JPS62128041A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS62128041A
JPS62128041A JP60267780A JP26778085A JPS62128041A JP S62128041 A JPS62128041 A JP S62128041A JP 60267780 A JP60267780 A JP 60267780A JP 26778085 A JP26778085 A JP 26778085A JP S62128041 A JPS62128041 A JP S62128041A
Authority
JP
Japan
Prior art keywords
rare earth
metallic layers
thickness
transition
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60267780A
Other languages
Japanese (ja)
Inventor
Noboru Sato
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60267780A priority Critical patent/JPS62128041A/en
Priority to CA000514368A priority patent/CA1254385A/en
Priority to EP86305763A priority patent/EP0210855A3/en
Priority to KR1019860006075A priority patent/KR950001235B1/en
Priority to US06/889,962 priority patent/US4727005A/en
Publication of JPS62128041A publication Critical patent/JPS62128041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a photomagnetic recording medium which has excellent quantity of magnetization, coercive force and anisotropy and permits high density recording by providing a magnetized film for photomagnetic recording repeatedly laminated with metallic layers and respective ultrathin film layers of transition metallic layers and specifying the thickness of the rare earth metallic layers and the compsn. as the entire part of the magnetized film for photomagnetic recording. CONSTITUTION:The magnetized film 4 for photomagnetic recording which is successively and repeatedly laminated with the rare earth metallic layers 2 consisting of >=1 kinds among Tb, Dy, and Gd and the transition metallic layers 3 consisting of >=1 kinds among Fe, Co, and Ni by vapor deposition and sputtering, etc. and has a vertical anisotropy is constituted on a substrate 1. The rare earth metallic layers 2 and the transition metallic layers 3 are respectively formed to the ultrasmall thickness of order of an atomic layer and particularly the thickness of the rare earth metallic layers 2 is selected at >=2Angstrom and <6Angstrom . All of Tb, Dy, and Dg of rare earth metals have a bout 3.5Angstrom atomic diameter and therefore the thickness of >=2Angstrom and <6Angstrom is approximately equiv. to 2 atomic layers or below or single atomic layer. The compsn. ratio of the rare earth metals and transition metals is specified to 10-40atom% rare earth metal and the balance transition metal as the whole of the recording layer 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば書き換え可能な光磁気ディスクに適用
する光磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium applied to, for example, a rewritable magneto-optical disk.

〔発明のI既要〕[I existing requirements of the invention]

本発明は、金属層と、遷移金属層の各極薄薄膜層が繰返
し積層された光磁気記録用磁化膜を設け、その希土類金
属層の厚さ及び光磁気記録用磁化膜の全体としての組成
の特定によって、磁化量、保磁力、異方性にすぐれ、高
密度記録を可能にした光磁気記録媒体を構成する。
The present invention provides a magnetized film for magneto-optical recording in which ultrathin layers of a metal layer and a transition metal layer are repeatedly laminated, and the thickness of the rare earth metal layer and the composition of the magnetized film for magneto-optical recording as a whole are determined. By specifying this, a magneto-optical recording medium with excellent magnetization, coercive force, and anisotropy, and which enables high-density recording, can be constructed.

〔従来の技術〕[Conventional technology]

本出願人は、先に希土類金属層と、遷移金属層とが交互
に積層された構造の光磁気記録媒体を提供した(特願昭
59−217247号公報参照)。この光磁気記録媒体
は、角型比及び保磁力Hcの向上をはかることができる
ようにしたものである。
The present applicant has previously provided a magneto-optical recording medium having a structure in which rare earth metal layers and transition metal layers are alternately laminated (see Japanese Patent Application No. 59-217247). This magneto-optical recording medium is designed to improve the squareness ratio and coercive force Hc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明においては、上述したように希土類金属層と、遷
移金属層との繰返し積層構造の光磁気記録用磁化膜を有
する光磁気記録媒体において、希土類金属層の厚さと全
体としての希土類金属と遷移金属との組成比が磁気的特
性に大きな影響を及ぼすことの究明に基いて、より優れ
た特性の改善をはかるものである。
In the present invention, as described above, in a magneto-optical recording medium having a magnetized film for magneto-optical recording having a repeated laminated structure of a rare earth metal layer and a transition metal layer, the thickness of the rare earth metal layer and the overall rare earth metal and transition Based on the investigation that the composition ratio with metal has a large effect on magnetic properties, we aim to further improve the properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第1図に示すように、ガラス、アクリル、ポ
リカーボネイト等より成る基体(11上に、Tb、 D
Y、 Gdの一種以上より成る希土類金属層(2)と、
Fe、 Co、 Niの一種以上より成る遷移金属層(
3)とを順次繰返し蒸着、スパッタリング等によって積
層した垂直異方性を有する光磁気記録用磁化I1w(4
1を構成する。
As shown in FIG.
a rare earth metal layer (2) consisting of one or more of Y and Gd;
A transition metal layer consisting of one or more of Fe, Co, and Ni (
Magneto-optical recording magnet I1w (4
1.

