JP3598171B2 - Exchange spring magnet and method of manufacturing the same - Google Patents

Exchange spring magnet and method of manufacturing the same Download PDF

Info

Publication number
JP3598171B2
JP3598171B2 JP6758496A JP6758496A JP3598171B2 JP 3598171 B2 JP3598171 B2 JP 3598171B2 JP 6758496 A JP6758496 A JP 6758496A JP 6758496 A JP6758496 A JP 6758496A JP 3598171 B2 JP3598171 B2 JP 3598171B2
Authority
JP
Japan
Prior art keywords
layer
film
magnetization
coercive force
magnetic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6758496A
Other languages
Japanese (ja)
Other versions
JPH09237714A (en
Inventor
幹夫 新藤
昭正 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP6758496A priority Critical patent/JP3598171B2/en
Publication of JPH09237714A publication Critical patent/JPH09237714A/en
Application granted granted Critical
Publication of JP3598171B2 publication Critical patent/JP3598171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3222Exchange coupled hard/soft multilayers, e.g. CoPt/Co or NiFe/CoSm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小型モータ、磁気センサ、アクチュエータ等に応用されるR−TM−B系硬磁性層と軟磁性層を積層させた多層構造のR−TM−B系交換スプリング磁石およびその製造方法に関する。
【0002】
【従来の技術】
エレクトロニクス機器の小型・軽量化に対応して、永久磁石材料の高性能化が進められている。現在、最高の磁石特性を有するR−TM−B系磁石の磁気特性を上回る可能性のある材料の一例として、交換スプリング磁石が挙げられる。
交換スプリング磁石は、硬磁性相と軟磁性相の二相からなる超微細結晶組織で構成される永久磁石で、Coehoorn 等(J.dePhys. vol.49,p669(1988))や Kneller 等(IEEE Trans. Mag. vol.27,p3588(1991))によって提案され、磁化の大きい軟磁性相と保磁力の大きい硬磁性相とを組み合わせ、これらを交換相互作用により磁気的に結合させることで高いエネルギ−積を得ようというものである。
交換スプリング磁石の保磁力は、硬磁性相の磁化が軟磁性相の磁化を固定して、軟磁性相の磁化反転を妨げることによって発現する。十分な保磁力を得るためには、軟磁性相と硬磁性相が強く交換結合していることと、それぞれの相の大きさ(粒径)がナノレベルサイズであることが必要である。この交換スプリング磁石の製造方法は、超急冷法によってアモルファス薄帯を製造し、熱処理によって軟磁性相と硬磁性相が混合した多結晶を得る方法が主流である。
しかしながら、アモルファス薄帯の熱処理によって軟磁性相と硬磁性相とを析出させる交換スプリング磁石の製造方法は、その組織を制御することが極めて難しいという問題がある。
【0003】
【発明が解決しようとする課題】
本発明は、大きな磁化を持つことで大きな最大エネルギ−積を有するR−TM−B系交換スプリング磁石およびその製造方法を提供するものである。
【0004】
【課題を解決するための手段】
交換スプリング磁石において、硬磁性相と交換結合する軟磁性相があると、逆磁界下で軟磁性相から先に磁化反転が始まり、保磁力低下の主要因となる。しかし、軟磁性相のサイズを磁壁幅以下に抑えると、逆磁界下における不均一磁化反転が抑制される。その結果、保磁力は主に硬磁性相の磁気異方性に支配され低下は抑えられる。一方、軟磁性相からより高い磁束密度Bを得るためには、軟磁性相の体積比を上げる必要があり、このためには一つの硬磁性相のサイズをできる限り小さくすればよい。硬磁性相のサイズはやはり磁壁幅以下であればよいが、あまり狭いと保磁力を維持するのが困難になるため磁壁幅程度に抑えるのが好ましい。磁壁幅はπ(A/K)1/2(A:交換スティッフネス定数、K:磁気異方性エネルギ−)で見積もられるので、軟磁性相をFe、硬磁性相をNd2Fe14Bとすると、それぞれ60nmおよび数nm程度となる。
