with particularly excellent surface roughness, flatness, and crystallinity
Siゥェ一ハの他、 多結晶 Siゥェ一ハ、 あるいは希土類元素が結晶中で同一面内 に配置されている RB2C2(R:希土類元素)の劈開面が好ましい。 RB2C2用は希土 類原子面と B-C面で簡単に劈開する特徴がある。 In addition to the Si wafer, a polycrystalline Si wafer or a cleavage plane of RB 2 C 2 (R: rare earth element) in which a rare earth element is arranged in the same plane in the crystal is preferable. RB 2 C 2 has the feature that it is easily cleaved at the rare earth atomic plane and BC plane.
次に積層例を説明すると、 図 1Bに示すごとく、 基板 1の上に希土類元素の単 原子層 10を成膜した後、 遷移金属元素の単原子層 11を複数層積層した遷移金 属元素の原子積層体 12を作製する。  Next, an example of lamination will be described. As shown in FIG. 1B, after a monoatomic layer 10 of a rare earth element is formed on the substrate 1, a plurality of monoatomic layers 11 of a transition metal element are laminated. An atomic stack 12 is produced.
この希土類元素の単原子層 10と、 遷移金属元素の単原子層 11の積層体 12と からなる原子積層体 13を 1ユニットとして、 このユニットを複数積層する操作 を繰り返す。 図 1Bでは 3ユニットを載置してあり、 最上層となる遷移金属元素 の単原子層 11上に、 希土類元素の単原子層 14を 1層以上設け、 最終的に数 ΙΟθΑ〜数 μπιの膜厚薄膜永久磁石き作製する。  The operation of stacking a plurality of units is repeated with one unit of the atomic stack 13 including the monoatomic layer 10 of the rare earth element and the stacked body 12 of the monoatomic layer 11 of the transition metal element. In Fig. 1B, three units are mounted, and one or more rare earth element monolayers 14 are provided on the transition metal element monolayer 11, which is the uppermost layer, and finally a film of several ΙΟθΑ to several μπι Thick and thin permanent magnets are manufactured.
上記構成において、 希土類元素 (最上層は除く)は単原子層であること、 遷移 金属元素は単原子層を複数積層したものであることが重要である。 例えば、 希 土類元素の単原子層を複数積層したリ、 遷移金属元素を単原子層のみとした場 合は、 高い磁気特性を得ることができなくなる。  In the above configuration, it is important that the rare earth element (excluding the top layer) is a monoatomic layer, and that the transition metal element is a stack of multiple monoatomic layers. For example, if a plurality of rare earth element monoatomic layers are stacked, and if the transition metal element is only a monoatomic layer, high magnetic properties cannot be obtained.
また上記構成において、 遷移金属元素の単原子層を複数積層するためには、 単原子層を成膜する工程を複数回繰り返す工程を行うことが望ましい。 すなわ ち、 成膜を連続的に行い積層するのではなく、 成膜操作のオン、 オフを繰り返 しながら各単原子層の成膜を複数回繰り返し積層することにより、 各単原子層 内における欠陥がより少なくなリ、 さらに保磁力を向上させることができる。 もちろん、 条件を選定して成膜を連続的に行 、積層することも可能である。 この発明において、 原子積層体ユニットの残留磁束密度は、 希土類元素 (例 えば Nd)に対する遷移金属元素 (例えば Fe)の含有比率 (Nd:Fe = 1:X)で主に決ま リ、 例えば、 比率 Xが 7を超えると、 R-Fe-B系焼結磁石の主相である R2Fei4B 相よりも高くなる。 また、 残留磁束密度は反磁場の効果により原子積層体ュ ニットの積層数によっても変化する。 従って、 高い磁気特性を得るためには最 適な含有比率とユニット積層数を適宜選定することが望ましい。 In the above structure, in order to stack a plurality of monoatomic layers of a transition metal element, it is preferable to perform a step of repeating a step of forming a monoatomic layer a plurality of times. In other words, instead of performing film formation continuously and stacking, instead of repeating the film formation operation on and off, the film formation of each monoatomic layer is repeated a plurality of times to form a stack within each monoatomic layer. In this case, defects can be further reduced, and the coercive force can be further improved. Of course, it is also possible to select conditions and perform film formation continuously and to laminate. In the present invention, the