これら希土類金属N(2)と、遷移金属層(3)とは、
夫々原子層オーダーの極薄の厚さとし、特に、その希土
類金属層(2)の厚さを2Å以上6人未満に選定する。
These rare earth metal N (2) and transition metal layer (3) are:
Each layer has an extremely thin thickness on the order of an atomic layer, and in particular, the thickness of the rare earth metal layer (2) is selected to be 2 Å or more and less than 6 Å.

ここに、希土類金属のTb、 DV、 Gdは共にその
原子径が、3.5人程度であることから、2Å以上6人
未満の厚さは2原子層〆以下ないしは単原子層にも相当
する程度のものとなる。
Here, since the atomic diameter of the rare earth metals Tb, DV, and Gd is about 3.5 nm, a thickness of 2 Å or more and less than 6 nm corresponds to a diatomic layer or less or a monoatomic layer. It will be of a certain extent.

また、希土類金属と、遷移金属との組成比を、記録層(
4)の全体として希土類金属を10〜40原子%、残部
を遷移金属とする。しかしながら、この組成範囲内にあ
っても、補償点組成はこれをはずすものとする。例えば
遷移金属としてFeを用いた場合希土類金属がTbであ
る場合はこれが磁化膜(4)全体としての組成が22〜
23原子%、Gd或いはayである場合はこれが25〜
26原子%で?ili (1点となる。
In addition, the composition ratio of rare earth metals and transition metals in the recording layer (
4), the total content of rare earth metals is 10 to 40 atomic %, and the remainder is transition metal. However, even if the composition is within this range, the compensation point composition is outside this range. For example, when Fe is used as the transition metal and the rare earth metal is Tb, the overall composition of the magnetized film (4) is 22~
23 atomic%, in the case of Gd or ay, this is 25~
At 26 atom%? ili (1 point.

〔作用〕[Effect]

上述した本発明による光磁気記録媒体によるときは、磁
気異方性が大、磁化量が大で保磁力が高く、したがって
高密度記録が可能な光磁気記録媒体が得られ。これは、
本発明による希土類金属層(2)と遷移金属層(3)と
の繰返し積層構造に相俟って、希土類金属層(2)の厚
さの特定と、更に全体の組成の特定によって記録用磁化
膜(4)が、その厚さ方向に、1個の希土類金属原子に
、2IIlilの遷移金泥原子が結合した基本的原子対
構成が過不足なく形成されること、つまり遷移金属原子
同士、或いは希土類金属原子の結合を殆ど生じることな
く、効率良く膜厚方向に配列していることによるものと
思われる。
When using the above-described magneto-optical recording medium according to the present invention, a magneto-optical recording medium can be obtained which has large magnetic anisotropy, a large amount of magnetization, and a high coercive force, and is therefore capable of high-density recording. this is,
Coupled with the repeated laminated structure of the rare earth metal layer (2) and the transition metal layer (3) according to the present invention, recording magnetization can be achieved by specifying the thickness of the rare earth metal layer (2) and further specifying the overall composition. In the film (4), in the thickness direction, a basic atomic pair configuration in which 2IIlil transition gold mud atoms are bonded to one rare earth metal atom is formed in just the right amount, that is, transition metal atoms are bonded to each other, or rare earth This seems to be due to the fact that the metal atoms are efficiently arranged in the film thickness direction with almost no bonding.

〔実施例〕〔Example〕

本発明による光磁気記録媒体の光磁気記録層(4)の形
成はスパッタリングによって行うことができる。
The magneto-optical recording layer (4) of the magneto-optical recording medium according to the present invention can be formed by sputtering.