R.Skomski andJ.M.D.Coey (Phys.Rev.B48(1993)p15812)によると交換スプリング磁石において、最大エネルギ−積(BH)maxが最も大きくなるときの硬磁性相の体積比fhは近似的に(1)式で与えられ、このとき最大エネルギ−積は(2)式となる。
【0005】

Figure 0003598171
【0006】
Sm−CoやNd−Fe−B磁石の磁気異方性エネルギ−Khは107J/m3 程度であるのに対し、Fe等の軟磁性体のμ0Ms2/4は106J/m3程度であるので、硬磁性相の体積比fhは10%程度あればよいことになる。従って、(BH)maxは主に軟磁性相の特性に支配され定量的にはμ0Ms2/4に僅かな補正が加わる形となる。(2)式においてNd2Fe14Bを硬磁性相、Feを軟磁性相とした場合には、fh=10%で、(BH)max=0.8MJ/m3(100MGOe)が期待される。
以上のような特性を得るには、硬磁性相と軟磁性相が接触界面で充分な磁気的結合を有し、それぞれの相厚が上述した磁壁幅程度に制御されている必要がある。本発明者等は、積層膜がこのような制御が最も容易に実現され得る構造であると考えた。また、R−TM−Bからなる硬磁性層は耐食性が悪く、十分に酸化を抑制しないとR2TM14Bが生成しにくくなったり、軟磁性相との交換結合が不十分となって保磁力が劣化する可能性が高いので、本発明者等は、薄膜化による酸化抑制のための保護膜を形成することによって保磁力の低下を防ぐことに想到した。
したがって、本発明のR−TM−B系交換スプリング磁石は、S層(磁化の大きさが1.3T以上である軟磁性層)およびH層(10〜20at%のR(RはYを含む希土類元素のうちの少なくとも1種)、5〜20at%のB、残部TM(TMはFeまたはFeの一部をCoで置換したもの)及び不可避的な不純物を含む硬磁性層)が交互に積層されており、前記S層およびH層を積層した多層膜の最外面にM層(M層はCr,Ti,W,Cu,Ta,FeMn,NiMn,NiO,FeO,CoO,Co−Pt,Fe−Ptのうちの1種または2種以上からなる層)を有することを特徴とする。
【0007】
本発明において、S層とH層とを交換結合させるために、S層とH層を交互に積層して多層膜とすることが望ましい。また、S層およびH層を積層した多層膜の最外面にM層(Cr,Ti,W,Cu,Ta,FeMn,NiMn,NiO,FeO,CoO,Co−Pt,Fe−Ptのうち1種または2種以上からなる層)を形成し、S層とH層の酸化を抑制することが望ましい。
【0008】
本発明において、H層は、10〜20at%のR(RはYを含む希土類元素のうちの少なくとも1種)、5〜20at%のB、残部TM(TMはFeまたはFeの一部をCoで置換したもの)及び不可避的な不純物を含む硬磁性層である。Rとしては、特にNdまたはPrを含むことが望ましく、NdまたはPrの一部をDyで置換してもよい。R−TM−BからなるH層は、R2TM14B相を含み、膜厚が5〜100nmであることが望ましい。
H層のRが10at%未満では十分な保磁力が発現せず、20at%ではFe成分が減少して(BH)maxとBrが減少する。Bは5at%未満では保磁力が低下し、20at%では(BH)maxとBrが低下する。また、H層にCr、Nb、Al、Ga、Zn、Cuのうちの少なくとも種の元素を添加すると、更に保磁力と角型性の良いR−TM−B系交換スプリング磁石を得ることができるが、4at%を超えて添加すると(BH)maxとBrが低下するので、添加量を0.5〜4at%とする。
【0009】
R−TM−BからなるH層の磁化は室温で通常1.3T以上であるので、交換スプリング磁石の優位性を得るためには、S層の磁化の大きさは室温で1.3T以上とし、更にバルクのR−TM−B系磁石の特性を上回るには、1.5T以上とするのが望ましい。室温における磁化の大きさが1.3T以上の軟磁性材料としては、Fe:2T,Fe−Co:2.3T,Fe−N:2.4T等がある。S層は、その磁壁の幅から考えて、5nm〜500nmの範囲の膜厚を有することが望ましい。
H層とS層を交換結合させるために、S層とH層を交互に積層した多層膜を形成するが、積層順はS層、H層、S層、・・・S層と積層しても、H層、S層、H層、・・・H層と積層しても、S層、H層、S層、・・・H層と積層しても、H層、S層、H層、・・・S層と積層してもいづれでもよい。
【0010】
S層とH層を交互に積層した多層膜の最外面にM層を形成し、S層とH層の酸化を制御する。M層は、最外面全面に形成してもよいし、多層膜を挟むように、または片方に形成してもよい。M層は、基板と多層膜との間、およびS層とH層との多層膜上のいづれか一方に形成することによっても酸化制御の効果は得られるが、最外面全面あるいは多層膜を挟むように形成するとによりS層とH層の酸化を十分制御することができ、その結果、H層とS層の交換結合が強くなり、磁性特性の優れた多層膜を得ることができる。また、基板上にM層を成膜し、その上にS層とH層の多層膜を積層することによって、S層またはH層の酸化制御および基板との反応を防ぐという効果が得られる。