residual magnetic flux density of the atomic stack unit is mainly determined by the content ratio (Nd: Fe = 1: X) of the transition metal element (for example, Fe) to the rare earth element (for example, Nd). When X exceeds 7, it becomes higher than the R 2 Fei 4 B phase, which is the main phase of the R-Fe-B sintered magnet. In addition, the residual magnetic flux density is reduced due to the effect of the demagnetizing field. It also changes depending on the number of knits stacked. Therefore, in order to obtain high magnetic properties, it is desirable to appropriately select the optimal content ratio and the number of unit laminations.
この発明において、 単原子層を多数積層した膜は、 接合部に点欠陥及び格子 歪みが発生しやすく、 これらが残留すると、 保磁力が低下する原因になって磁 気特性が大幅に低下する。  In the present invention, a film in which a large number of monoatomic layers are stacked tends to cause point defects and lattice distortion at the junction, and if these remain, the coercive force is reduced and the magnetic properties are significantly reduced.
そこで、 当該原子積層体ュニット膜を真空中か不活性ガス雰囲気中で熱処理 してこれらの欠陥や歪みを取リ除くことにより、 保磁力が向上して磁気特性が 大幅に向上する。  Therefore, by heat-treating the atomic stack unit film in a vacuum or an inert gas atmosphere to remove these defects and distortions, the coercive force is improved and the magnetic properties are greatly improved.
上記熱処理の温度は、 組成や膜厚によって異なるが、 600K~900Kが好まし く、 強いては低い温度で長時間熱処理した方が希土類元素と遷移金属元素との 相互拡散を抑制でき、 結果的には磁気特性の高い材料が得られやすい。 熱処理 温度が 900Κを超えると、 希土類元素と遷移金属元素との相互拡散が起こりや すくなり、 また熱処理温度が 600Κより低いと、 欠陥や歪みの修復が十分でな く、 磁気特性の向上につながらない。  The temperature of the above heat treatment varies depending on the composition and film thickness, but is preferably 600K to 900K.If heat treatment is performed at a low temperature for a long time, the mutual diffusion between the rare earth element and the transition metal element can be suppressed. Is easy to obtain a material having high magnetic properties. If the heat treatment temperature exceeds 900Κ, interdiffusion between the rare earth element and the transition metal element tends to occur, and if the heat treatment temperature is lower than 600Κ, defects and strains will not be repaired sufficiently and will not improve magnetic properties. .
この発明による薄膜希土類永久磁石は、 酸化防止のため表面が希土類元素で 覆われているが、 大気中での酸化をより防止するためには、 該表面に保護膜を 形成する表面処理を行うことが好ましい。 保護膜には耐食性と強度に優れた後 述の金属膜の他、 樹脂膜も可能であり、 ポリイミド膜などが採用できる。 表面処理方法としては、 気相成長による A1コ一ティングや、 公知のめっき法 による Niめつき等が好ましく、 保護膜は比較的薄い被膜であることが体積磁気 特性を低下させないためにも好ましい。 最終製品に加工する前に表面処理する か、 加工後に表面処理するかは製品形状、 用途に応じて選択すればよい。 実 施 例 The surface of the thin-film rare-earth permanent magnet according to the present invention is covered with a rare-earth element to prevent oxidation, but in order to further prevent oxidation in the atmosphere, it is necessary to perform a surface treatment for forming a protective film on the surface. Is preferred. As the protective film, a resin film can be used in addition to the metal film described below having excellent corrosion resistance and strength, and a polyimide film or the like can be used. As the surface treatment method, A1 coating by vapor-phase growth or Ni plating by a known plating method is preferable, and a relatively thin protective film is preferable so as not to lower the volume magnetic properties. Whether surface treatment is performed before processing into the final product or surface processing after processing may be selected according to the product shape and application. Example