このスパッタリング装置としては、第2図に示すように
、マグネトロン型構成をとり得る。この場合、ベルジャ
(図示せず)内に、軸心0−0′を中心として回転する
基台(6)を設け、これの例えば下面に目的とする光磁
気記録媒体を構成する基体(11が配置される。そして
、この基体(1)に対向して軸心0−0′を中心に等角
間隔、すなわち180゜の角間隔を保持して2個のスパ
ッタ源(7)及び(8)を配置する。これらスパッタ源
(7)及び(8)と基台(6)、すなわち基体(1)と
の間には、スパッタ源(7)及び(8)より夫々スパッ
タされる金属のスパッタ位置を規制するマスク(9)を
配置する。スパッタ源(7)は希土類金属より成りター
ゲットα(至)を有し、スパッタ源(8)は、遷移金属
の板状体より成るターゲラ)(11)を有して成る。 
 (12)及び(13)は、夫々マグネットを示す。
As shown in FIG. 2, this sputtering device may have a magnetron type configuration. In this case, a base (6) that rotates around an axis 0-0' is provided in a bell jar (not shown), and a base (11) constituting the intended magneto-optical recording medium is mounted on the bottom surface of the base (6), for example. Two sputtering sources (7) and (8) are placed facing the base (1) at equiangular intervals, that is, at an angular interval of 180°, about the axis 0-0'. Between these sputtering sources (7) and (8) and the base (6), that is, the base (1), there are sputtering positions for metal sputtered from the sputtering sources (7) and (8), respectively. The sputtering source (7) is made of a rare earth metal and has a target α (to), and the sputtering source (8) is a target α (11) made of a transition metal plate. It consists of
(12) and (13) each indicate a magnet.

マスク(9)は、例えば第3図に示すように、ターゲッ
ト00)及び(11)に対向する部分にこれらターゲッ
ト00)及び(11)の中心を通る直線X方向に外側に
向って広がるいちょう形の窓(14)及び(I5)が穿
設されて成り、基台(6)が停止した状態では基体(1
1の例えば主として一半部に一方のターゲットα〔から
の希土類金属がスパッタリングされ、主として他半部に
他方のターゲット(11)からの遷移金属がスパッタリ
ングされるようにする。
For example, as shown in FIG. 3, the mask (9) has a ginkgo-shaped part facing the targets 00) and (11) that extends outward in the direction of a straight line X passing through the centers of these targets 00) and (11). windows (14) and (I5) are bored in the base body (14) and (I5), and when the base base (6) is stopped, the base body (1
For example, the rare earth metal from one target [alpha] is sputtered mainly onto one half of the target (11), and the transition metal from the other target (11) is mainly sputtered onto the other half.

そして基台(6)を回転させながらターゲットQO)及
び(11)を負極側として直流スパッタリングを行う。
Then, while rotating the base (6), DC sputtering is performed with targets QO) and (11) on the negative electrode side.

このようにして基台(6)を回転させながら全体として
200〜50000人の厚さ、例えば1000人の厚さ
の積層磁化膜(4)を形成する。
In this manner, while rotating the base (6), a laminated magnetic film (4) having a total thickness of 200 to 50,000 layers, for example, 1,000 layers is formed.

実施例1 ガラス基体(11上に、全体として19原子%Tbの組
成を有するTb−Fe磁化膜による光磁気記録用磁化J
l!! (41を形成した。この磁化膜(4)の形成は
、第2図及び第3図で説明したスパッタリング装置によ
りそのターゲット0[IlとしてTbターゲットを、タ
ーゲット(11)としてFeターゲットを配置し、基台
(6)、したがって基体(1)の回転速度を2Or、p
、m、で行った。
Example 1 Magnetization J for magneto-optical recording by a Tb-Fe magnetized film having a total composition of 19 at% Tb on a glass substrate (11)
l! ! (41 was formed.) This magnetized film (4) was formed using the sputtering apparatus described in FIGS. The rotation speed of the base (6) and therefore the base body (1) is set to 2Or,p
I went with ,m.