M層の厚さは、これと隣接するH層あるいはS層との相互拡散により界面で合金あるいは化合物を形成しても充分にその機能を損なうことのないように5nm〜100nm、望ましくは5〜20nmとする。
【0011】
NiO,FeO,CoOは反強磁性絶縁体であるため、これをM層として用いれば、酸化抑制の効果に加え、磁化反転を抑えることで保磁力向上の効果を得ることができる。FeMn,NiMnも反強磁性体であるためこれをM層として用いれば、保磁力向上の効果を得ることができるが、他のM層構成物質に比し酸化防止効果が少ないので、基板とH層またはS層との間に形成することが望ましい。また、Co−Pt,FeーPtは強い結晶磁気異方性を有する強磁性金属であるため、これをM層として用いれば酸化防止効果と保磁力増大の効果に加えて磁化の増大も期待できる。
【0012】
H層の成膜時の酸化を抑制するため、H層は室温の基板温度で成膜することが好ましいが、その場合R−TM−BからなるH層はR2TM14Bは結晶化せずにアモルファスとなっており保磁力が発現しない。この場合、R2TM14Bの多結晶を得るために熱処理が必要である。熱処理温度は773 K(500℃)未満にするとR2TM14Bが結晶化しないので保磁力が発現せず、1073K(800℃)を超えると保磁力が急激に減少する。したがって、熱処理温度は773K(500℃)から1073K(800℃)が適当であるが、熱処理中の拡散による積層構造の乱れが少なく、かつR2TM14Bが十分生成する、773K(550℃)から923K(650℃)が望ましい。
【0013】
【発明の実施の態様】
(実施例1)
二極マグネトロンスパッタ装置の真空槽内を8×10−4Pa以下に排気し、Arガスを導入して8×10−1Paとし、請求項1に記載したH層の膜組成になるようなNd−Fe−B合金ターゲットに高周波電圧を印加して室温のガラス基板上に成膜した。投入電力は200Wとし、基板とターゲットの間に取り付けたシャッターを閉じた状態で20分間予備スパッタリングを行ってターゲット表面上の酸化物等を除去した後、シャッターを開けてNd−Fe−B膜を20nm成膜した。Nd−Fe−B膜単層の膜組成はNd13〜15FebalB7〜11(at%)、成膜速度は2.0μm/hourである。引き続いて真空を破らずに、Feターゲットに高周波電圧を印加してNd−Fe−Bと同様の成膜条件でFe膜を20nm成膜した。成膜速度は0.3μm/hourである。これを交互に繰り返すことによってNd−Fe−BとFeの多層膜を作製し(積層周期5)、最後にNd−Fe−B膜を成膜した。得られたNd−Fe−B/Fe多層膜を873K(600℃)で30分間、3×10−3Pa以下の真空中で熱処理した。
【0014】
(実施例2)
ガラス基板上にTiを20nm成膜し、次に実施例1と同様のNd−Fe−B/Fe多層膜を成膜し、最後にTiを20nm成膜して図1のようなTi/(Nd−Fe−B/Fe)5/Nd−Fe−B/Ti積層膜とした。Tiの成膜条件はFe、Nd−Fe−Bと同一で成膜速度は1.3μm/hourである。得られた膜は(実施例1)と同条件で熱処理した。
【0015】
(実施例3)
ガラス基板上に(実施例1)と同様のNd−Fe−B/Fe多層膜を成膜し、最後にTiを20nm成膜した。つまり、(実施例2)と比較してガラス基板とNd−Fe−B/Fe多層膜の間のTi層がない膜を作製した。得られた膜は(実施例1)と同条件で熱処理した。
【0016】
(実施例4)
ガラス基板上にTiを20nm成膜し、引き続いて(実施例1)と同様のNd−Fe−B/Fe多層膜を成膜した。すなわち、(実施例2)と比較してNd−Fe−B/Fe多層膜上のTi層がない膜を作製した。得られた膜は(実施例1)と同条件で熱処理した。
【0017】
実施例1〜4で得られた膜の減磁曲線を図2に示す。最も保磁力が大きいのは実施例2である。実施例1は、Nd−Fe−B層の酸化により保磁力が発現しなかったと考えられる。実施例3、4は実施例1より保磁力が大きいが、実施例2と比較するとやや保磁力が低下する。これらの結果から、Nd−Fe−B/Fe多層膜は、Ti等の保護層が基板と多層膜の間または多層膜の表面(最上部)の少なくとも一方に必要で、望ましくは、Ti等の保護層が基板と多層膜の間かつ多層膜の表面(最上部)に必要であることがわかる。
実施例1および2で得られた膜のスプリングバック特性を調べるため、減磁界の印加と減磁界の除去を繰り返した場合のマイナーループを、図5、図6に示す。図5からは、実施例1で得られた膜の磁化のスプリングバックは認められなかった。一方、図6を見ると、実施例2で得られた膜は、減磁界を印加しても磁化がリコイルする磁化のスプリングバックが認められたことから、H層とS層が交換結合した交換スプリング磁石であることが確認できた。このことから、H層とS層とを交換結合させるためには、Ti等の保護層を形成することが有効であると考えられる。
【0018】