実施例 1  Example 1
使用原料として表 1に示す Ndと Feのインゴットを使用した。 また基板材料と しての Si単結晶ゥェ一ハには、 市販の集積回路用の 200mmシリコンゥェ一ハ ((社)日本電子工業振興協会 JAIDAの規格相当品)を用い、 スパッタ一装置によ リスパッターリングして Ndの単原子層と、 Feの単原子層を複数積層した原子 積層体ユニットを交互に積層し、 最上層に Ndの単原子層を設けた薄膜希土類 永久磁石を得た。  Nd and Fe ingots shown in Table 1 were used as raw materials. In addition, a commercially available 200 mm silicon wafer for integrated circuits (equivalent to the Japan Electronics Industry Development Association JAIDA standard) was used as the substrate material for the Si single crystal wafer as a substrate material. By resputtering, an atomic layer unit in which a plurality of monolayers of Nd and a plurality of monolayers of Fe were laminated alternately was laminated to obtain a thin-film rare-earth permanent magnet having a monolayer of Nd as the uppermost layer.
得られた薄膜希土類永久磁石の各膜厚及び積層数を表 2に示す。 得られた積 層膜を一部表 2に示す温度で真空中で熱処理を行なった後、 それらの磁気特性 を試料振動型磁力測定装置で測定した。 その結果を表 2に示す。  Table 2 shows the thickness and the number of layers of the obtained thin-film rare earth permanent magnet. After heat treatment of the obtained laminated film in vacuum at a temperature shown in Table 2, their magnetic properties were measured with a sample vibration type magnetometer. The results are shown in Table 2.
比較例 1  Comparative Example 1
表 1に示す原料を用いて表 3に示す組成の Nd-Fe-Bの溶解ィンゴットを作製し た。 それをターゲットにして実施例 1のスパッタ一装置により、 Siのゥエーハ の基板上に表 4に示す膜厚の Nd-Fe-Bの薄膜を作製した。 得られた薄膜の磁気 特性を実施例と同一装置で測定した。 その結果を表 4に示す。 Using the raw materials shown in Table 1, a melting ingot of Nd-Fe-B having the composition shown in Table 3 was prepared. Using this as a target, a thin film of Nd-Fe-B having a film thickness shown in Table 4 was formed on a Si wafer substrate by the sputtering apparatus of Example 1. The magnetic properties of the obtained thin film were measured with the same apparatus as in the example. The results are shown in Table 4.
使用原料 純度 (%) Raw material used Purity (%)
Nd 99.8 Nd 99.8
Fe 99.9Fe 99.9
B 99.9 B 99.9
Figure imgf000012_0001
組成
Figure imgf000012_0001
composition
Nd B Fe Nd B Fe
31.6 1.2 Bal 31.6 1.2 Bal
表 4 磁気特性 Table 4 Magnetic properties
No. 膜厚 (μπι)  No. Film thickness (μπι)
Br iHc (BH)max Br iHc (BH) max
(τ) (MA/m) (kJ/m3) (τ) (MA / m) (kJ / m3)
9 1.0 0.76 1.16 1059 1.0 0.76 1.16 105
10 1.5 0.75 1.24 103 10 1.5 0.75 1.24 103
産業上の利用可能性 Industrial applicability
この発明により、 希土類元素に対する遷移金属元素の含有比率を高めた、 気 相成長による希土類元素と遷移金属元素の単原子層からなる原子積層体ュニッ トを複数ュニット積層した薄膜は、 積層方向に磁化容易軸を有して積層方向に 異方化でき、 また 900K以下の温度で熱処理が可能であるため、 実施例に明ら かなように高磁気特性を発現する異方性の薄膜希土類永久磁石を提供できる。  According to the present invention, a thin film obtained by increasing the content ratio of a transition metal element to a rare earth element and stacking a plurality of unit stacks of atomic stacks composed of a single atomic layer of a rare earth element and a transition metal element by vapor phase growth has a magnetization direction Since it has an easy axis and can be anisotropic in the stacking direction and can be heat-treated at a temperature of 900K or less, it is clear from the examples that anisotropic thin-film rare-earth permanent magnets that exhibit high magnetic properties are used. Can be provided.