Tbクーゲット0φ及びFeターゲット (11)に関
しての夫々のスパッタリング電流は0.6A及び2.5
Aとした。このとき、Tbの腰成晶速度は、はぼ1.5
人/secであるとき、Feのそれはほぼ2.6人/s
ecであった。
The sputtering currents for Tb target 0φ and Fe target (11) are 0.6 A and 2.5 A, respectively.
I gave it an A. At this time, the crystallization rate of Tb is approximately 1.5
person/sec, that of Fe is approximately 2.6 person/s
It was ec.

このようにして(rlた光磁気媒体のTb−Fe磁化脱
(4)は第1図で説明したようなTbによる希土類金属
層(2)とFeによる遷移金属層(3)との繰返しMi
層による周期構造を形成していることが確認された。こ
の確認は、小角X線回折により行った。第4図はそのX
線照射の膜面とのなす角をθとするときの角度2θに対
する回折強度を測定した図で、この場合、Co−KeL
(波長λ= 1.79人)のX線を用いた。
In this way, (rl) Tb-Fe demagnetization of the magneto-optical medium (4) is achieved by repeatedly forming the rare earth metal layer (2) made of Tb and the transition metal layer (3) made of Fe as explained in FIG.
It was confirmed that a periodic structure formed by layers was formed. This confirmation was performed by small-angle X-ray diffraction. Figure 4 is the X
This figure shows the measurement of the diffraction intensity with respect to the angle 2θ, where θ is the angle between the beam irradiation and the film surface, and in this case, Co-KeL
(wavelength λ = 1.79 people) was used.

そして、第4図によれば、2θ=8.4人で回折ピーク
が生じており、繰返し周期のピッチ(つまり、希土類金
属のTb1ii(21と遷移金属のFe層(3)の各一
層で与えられるので、ピッチPは12.2人であること
がわかる。
According to Fig. 4, a diffraction peak occurs at 2θ = 8.4, and the pitch of the repetition period (that is, the pitch of the repetition period (that is, the pitch of the rare earth metal Tb1ii (21) and the transition metal Fe layer (3)) Therefore, it can be seen that the pitch P is 12.2 people.

実施例2 実施例1と同様の方法によって磁化膜の形成を行ったが
、全体としてTbを21原子%に選定した。
Example 2 A magnetized film was formed by the same method as in Example 1, but Tb was selected to be 21 atomic % as a whole.

これら実施例1及び2による光磁気記録媒体の磁気的特
性をそのTb金属層の厚さを変化させて測定した結果を
第5図に示す。破線曲線は全体としてTbの割合を19
原子%とした場合、実線曲線は21原子%とした場合で
あり、曲線に1及びに2は磁気異方性係数の測定結果で
あり、曲線MS1及びM S2は磁化量の測定結果、曲
線)(C1及びHC2は保磁力の測定結果を示す。
FIG. 5 shows the results of measuring the magnetic properties of the magneto-optical recording media according to Examples 1 and 2 by varying the thickness of the Tb metal layer. The dashed curve shows an overall Tb ratio of 19
When expressed as atomic %, the solid line curve is for 21 atomic %, curves 1 and 2 are the measurement results of the magnetic anisotropy coefficient, and curves MS1 and MS2 are the measurement results of the magnetization amount (curve). (C1 and HC2 indicate the measurement results of coercive force.

これによれば、Tb層(2)の厚さが2〜6人ですぐれ
た各磁気的特性を示すことがわかる。
According to this, it can be seen that excellent magnetic properties are exhibited when the thickness of the Tb layer (2) is 2 to 6 layers.

更に、スパッタ条件をTbに関して0.6A SFeに
関して1.85Aとし、Tbのスパッタリング速度を1
.5人/ sec 、 Feのスパッタリング速度を2
.5人/secとして、各層(2)及び(3)を夫々1
秒間、3秒間、6秒間で形成した膜厚とした場合、つま
りTb層(2)が1.5人でFe層(3)が2.5人の
とき、Tb層(2)が4.5人でFe層(3)が7.5
人のとき、Tb層(2)が9人でFe層(3)が15A
のときの各磁化曲線を夫々第6図、第7図及び第8図に
示す。このときの飽和磁化MSと、保磁力Heを表1に
示す。
Furthermore, the sputtering conditions were set to 0.6A for Tb and 1.85A for SFe, and the sputtering rate for Tb was set to 1.
.. 5 people/sec, Fe sputtering speed 2
.. 5 people/sec, each layer (2) and (3) 1 each
When the film thickness is formed in seconds, 3 seconds, and 6 seconds, that is, when the Tb layer (2) is 1.5 thick and the Fe layer (3) is 2.5 thick, the Tb layer (2) is 4.5 thick. In humans, Fe layer (3) is 7.5
For humans, the Tb layer (2) is 9 people and the Fe layer (3) is 15A.
The magnetization curves at the time are shown in FIG. 6, FIG. 7, and FIG. 8, respectively. Table 1 shows the saturation magnetization MS and coercive force He at this time.