(実施例5)実施例2のTi/(Nd−Fe−B/Fe)5/Nd−Fe−B/Ti積層膜において、熱処理温度を673Kから1123K(400℃から850℃)の範囲で変化させた。図3に保磁力の熱処理温度依存性を示す。熱処理温度773K(500℃)未満では充分な保磁力が発現せず、1073K(800℃)を超えると基板の変形、急速な特性の劣化を招く。従って、熱処理温度は773Kから1073K(500℃から800℃)の範囲であることが必要で、更に、保磁力の大きい823Kから923K(550℃から650℃)の範囲が望ましい。
【0019】
(実施例6)
Crを含んだNd−Fe−B合金ターゲットを用い、その他の条件は実施例2と同様の方法でCr/(Nd−Fe−Cr−B/Fe)5/Nd−Fe−Cr−B/Cr積層膜を作製した(Nd−Fe−Cr−B膜単層の膜組成はNd13〜15FebalB7〜11Cr0.5〜1.5(at%)である)。得られた膜は(実施例1)と同様に熱処理した。減磁曲線を(実施例2)と比較して図4に示す。Nd−Fe−B層にCrを添加した場合の方が保磁力と角型性の良い薄膜磁石を得ることができる。この効果は、Nb、Al、Ga、Zn、Cuの場合でも同様であった。
【0020】
(実施例7)
ガラス基板上に、表1に示すM層を15nm成膜し、次に膜組成を表1に示す膜組成とした以外は実施例1と同様の条件で(Nd−Fe−B/S)5/Nd−Fe−Bを成膜し、さらに表1に示すM層を15nm成膜した。Nd−Fe−B層の厚さ、S層の厚さは、それぞれ15nm、50nmとした。得られた積層膜を570℃〜600℃で30分間、3×10−3Pa以下の真空中で熱処理した。得られた磁石の磁気特性を表1に示す。
【0021】
【表1】
Figure 0003598171
【0022】
(実施例8)
ガラス基板上に、表2に示すM層を15nm成膜し、次に膜組成を表1に示す膜組成とした以外は実施例1と同様の条件で(Nd−Fe−B/Fe)5/Nd−Fe−Bを成膜し、さらに表2に示すM層を15nm成膜した。Nd−Fe−B層の厚さ、S層の厚さは、それぞれ15nm、50nmとした。得られた積層膜を600℃〜620℃で30分間、3×10−3Pa以下の真空中で熱処理した。得られた磁石の磁気特性を表2に示す。
【0023】
【表2】
Figure 0003598171
【0024】
(実施例9)
ガラス基板上に、表3に示すM層を15nm成膜し、次に膜組成を表1に示す膜組成とした以外は実施例1と同様の条件で(Nd−Fe−B/Fe)5/Nd−Fe−Bを成膜し、さらに表3に示すM層を20nm成膜した。Nd−Fe−B層の厚さ、S層の厚さは、それぞれ15nmおよび50nmとした。得られた積層膜を570℃〜600℃で30分間、3×10−3Pa以下の真空中で熱処理した。得られた磁石の磁気特性を表3に示す。
【0025】
【表3】
Figure 0003598171
【0026】
(実施例10)
ガラス基板上に、表4に示すM層を15nm成膜し、次に膜組成を表1に示す膜組成とした以外は実施例1と同様の条件で(Nd−Fe−B/Fe)5/Nd−Fe−Bを成膜し、さらに表4に示すM層を15nm成膜した。Nd−Fe−B層の厚さ、S層の厚さは、それぞれ15nmおよび50nmとした。得られた積層膜を570℃〜600℃で30分間、3×10−3Pa以下の真空中で熱処理した。得られた磁石の磁気特性を表4に示す。
【0027】
【表4】
Figure 0003598171
【発明の効果】
本発明により、磁化が大きく、大きな最大エネルギー積を有するR−TM−B系交換スプリング磁石が得られる。
【図面の簡単な説明】
【図1】本発明交換スプリング磁石の断面模式図である。
【図2】M層と減磁曲線の関係を示す図である。
【図3】保磁力の熱処理温度依存性を表す図である。
【図4】H層にCr添加した場合の減磁曲線である。
【図5】磁化のスプリングバックを示さないマイナーループである。
【図6】磁化のスプリングバックを示すマイナーループである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an R-TM-B -based exchange spring magnet having a multilayer structure in which an R-TM-B-based hard magnetic layer and a soft magnetic layer applied to a small motor, a magnetic sensor, an actuator, and the like, and a method of manufacturing the same. .
[0002]
[Prior art]
Permanent magnet materials have been improved in performance in response to miniaturization and weight reduction of electronic devices. At present, an exchange spring magnet is an example of a material that may exceed the magnetic properties of the R-TM-B-based magnet having the highest magnet properties.