Claims

請求の範囲 The scope of the claims
1. 表面粗さが Ι.Ομιη以下である非磁性材料からなる基板上に、 希土類元素 の単原子層上に遷移金属元素の単原子層を複数積層した構成の原子積層体ュ ニットを 1又は複数有し、 かつ最上層となる遷移金属元素の単原子層上に 1層以 上の希土類元素の単原子層を有する薄膜希土類永久磁石。 1. An atomic stack unit composed of a single layer of a transition metal element and a single layer of a transition metal element stacked on a substrate made of a non-magnetic material with a surface roughness of Ι.Ομιη or less. A thin-film rare-earth permanent magnet having a plurality of layers and one or more rare-earth element monatomic layers on a transition metal element monoatomic layer serving as the uppermost layer.
2. 非磁性材料からなる基板が、 シリコンゥェ一ハ、 RB2C2(R:希土類元素) の劈開面を有するゥェ一ハのいずれかである請求項 1に記載の薄膜希土類永久 磁石。 2. The thin film rare earth permanent magnet according to claim 1, wherein the substrate made of a nonmagnetic material is any one of a silicon wafer and a wafer having a cleavage plane of RB 2 C 2 (R: rare earth element).
3. 希土類元素が、 Nd,Tb,Dyの少なくとも 1種、 遷移金属元素が、 3. The rare earth element is at least one of Nd, Tb and Dy, and the transition metal element is
Ti,V,Cr,Mn,Fe,Co,Ni,Cuの少なくとも 1種からなる請求項 1に記載の薄膜希土 類永久磁石。 2. The thin film rare earth permanent magnet according to claim 1, comprising at least one of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu.
4. 積層体全体に保護膜を成膜した請求項 1に記載の薄膜希土類永久磁石。 4. The thin-film rare earth permanent magnet according to claim 1, wherein a protective film is formed on the entire laminate.
5. 非磁性材料からなる基板上に、 希土類元素の単原子層を成膜する Aェ 程、 希土類元素の単原子層上に遷移金属元素の単原子層を成膜する工程を複数 回繰り返す B工程、 前記 A工程と B工程を 1回以上繰り返す工程、 最上層となる 遷移金属元素の単原子層上に 1層以上の希土類元素の単原子層を成膜するェ 程、 基板上の積層体に熱処理を施す工程を含む薄膜希土類永久磁石の製造方 法。 5. The process of depositing a rare-earth element monolayer on a substrate made of non-magnetic material A, and the process of depositing a transition metal element monolayer on a rare-earth monolayer are repeated several times B A step of repeating the steps A and B at least once, a step of forming one or more rare earth element monoatomic layers on the uppermost transition metal element monoatomic layer, and a laminate on the substrate. A method for producing a thin-film rare-earth permanent magnet, which includes a step of subjecting a permanent magnet to heat treatment.
6. 非磁性材料からなる基板は、 表面粗さが Ι.Ομπι以下である非磁性材料で ある請求項 5に記載の薄膜希土類永久磁石の製造方法。  6. The method for producing a thin-film rare earth permanent magnet according to claim 5, wherein the substrate made of a non-magnetic material is a non-magnetic material having a surface roughness of Ι.Ιμπι or less.
7. 非磁性材料からなる基板が、 シリコンゥェ一ハ、 RB2C2(R:希土類元素) の劈開面を有するゥェ一ハのいずれかである請求項 5に記載の薄膜希土類永久 磁石の製造方法。 7. The method for manufacturing a thin film rare earth permanent magnet according to claim 5, wherein the substrate made of a nonmagnetic material is any one of a silicon wafer and a wafer having a cleavage plane of RB 2 C2 (R: rare earth element). .
8. 希土類元素が、 Nd,Tb,Dyの少なくとも 1種、 遷移金属元素が、  8. The rare earth element is at least one of Nd, Tb, and Dy, and the transition metal element is
Ti,V,Cr,Mn,Fe,Co,Ni,Cuの少なくとも 1種からなる請求項 5に記載の薄膜希土 類永久磁石の製造方法。 The method for producing a thin-film rare earth permanent magnet according to claim 5, comprising at least one of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu.
9. 熱処理条件が、 真空中又は不活性ガス雰囲気中で 600K~900Kの温度に 保持する熱処理である請求項 5に記載の薄膜希土類永久磁石の製造方法。 9. The method for producing a thin-film rare earth permanent magnet according to claim 5, wherein the heat treatment is a heat treatment in which the temperature is maintained at 600 K to 900 K in a vacuum or an inert gas atmosphere.
PCT/JP2001/006562 2000-08-02 2001-07-30 Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet WO2002015206A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60134564T DE60134564D1 (en) 2000-08-02 2001-07-30 THIN FILM RARE PERMANENT MAGNET AND METHOD FOR THE PRODUCTION THEREOF
US10/343,480 US7285338B2 (en) 2000-08-02 2001-07-30 Anisotropic thin-film rare-earth permanent magnet
EP01984520A EP1329912B1 (en) 2000-08-02 2001-07-30 Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
JP2002520247A JP4697570B2 (en) 2000-08-02 2001-07-30 Thin-film rare earth permanent magnet and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000233936 2000-08-02
JP2000-233936 2000-08-02

Publications (1)

Publication Number Publication Date
WO2002015206A1 true WO2002015206A1 (en) 2002-02-21

Family

ID=18726382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006562 WO2002015206A1 (en) 2000-08-02 2001-07-30 Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet

Country Status (6)