これによってもT bJi (2)の厚さが6人未満2
Å以上に相当する第7図の例がすぐれたMs、Hcを有
し、また高い角型比を示している。
This also reduces the thickness of T bJi (2) to less than 6 people 2
The example shown in FIG. 7, which corresponds to Å or more, has excellent Ms and Hc, and also shows a high squareness ratio.

実施例3 ガラス基体(11上に、全体の組成が20&;(子%の
Tbと、Fe −Coの遷移金属が80原子%で、Fe
とGoの割合がl1l(原子比)、・つまりTb2o 
 (Fe5s Co5) n。
Example 3 A glass substrate (11) with an overall composition of 20% Tb, 80% Fe-Co transition metal, and Fe
The ratio of Go and l1l (atomic ratio), that is, Tb2o
(Fe5sCo5) n.

の磁化膜を形成した。この場合においても実施例1と同
様に、前述したと同様のスパッタリング装置を用いた。
A magnetized film was formed. In this case, as in Example 1, the same sputtering apparatus as described above was used.

この場合、ターゲットaωとしてTbターゲットを、タ
ーゲット(11)としてPe5s Cos合金のターゲ
ットを用いた。このときのスパッタリング条件は、Tb
については0.6A 、 Fe55Cosについては2
.2Aとし、基台(6)の回転数は20r、 p、m、
とした。このときのTbの成長速度は、はぼ1.4人/
sec+Feg5 Co5のそれは2.6人/secで
ある。このようにして得たTb2o  (Fe5s C
o5) +Ioの磁化膜(4)に対して、同様にCo−
kX線による小角X線回折を測定したところ第9図に示
すようになり、2θ=8゜でビークを有していることか
らTb層(2)と、Fe5s CoS層(3)との繰返
し積層周期のピッチPは、12.9人であることがわか
った。
In this case, a Tb target was used as the target aω, and a Pe5s Cos alloy target was used as the target (11). The sputtering conditions at this time were Tb
0.6A for Fe55Cos, 2 for Fe55Cos
.. 2A, and the rotation speed of the base (6) is 20r, p, m,
And so. The growth rate of Tb at this time is approximately 1.4 people/
sec+Feg5 That of Co5 is 2.6 people/sec. Tb2o (Fe5s C
o5) Similarly, for the +Io magnetized film (4), Co-
When small-angle X-ray diffraction was measured using kX-rays, the result was as shown in Figure 9, and since it had a peak at 2θ = 8°, it was determined that the Tb layer (2) and the Fe5s CoS layer (3) were repeatedly laminated. The periodic pitch P was found to be 12.9 people.

上述のTb−FeCo磁化膜(4)全体の組成をTb 
−Fe1−y Coyとして表わしてそのyの値つまり
Coの量を変化させた場合の飽和値化MS、カー回転角
θk及びキュリ一点Tcを測定した結果を第1θ図に示
す。第10図において、曲線MSCO+ θkco及び
T CCOは夫々その飽和磁化MS、カー回転角θk及
びキュリ一点Tcを示ず。これによればco量の増大に
伴ってMg、  θkが増加する傾向がみられるが、キ
ュリ一点Tcも上がるので、co量が余り多いと記録パ
ワーが大となる。そこでCo量は遷移金属成分中1〜3
0原子%に選定されることが望ましい。
The overall composition of the above-mentioned Tb-FeCo magnetized film (4) is Tb
Fig. 1θ shows the results of measuring the saturation value MS, Kerr rotation angle θk, and Curie point Tc when expressed as -Fe1-y Coy and changing the value of y, that is, the amount of Co. In FIG. 10, the curves MSCO+ θkco and T CCO do not indicate their saturation magnetization MS, Kerr rotation angle θk, and Curie point Tc, respectively. According to this, there is a tendency for Mg and θk to increase with an increase in the amount of co, but since the Curie point Tc also increases, if the amount of co is too large, the recording power increases. Therefore, the amount of Co in the transition metal component is 1 to 3.
It is desirable to select 0 atomic %.