The exchange spring magnet is a permanent magnet composed of an ultrafine crystal structure composed of two phases, a hard magnetic phase and a soft magnetic phase, and is described in Coehorn et al. (J. dePhys. Vol. 49, p669 (1988)) and Kneller et al. (IEEE). Trans. Mag. Vol.27, p3588 (1991)), which combines a soft magnetic phase with a large magnetization and a hard magnetic phase with a large coercive force, and magnetically couples them by exchange interaction to achieve high energy. -To get the product.
The coercive force of the exchange spring magnet is generated by the magnetization of the hard magnetic phase fixing the magnetization of the soft magnetic phase and preventing the magnetization reversal of the soft magnetic phase. In order to obtain a sufficient coercive force, it is necessary that the soft magnetic phase and the hard magnetic phase are strongly exchange-coupled and that the size (particle size) of each phase is a nano-level size. The mainstream of the manufacturing method of this exchange spring magnet is a method of manufacturing an amorphous ribbon by a rapid quenching method and obtaining a polycrystal in which a soft magnetic phase and a hard magnetic phase are mixed by a heat treatment.
However, the method of manufacturing an exchange spring magnet that precipitates a soft magnetic phase and a hard magnetic phase by heat treatment of an amorphous ribbon has a problem that it is extremely difficult to control the structure.
[0003]
[Problems to be solved by the invention]
The present invention provides an R-TM-B-based exchange spring magnet having a large maximum energy product by having a large magnetization and a method of manufacturing the same.
[0004]
[Means for Solving the Problems]
In the exchange spring magnet, if there is a soft magnetic phase exchange-coupled with the hard magnetic phase, the magnetization reversal starts from the soft magnetic phase under the reverse magnetic field, which is a main factor of the decrease in coercive force. However, if the size of the soft magnetic phase is suppressed to the domain wall width or less, non-uniform magnetization reversal under a reverse magnetic field is suppressed. As a result, the coercive force is mainly governed by the magnetic anisotropy of the hard magnetic phase, and the decrease is suppressed. On the other hand, in order to obtain a higher magnetic flux density B from the soft magnetic phase, it is necessary to increase the volume ratio of the soft magnetic phase. To this end, the size of one hard magnetic phase may be reduced as much as possible. The size of the hard magnetic phase may be smaller than the domain wall width, but if it is too narrow, it becomes difficult to maintain the coercive force. Since the domain wall width is estimated by π (A / K) 1/2 (A: exchange stiffness constant, K: magnetic anisotropy energy), if the soft magnetic phase is Fe and the hard magnetic phase is Nd2Fe14B, each is 60 nm. And several nm.
R. Skomski and J.J. M. D. According to Coey (Phys. Rev. B48 (1993) p15812), in the exchange spring magnet, the volume ratio fh of the hard magnetic phase when the maximum energy-product (BH) max is maximized is approximately given by equation (1). At this time, the maximum energy product is given by equation (2).
[0005]
Figure 0003598171
[0006]
The magnetic anisotropy energy Kh of a Sm-Co or Nd-Fe-B magnet is about 10 7 J / m 3, while the μ0Ms 2/4 of a soft magnetic material such as Fe is about 10 6 J / m 3. Therefore, the volume ratio fh of the hard magnetic phase only needs to be about 10%. Therefore, (BH) max is mainly governed by the characteristics of the soft magnetic phase, and quantitatively has a form in which a slight correction is added to μ0Ms2 / 4. When Nd2Fe14B is a hard magnetic phase and Fe is a soft magnetic phase in the equation (2), (BH) max = 0.8 MJ / m3 (100 MGOe) is expected at fh = 10%.
In order to obtain the above characteristics, it is necessary that the hard magnetic phase and the soft magnetic phase have a sufficient magnetic coupling at the contact interface, and the thickness of each phase is controlled to the above-mentioned domain wall width. The present inventors have considered that the laminated film has such a structure that such control can be most easily realized. Further, the hard magnetic layer made of R-TM-B has poor corrosion resistance, and if the oxidation is not sufficiently suppressed, it is difficult to form R2TM14B, or the exchange coupling with the soft magnetic phase becomes insufficient and the coercive force is deteriorated. Since the possibility is high, the present inventors have conceived of preventing a decrease in coercive force by forming a protective film for suppressing oxidation due to thinning.
Therefore, the R-TM-B-based exchange spring magnet of the present invention has an S layer (a soft magnetic layer having a magnetization magnitude of 1.3 T or more) and an H layer (10 to 20 at% of R (R includes Y). At least one of the rare earth elements), 5 to 20 at% of B, the balance TM (TM is Fe or a part of Fe replaced with Co), and a hard magnetic layer containing unavoidable impurities) are alternately laminated. An M layer (M layer is Cr, Ti, W, Cu, Ta, FeMn, NiMn, NiO, FeO, CoO, Co-Pt, Fe) is formed on the outermost surface of the multilayer film in which the S layer and the H layer are stacked. -Pt).