Country Link
US (1) US7285338B2 (en)
EP (1) EP1329912B1 (en)
JP (1) JP4697570B2 (en)
CN (1) CN1218331C (en)
DE (1) DE60134564D1 (en)
WO (1) WO2002015206A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119271A1 (en) * 2006-03-20 2007-10-25 Namiki Seimitsu Houseki Kabushiki Kaisha Thin-film rare earth magnet and method for manufacturing the same
WO2013145088A1 (en) * 2012-03-26 2013-10-03 株式会社日立製作所 Rare-earth magnet
CN112756602A (en) * 2020-12-23 2021-05-07 苏州大学张家港工业技术研究院 Independent monoatomic thick metal film and preparation method and application thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1954395B (en) * 2004-03-23 2010-05-26 独立行政法人科学技术振兴机构 R-Fe-B based thin film magnet and method for preparation thereof
US20060141281A1 (en) * 2004-12-24 2006-06-29 Tdk Corporation R-T-B system permanent magnet and plating film
JP4670567B2 (en) * 2005-09-30 2011-04-13 Tdk株式会社 Rare earth magnets
ITTO20080462A1 (en) * 2008-06-13 2009-12-14 Torino Politecnico METHOD FOR THE PRODUCTION OF NANOSTRUCTURED MACROSCOPIC MAGNETS WITH HIGH DENSITY OF MAGNETIC ENERGY AND RELATED MAGNETS
EP2394175B1 (en) * 2009-02-09 2016-02-03 caprotec bioanalytics GmbH Devices, systems and methods for separating magnetic particles
US9786419B2 (en) 2013-10-09 2017-10-10 Ford Global Technologies, Llc Grain boundary diffusion process for rare-earth magnets
FR3025357A1 (en) * 2014-09-01 2016-03-04 Vivier Harry J P PERMANENT MAGNETS STRUCTURES IN STRATES
KR102059762B1 (en) * 2016-03-07 2019-12-26 제이엑스금속주식회사 Rare Earth Thin Film Magnet and Manufacturing Method Thereof
CN115020099B (en) * 2022-05-26 2023-11-03 中国科学院金属研究所 Method for enhancing vertical magnetic anisotropy of NdFeB-based permanent magnet thick film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130017A (en) * 1984-07-20 1986-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of vertical magnetization thin oxide film
JPH08195314A (en) * 1995-01-12 1996-07-30 Ricoh Co Ltd Thin film magnetic material

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342555A (en) * 1961-06-19 1967-09-19 Dow Chemical Co Process for the preparation of light weight porous carbon
SE393967B (en) * 1974-11-29 1977-05-31 Sateko Oy PROCEDURE AND PERFORMANCE OF LAYING BETWEEN THE STORAGE IN A LABOR PACKAGE
US4671907A (en) * 1984-08-07 1987-06-09 Sumitomo Metal Industries, Inc. Method of manufacturing carbon materials
JPH063768B2 (en) 1984-10-31 1994-01-12 株式会社リコー Perpendicular magnetic film
CA1254385A (en) * 1985-07-26 1989-05-23 Noboru Sato Magneto-optical recording medium having amorphous artificially layered structure of rare earth element and transition metal element
JPS62128041A (en) * 1985-11-28 1987-06-10 Sony Corp Photomagnetic recording medium
JPS6260865A (en) * 1985-09-11 1987-03-17 Sony Corp Device for forming laminated thin film
US4929320A (en) * 1986-04-11 1990-05-29 Fuji Photo Film Co., Ltd. Method of making magneto-optical recording medium
JPS63269354A (en) * 1987-04-28 1988-11-07 Ricoh Co Ltd Magneto-optical recording medium
JPH01168858A (en) * 1987-12-23 1989-07-04 Nec Home Electron Ltd Amorphous material and its manufacture
US4876159A (en) * 1988-03-14 1989-10-24 Eastman Kodak Company Magnetrooptical recording media and method of preparing them
JPH04255943A (en) * 1991-02-08 1992-09-10 Ricoh Co Ltd Magneto-optical recording medium
US5441804A (en) * 1991-02-12 1995-08-15 Mitsubishi Plastics Industries Limited Magneto-optical recording medium and method for production thereof
JPH06151226A (en) 1992-05-14 1994-05-31 Yaskawa Electric Corp Film magnet forming method
US5858565A (en) * 1995-11-09 1999-01-12 Eastman Kodak Company Magneto-optic compositionally modulated structure
JP3598171B2 (en) * 1995-12-27 2004-12-08 株式会社Neomax Exchange spring magnet and method of manufacturing the same
JPH10172190A (en) * 1996-12-09 1998-06-26 Sharp Corp Magneto-optical recording medium and its production
US6294490B1 (en) * 1998-03-13 2001-09-25 Hoya Corporation Crystallized glass for information recording medium, crystallized glass substrate, and information recording medium using the crystallized glass substrate
US6346309B1 (en) * 1998-08-11 2002-02-12 Hitachi Maxell, Ltd. Optical recording medium and process for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130017A (en) * 1984-07-20 1986-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of vertical magnetization thin oxide film
JPH08195314A (en) * 1995-01-12 1996-07-30 Ricoh Co Ltd Thin film magnetic material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1329912A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119271A1 (en) * 2006-03-20 2007-10-25 Namiki Seimitsu Houseki Kabushiki Kaisha Thin-film rare earth magnet and method for manufacturing the same
JP4988713B2 (en) * 2006-03-20 2012-08-01 並木精密宝石株式会社 Thin film rare earth magnet and method for manufacturing the same
WO2013145088A1 (en) * 2012-03-26 2013-10-03 株式会社日立製作所 Rare-earth magnet
JPWO2013145088A1 (en) * 2012-03-26 2015-08-03 株式会社日立製作所 Rare earth magnets
CN112756602A (en) * 2020-12-23 2021-05-07 苏州大学张家港工业技术研究院 Independent monoatomic thick metal film and preparation method and application thereof
CN112756602B (en) * 2020-12-23 2022-12-16 苏州大学张家港工业技术研究院 Independent monoatomic thick metal film and preparation method and application thereof