実施例4 ガラス基体[1)上に、前述したと同様のスパッタリン
グ装置によって、Gd−Fe磁化膜を作製した。
Example 4 A Gd-Fe magnetized film was produced on the glass substrate [1] using the same sputtering apparatus as described above.

この場合、スパッタリング装置のターゲットαωとして
Gdを、ターゲット (11)としてPeを用い、Gd
の成長速度をほぼ、1.5人/secに、Feのそれを
2.6人/secとした。この場合の同様の小角X線回
折によって測定したGd希土類金属層(2)と、Fe遷
移金属層(3)との繰返し周期のピッチPは12.5人
であった。
In this case, Gd is used as the target αω of the sputtering device, Pe is used as the target (11), and Gd
The growth rate of Fe was approximately 1.5 people/sec, and that of Fe was approximately 2.6 people/sec. In this case, the pitch P of the repetition period between the Gd rare earth metal layer (2) and the Fe transition metal layer (3) was 12.5 as measured by small-angle X-ray diffraction.

実施例5 ガラス基体(1)上に、前述したと同様のスパッタリン
グ装置によって、Dy−Fe磁化膜を作製した。
Example 5 A Dy-Fe magnetized film was produced on a glass substrate (1) using the same sputtering apparatus as described above.

この場合、スパッタリング装置のターゲットQ[I)と
してDyを、ターゲット(11)としてFeを用いた。
In this case, Dy was used as the target Q[I] of the sputtering device, and Fe was used as the target (11).

上述した各実施例1.4及び5について、夫々その磁化
膜(4)全体の組成として各希土類元素のTb。
Regarding each of Examples 1.4 and 5 described above, Tb of each rare earth element is used as the composition of the entire magnetized film (4).

Gd及びoyO量を変化させて、夫々のキュリ一点Tc
By changing the amount of Gd and oyO, each Curie point Tc
.

飽和磁化MS、保磁力Hcの測定結果を第11図に示す
。同図において曲線Hctb 、 Hcgd及びHcd
yは、夫々Tb、 Gd及びoyの組成比の変化に対す
る保磁力Hcの測定結果を示し、Mstb 、 Msg
d及びM sdyは夫々同様のTb、 Gd及びDyの
組成比の変化に対する飽和磁化M gの測定結果を示し
、曲線T c tb +T cgd及びTcdyは、夫
々同様のTb、 Gd及びDyの組成比の変化に対する
キュリ一温度Tcの測定結果を示す。
The measurement results of saturation magnetization MS and coercive force Hc are shown in FIG. In the same figure, the curves Hctb, Hcgd and Hcd
y indicates the measurement results of the coercive force Hc with respect to changes in the composition ratio of Tb, Gd and oy, respectively, Mstb, Msg
d and M sdy show the measurement results of saturation magnetization M g with respect to changes in the similar composition ratios of Tb, Gd, and Dy, respectively, and curves T c tb +T cgd and Tcdy show the results of measurement of the saturation magnetization M g with respect to changes in the similar composition ratios of Tb, Gd, and Dy, respectively. The measurement results of the Curie temperature Tc with respect to changes in are shown.

実施例6 ガラス基体(1)上に、前述したと同様のスパッタリン
グ装置によって、Gd−FeCo磁化膜を作製した。
Example 6 A Gd-FeCo magnetized film was produced on a glass substrate (1) using the same sputtering apparatus as described above.

この場合、スパッタリング装置のターゲット00)とし
てGdを、ターゲット(11)としてFe−Co合金を
用いた。
In this case, Gd was used as the target 00) of the sputtering device, and an Fe-Co alloy was used as the target (11).

実施例7 ガラス基体(1)上に、前述したと同様のスパッタリン
グ装置によって、GdTb−Fe磁化膜を作製した。
Example 7 A GdTb-Fe magnetized film was produced on a glass substrate (1) using the same sputtering apparatus as described above.