[0007]
In the present invention, in order to exchange-couple the S layer and the H layer, it is preferable that the S layer and the H layer are alternately stacked to form a multilayer film. Further, M layer on the outermost surface of the multilayer film formed by laminating S layer and H layer (Cr, Ti, W, Cu , Ta, FeMn, NiMn, NiO, FeO, CoO, of Co-Pt, Fe-Pt 1 It is desirable to form a seed or a layer composed of two or more kinds and suppress the oxidation of the S layer and the H layer.
[0008]
In the present invention, H layer, 10 to 20 at% of R (R is at least one of rare earth elements including Y), 5 to 20 at% of B, and part of the remainder TM (TM is Fe or Fe Co And a hard magnetic layer containing unavoidable impurities. The R, particularly desirably containing Nd or Pr, for part of Nd or Pr may be replaced with Dy. It is desirable that the H layer composed of R-TM-B contains the R2TM14B phase and has a thickness of 5 to 100 nm.
R H layer is not expressed in sufficient coercivity less than 10at%, 20at% ultra the Fe component is reduced (BH) max and Br is reduced. B is lowered 5at% less than the coercive force, the 20at% Ultra (BH) max and Br is lowered. Further, Cr in H layer, Nb, Al, Ga, Zn , the addition of at least one element of Cu, it is possible to obtain a better R-TM-B based exchange-spring magnet having the coercive force and squareness Although it is possible, if added in excess of 4 at%, (BH) max and Br decrease, so the addition amount is 0.5 to 4 at% .
[0009]
Since the magnetization of the H layer made of R-TM-B is usually 1.3 T or more at room temperature, in order to obtain the advantage of the exchange spring magnet, the magnitude of the magnetization of the S layer should be 1.3 T or more at room temperature. In order to further exceed the characteristics of the bulk R-TM-B magnet, it is desirable to set it to 1.5T or more. Examples of soft magnetic materials having a magnetization magnitude of 1.3 T or more at room temperature include Fe: 2T, Fe-Co: 2.3 T, and Fe-N: 2.4 T. Considering the width of the domain wall, the S layer preferably has a thickness in the range of 5 nm to 500 nm.
In order to exchange-couple the H layer and the S layer, a multilayer film in which the S layer and the H layer are alternately laminated is formed, and the lamination order is S layer, H layer, S layer,. , H layer, S layer, H layer,... H layer, or S layer, H layer, S layer,. ,... May be laminated with the S layer.
[0010]
An M layer is formed on the outermost surface of the multilayer film in which the S layer and the H layer are alternately stacked, and the oxidation of the S layer and the H layer is controlled. The M layer may be formed on the entire outermost surface, or may be formed so as to sandwich a multilayer film or on one side. The effect of controlling oxidation can be obtained by forming the M layer between the substrate and the multilayer film and / or the S layer and the H layer on the multilayer film. oxidation of the S layer and the H layer can be sufficiently controlled by the arc formed, as a result, the exchange coupling of the H layer and S layer becomes strong, it is possible to obtain an excellent multi-layer film of the magnetic properties. Further, by forming an M layer on the substrate and laminating a multilayer film of the S layer and the H layer on the M layer, the effect of controlling the oxidation of the S layer or the H layer and preventing the reaction with the substrate can be obtained.
The thickness of the M layer is from 5 nm to 100 nm, preferably from 5 nm to 100 nm, so that even if an alloy or compound is formed at the interface by interdiffusion with the adjacent H layer or S layer, its function is not sufficiently impaired. 20 nm.
[0011]
Since NiO, FeO, and CoO are antiferromagnetic insulators, if they are used as the M layer, in addition to the effect of suppressing oxidation, the effect of improving coercive force can be obtained by suppressing magnetization reversal. Since FeMn and NiMn are also antiferromagnetic materials, if they are used as the M layer, the effect of improving the coercive force can be obtained. It is desirable to form between the layer and the S layer. Further, since Co-Pt and Fe-Pt are ferromagnetic metals having strong crystal magnetic anisotropy, if they are used as the M layer, an increase in magnetization can be expected in addition to an effect of preventing oxidation and an increase in coercive force. .
[0012]
In order to suppress oxidation during the formation of the H layer, the H layer is preferably formed at a substrate temperature of room temperature. In this case, the H layer composed of R-TM-B becomes amorphous without crystallization of R2TM14B. The coercive force does not appear. In this case, heat treatment is required to obtain R2TM14B polycrystal. The heat treatment temperature is so R2TM14B When less than 773 K (500 ℃) does not crystallize without coercive force expressed, 1073K (800 ℃) exceeds the coercive force rapidly decreases. Therefore, the heat treatment temperature is preferably from 773 K (500 ° C.) to 1073 K (800 ° C.). ° C) is desirable.