Also Published As

Publication number Publication date
EP1329912B1 (en) 2008-06-25
US7285338B2 (en) 2007-10-23
CN1443357A (en) 2003-09-17
JP4697570B2 (en) 2011-06-08
CN1218331C (en) 2005-09-07
DE60134564D1 (en) 2008-08-07
EP1329912A4 (en) 2005-09-21
EP1329912A1 (en) 2003-07-23
US20040091745A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
Walther et al. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems
US20060255383A1 (en) Spin-Polarization Devices Using Rare Earth-Transition Metal Alloys
Fukagawa et al. Coercivity generation of surface Nd2Fe14B grains and mechanism of fcc-phase formation at the Nd/Nd2Fe14B interface in Nd-sputtered Nd–Fe–B sintered magnets
JP4697570B2 (en) Thin-film rare earth permanent magnet and method for manufacturing the same
JP2001237119A (en) Permanent magnet thin film and its manufacturing method
JP6117706B2 (en) Rare earth nanocomposite magnet
JP5864726B2 (en) Rare earth magnets
JP4803398B2 (en) Multilayer permanent magnet
WO2006064937A1 (en) Nanocomposite magnet and process for producing the same
JP3392444B2 (en) Magnetic artificial lattice film
JPH09162034A (en) Film magnet and its formation method
JP6398911B2 (en) Permanent magnet and method for manufacturing the same
Ma et al. Tunable ferromagnetic and antiferromagnetic interfacial exchange coupling in perpendicularly magnetized L1-MnGa/Co2FeAl Heusler bilayers
JP3632869B2 (en) Replacement spring magnet
JPH11214219A (en) Thin film magnet and its manufacture
Suzuki et al. Effect of heat treatment on the magnetic properties for Nd–Fe–B/Nd–Cu multilayer films
JP6734578B2 (en) Hard magnetic material
Matsuura et al. Influences of Oxidation State of Nd-Rich Phase on the Coercivity of Nd-Fe-B/Nd Thin Films
JP2016207680A (en) Thin film magnet
JPH04219912A (en) Formation of rare-earth thin film magnet
JP2004134416A (en) Permanent magnet thin film
Matsuura et al. Transmission Electron Microscopy Study on Nd-Rich Phase at the Surface of ${\hbox {Nd}} _ {2}{\hbox {Fe}} _ {14}{\hbox {B}} $ Phase in Nd-Fe-B Films
CN116313475A (en) Method for simultaneously improving residual magnetization and coercive force of micron NdFeB-based permanent magnetic film
Kim et al. Magnetic properties of NdFeB thin film obtained by diffusion annealing
CN114999801A (en) Method for improving coercivity of NdFeB-based permanent magnet thick film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 018131484

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001984520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10343480

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001984520

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001984520

Country of ref document: EP