この場合、スパッタリング装置のターゲットαのとして
Gd2o Tb5o sターゲット(11)としてFe
を用いた。
In this case, the target α of the sputtering device is Gd2o, the target (11) is Fe.
was used.

実施例8 ガラス基体(1)上に、前述したと同様のスパッタリン
グ装置によって、GdTb −FeCo磁化膜を作製し
た。この場合、スパッタリング装置のターゲットαωと
してGd2a Fbeo合金を、ターゲット(11)と
してFe55Cos合金を用いた。
Example 8 A GdTb-FeCo magnetized film was produced on a glass substrate (1) using the same sputtering apparatus as described above. In this case, a Gd2a Fbeo alloy was used as the target αω of the sputtering device, and a Fe55Cos alloy was used as the target (11).

実施例9 ガラス基体(1)上に、前述したと同様のスパッタリン
グ装置によって、TbDy  FeCo磁化膜を作製し
た。この場合、スパッタリング装置のターゲット01l
llとしてTb5o Dy5o合金を、ターゲット(1
1)としてFe5o Co5oを用イタ。
Example 9 A TbDy FeCo magnetized film was produced on a glass substrate (1) using the same sputtering apparatus as described above. In this case, the target 01l of the sputtering device
Tb5o Dy5o alloy as ll, target (1
Ita using Fe5o Co5o as 1).

これら各実施例6〜9についても、高いHc。Each of these Examples 6 to 9 also had high Hc.

MS及びTcを示した。MS and Tc are shown.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、希土類金属層(2)と
、遷移金属層(3)とを繰返して積層した磁化膜の構造
を採るものの両層(2)及び(3)を原子層オーダの薄
い層とし、特に希土類金属層(2)を2〜6人とし、更
に磁化膜全体としての組成において、希土類金属を10
〜40原子%で且つ補償点組成を除く組成とすることに
よって磁気的特性にすくれた光磁気記録媒体を得ること
ができたものである。
As described above, according to the present invention, although the structure of the magnetized film is formed by repeatedly laminating the rare earth metal layer (2) and the transition metal layer (3), both layers (2) and (3) are formed on the atomic layer order. In particular, the rare earth metal layer (2) has a thin layer of 2 to 6 people, and the composition of the entire magnetized film has a rare earth metal of 10
By setting the composition to 40 atomic % and excluding the compensation point composition, it was possible to obtain a magneto-optical recording medium with excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光磁気記録媒体の一例の路線的拡
大断面図、第2図はスパッタリング装置の一例の構成図
、第3図はそのマスクの平面図、第4図及び第9図は夫
々本発明による光磁気記録媒体の一例の小角X線回折の
照射角−強度測定曲線図、第5図はTb膜厚と各磁気特
性との関係の測定曲線図、第6図〜第8図は磁化特性曲
線図、第10図はCo含有量と各特性を示す図、第11
図は希土類金属の含有量と各特性の関係を示す図である
。 (11は基体、(2)は希土類金属層、(3)は遷移金
属層、(4)は磁化膜である。 スノでツタリーブ装置、/1マスクの平面図第3図 “rbllll、IN = t % mlu ’r”I
n ’l’J 定曲am第5図 第10図 第11図
FIG. 1 is an enlarged sectional view of an example of a magneto-optical recording medium according to the present invention, FIG. 2 is a configuration diagram of an example of a sputtering apparatus, FIG. 3 is a plan view of a mask thereof, and FIGS. 4 and 9 are FIG. 5 is a measurement curve diagram of the irradiation angle-intensity of small-angle X-ray diffraction of an example of the magneto-optical recording medium according to the present invention, FIG. 5 is a measurement curve diagram of the relationship between Tb film thickness and each magnetic property, and FIGS. 6 to 8 is a magnetization characteristic curve diagram, Figure 10 is a diagram showing the Co content and each characteristic, and Figure 11 is a diagram showing the Co content and each characteristic.
The figure is a diagram showing the relationship between the rare earth metal content and each characteristic. (11 is the substrate, (2) is the rare earth metal layer, (3) is the transition metal layer, and (4) is the magnetized film. Figure 3: Planar view of the /1 mask. % mlu'r”I
n 'l'J Fixed curve amFigure 5Figure 10Figure 11