[0013]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
(Example 1)
The inside of the vacuum chamber of the bipolar magnetron sputtering apparatus is evacuated to 8 × 10 −4 Pa or less, and Ar gas is introduced to 8 × 10 −1 Pa, so that the Nd− has a film composition of the H layer according to claim 1. A high frequency voltage was applied to the Fe-B alloy target to form a film on a glass substrate at room temperature. The input power was 200 W, and after pre-sputtering was performed for 20 minutes with the shutter attached between the substrate and the target closed to remove oxides and the like on the target surface, the shutter was opened to remove the Nd-Fe-B film. A 20 nm film was formed. The film composition of the single layer of the Nd-Fe-B film is Nd13-15 FebalB7-11 (at%), and the film formation rate is 2.0 μm / hour. Subsequently, a high-frequency voltage was applied to the Fe target without breaking the vacuum, and a 20 nm-thick Fe film was formed under the same film forming conditions as those for Nd-Fe-B. The deposition rate is 0.3 μm / hour. By repeating this alternately, a multilayer film of Nd—Fe—B and Fe was produced (lamination cycle 5), and finally a Nd—Fe—B film was formed. The obtained Nd—Fe—B / Fe multilayer film was heat-treated at 873 K (600 ° C.) for 30 minutes in a vacuum of 3 × 10 −3 Pa or less.
[0014]
(Example 2)
A 20 nm Ti film is formed on a glass substrate, then an Nd—Fe—B / Fe multilayer film is formed as in Example 1, and a 20 nm Ti film is formed. (Nd-Fe-B / Fe) 5 / Nd-Fe-B / Ti laminated film. The film forming conditions for Ti are the same as those for Fe and Nd—Fe—B, and the film forming speed is 1.3 μm / hour. The obtained film was heat-treated under the same conditions as in (Example 1).
[0015]
(Example 3)
An Nd-Fe-B / Fe multilayer film similar to that of (Example 1) was formed on a glass substrate, and finally a Ti film was formed to a thickness of 20 nm. That is, a film having no Ti layer between the glass substrate and the Nd-Fe-B / Fe multilayer film was manufactured as compared with (Example 2). The obtained film was heat-treated under the same conditions as in (Example 1).
[0016]
(Example 4)
20 nm of Ti was formed on a glass substrate, and subsequently, an Nd-Fe-B / Fe multilayer film similar to that of (Example 1) was formed. That is, a film having no Ti layer on the Nd-Fe-B / Fe multilayer film was manufactured as compared with (Example 2). The obtained film was heat-treated under the same conditions as in (Example 1).
[0017]
FIG. 2 shows demagnetization curves of the films obtained in Examples 1 to 4. Example 2 has the largest coercive force. In Example 1, it is considered that the coercive force did not appear due to the oxidation of the Nd-Fe-B layer. Examples 3 and 4 have a larger coercive force than Example 1, but have a slightly lower coercive force compared to Example 2. From these results, the Nd—Fe—B / Fe multilayer film requires a protective layer such as Ti between the substrate and the multilayer film or at least one of the surfaces (uppermost portion) of the multilayer film. It can be seen that a protective layer is required between the substrate and the multilayer film and on the surface (uppermost portion) of the multilayer film.
FIGS. 5 and 6 show minor loops when the application of the demagnetizing field and the removal of the demagnetizing field are repeated in order to examine the springback characteristics of the films obtained in Examples 1 and 2. From FIG. 5, no springback of the magnetization of the film obtained in Example 1 was observed. On the other hand, referring to FIG. 6, the film obtained in Example 2 showed a magnetization springback in which the magnetization was recoiled even when a demagnetizing field was applied. It was confirmed that it was a spring magnet. From this fact, it is considered effective to form a protective layer of Ti or the like in order to exchange-couple the H layer and the S layer.
[0018]
(Example 5) In the Ti / (Nd-Fe-B / Fe) 5 / Nd-Fe-B / Ti laminated film of Example 2, the heat treatment temperature was changed in the range of 673K to 1123K (400 ° C to 850 ° C). I let it. FIG. 3 shows the dependence of the coercive force on the heat treatment temperature. If the heat treatment temperature is lower than 773 K (500 ° C.), a sufficient coercive force is not exhibited, and if it exceeds 1073 K (800 ° C.), deformation of the substrate and rapid deterioration of characteristics are caused. Therefore, the heat treatment temperature needs to be in the range of 773 K to 1073 K (500 ° C. to 800 ° C.), and more preferably in the range of 823 K to 923 K (550 ° C. to 650 ° C.) having a large coercive force.
[0019]
(Example 6)
A Cr / (Nd-Fe-Cr-B / Fe) 5 / Nd-Fe-Cr-B / Cr was used in the same manner as in Example 2 except that an Nd-Fe-B alloy target containing Cr was used. A laminated film was prepared (the film composition of the single layer of the Nd-Fe-Cr-B film was Nd13-15 FebalB7-11Cr 0.5-1.5 (at%)). The obtained film was heat-treated in the same manner as in (Example 1). FIG. 4 shows the demagnetization curve in comparison with (Example 2). When Cr is added to the Nd-Fe-B layer, a thin film magnet having better coercive force and squareness can be obtained. This effect was similar in the case of Nb, Al, Ga, Zn, and Cu.