Claims (1)

【特許請求の範囲】[Claims] 基体上に希土類金属層と、遷移金属層とが順次繰返し積
層されて成る光磁気記録用磁化膜を有し、上記希土類金
属層が2Å以上6Å未満に選定され、上記光磁気記録用
磁化膜の全体的組成が10〜40原子%の希土類金属よ
り成り且つ補償点組成を除く組成に選定したことを特徴
とする光磁気記録媒体。
The magnetic film for magneto-optical recording is formed by sequentially stacking a rare earth metal layer and a transition metal layer on a substrate, and the rare earth metal layer is selected to have a thickness of 2 Å or more and less than 6 Å, 1. A magneto-optical recording medium characterized in that the overall composition is comprised of 10 to 40 atomic % of rare earth metals, and the composition is selected to exclude a compensation point composition.
JP60267780A 1985-07-26 1985-11-28 Photomagnetic recording medium Pending JPS62128041A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60267780A JPS62128041A (en) 1985-11-28 1985-11-28 Photomagnetic recording medium
CA000514368A CA1254385A (en) 1985-07-26 1986-07-22 Magneto-optical recording medium having amorphous artificially layered structure of rare earth element and transition metal element
EP86305763A EP0210855A3 (en) 1985-07-26 1986-07-25 Magneto-optical recording media
KR1019860006075A KR950001235B1 (en) 1985-07-26 1986-07-25 Magneto-optical recording medium
US06/889,962 US4727005A (en) 1985-07-26 1986-07-28 Magneto-optical recording medium having amorphous artificially layered structure of rare earth element and transition metal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60267780A JPS62128041A (en) 1985-11-28 1985-11-28 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62128041A true JPS62128041A (en) 1987-06-10

Family

ID=17449477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60267780A Pending JPS62128041A (en) 1985-07-26 1985-11-28 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62128041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211141A (en) * 1987-02-27 1988-09-02 Nippon Hoso Kyokai <Nhk> Magneto-optical recording medium
JPS63269354A (en) * 1987-04-28 1988-11-07 Ricoh Co Ltd Magneto-optical recording medium
JP4697570B2 (en) * 2000-08-02 2011-06-08 日立金属株式会社 Thin-film rare earth permanent magnet and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108112A (en) * 1984-10-31 1986-05-26 Ricoh Co Ltd Vertically magnetized film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108112A (en) * 1984-10-31 1986-05-26 Ricoh Co Ltd Vertically magnetized film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211141A (en) * 1987-02-27 1988-09-02 Nippon Hoso Kyokai <Nhk> Magneto-optical recording medium
JPS63269354A (en) * 1987-04-28 1988-11-07 Ricoh Co Ltd Magneto-optical recording medium
JP4697570B2 (en) * 2000-08-02 2011-06-08 日立金属株式会社 Thin-film rare earth permanent magnet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0670858B2 (en) Magneto-optical recording medium and its manufacturing method
KR950001235B1 (en) Magneto-optical recording medium
JPS62128041A (en) Photomagnetic recording medium
JPS61144742A (en) Optomagnetic recording medium
JPH0454367B2 (en)
JPS6226659A (en) Photomagnetic recording medium
JPS59217249A (en) Photomagnetic recording medium
EP0324854A1 (en) Optomagnetic recording medium and process for its manufacture
JPS6154059A (en) Magneto-optical recording film
JP2526906B2 (en) Magneto-optical recording medium
JPS60237655A (en) Optomagnetic recording medium
JPS63211141A (en) Magneto-optical recording medium
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JP2738733B2 (en) Magnetic film
JPS62134817A (en) Magnetic recording medium
JPS59217248A (en) Photomagnetic recording medium
JP2707560B2 (en) Artificial lattice magneto-optical recording medium
JPH04111302A (en) Artificial lattice film
JP2707561B2 (en) Artificial lattice magneto-optical recording medium
JPH0384723A (en) Magnetic recording medium
JPS61199614A (en) Soft-magnetic amorphous film body
JPS62132222A (en) Magnetic recording medium
JPS60202526A (en) Method and device for production of magnetic recording medium
JP2638076B2 (en) Magneto-optical recording medium
JPH0384755A (en) Magneto-optical recording medium