[0020]
(Example 7)
On the glass substrate, an M layer shown in Table 1 was formed to a thickness of 15 nm, and then the film composition was changed to the film composition shown in Table 1 under the same conditions as in Example 1 (Nd-Fe-B / S) 5. / Nd-Fe-B, and an M layer shown in Table 1 was formed to a thickness of 15 nm. The thickness of the Nd-Fe-B layer and the thickness of the S layer were 15 nm and 50 nm, respectively. The obtained laminated film was heat-treated at 570 ° C. to 600 ° C. for 30 minutes in a vacuum of 3 × 10 −3 Pa or less. Table 1 shows the magnetic properties of the obtained magnet.
[0021]
[Table 1]
Figure 0003598171
[0022]
(Example 8)
On the glass substrate, an M layer shown in Table 2 was formed to a thickness of 15 nm, and then the film composition was changed to the film composition shown in Table 1 under the same conditions as in Example 1 except that (Nd-Fe-B / Fe) 5 / Nd-Fe-B, and an M layer shown in Table 2 having a thickness of 15 nm. The thickness of the Nd-Fe-B layer and the thickness of the S layer were 15 nm and 50 nm, respectively. The obtained laminated film was heat-treated at 600 to 620 ° C. for 30 minutes in a vacuum of 3 × 10 −3 Pa or less. Table 2 shows the magnetic properties of the obtained magnet.
[0023]
[Table 2]
Figure 0003598171
[0024]
(Example 9)
On a glass substrate, an M layer shown in Table 3 was formed to a thickness of 15 nm, and then the film composition was changed to the film composition shown in Table 1 under the same conditions as in Example 1 (Nd-Fe-B / Fe) 5. / Nd-Fe-B, and an M layer shown in Table 3 having a thickness of 20 nm. The thickness of the Nd-Fe-B layer and the thickness of the S layer were 15 nm and 50 nm, respectively. The obtained laminated film was heat-treated at 570 ° C. to 600 ° C. for 30 minutes in a vacuum of 3 × 10 −3 Pa or less. Table 3 shows the magnetic properties of the obtained magnet.
[0025]
[Table 3]
Figure 0003598171
[0026]
(Example 10)
On a glass substrate, an M layer shown in Table 4 was deposited to a thickness of 15 nm, and then the film composition was changed to the film composition shown in Table 1 under the same conditions as in Example 1 except that (Nd-Fe-B / Fe) 5 / Nd-Fe-B, and an M layer shown in Table 4 was formed to a thickness of 15 nm. The thickness of the Nd-Fe-B layer and the thickness of the S layer were 15 nm and 50 nm, respectively. The obtained laminated film was heat-treated at 570 ° C. to 600 ° C. for 30 minutes in a vacuum of 3 × 10 −3 Pa or less. Table 4 shows the magnetic properties of the obtained magnet.
[0027]
[Table 4]
Figure 0003598171
【The invention's effect】
According to the present invention, an R-TM-B exchange spring magnet having a large magnetization and a large maximum energy product can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an exchange spring magnet of the present invention.
FIG. 2 is a diagram showing a relationship between an M layer and a demagnetization curve.
FIG. 3 is a diagram showing the dependence of coercivity on heat treatment temperature.
FIG. 4 is a demagnetization curve when Cr is added to the H layer.
FIG. 5 is a minor loop showing no magnetization springback.
FIG. 6 is a minor loop showing magnetization springback.

Claims (3)

S層(磁化の大きさが1.3T以上である軟磁性層)およびH層(10〜20at%のR(RはYを含む希土類元素のうちの少なくとも1種)、5〜20at%のB、残部TM(TMはFeまたはFeの一部をCoで置換したもの)及び不可避的な不純物を含む硬磁性層)が交互に積層されており、前記S層およびH層を積層した多層膜の最外面にM層(M層はCr,Ti,W,Cu,Ta,FeMn,NiMn,NiO,FeO,CoO,Co−Pt,Fe−Ptのうちの1種または2種以上からなる層)を有することを特徴とするR−TM−B系交換スプリング磁石。S layer (soft layer magnitude of the magnetization is not less than 1.3 T) and H layers (10 to 20 at% of R (R is at least one of rare earth elements including Y), 5 to 20 at% of B , The remainder TM (TM is Fe or a part of Fe replaced by Co) and a hard magnetic layer containing unavoidable impurities are alternately laminated, and the multilayer film in which the S layer and the H layer are laminated is formed. An M layer (M layer is a layer made of one or more of Cr, Ti, W, Cu, Ta, FeMn, NiMn, NiO, FeO, CoO, Co-Pt, Fe-Pt) on the outermost surface R-TM-B exchange spring magnet characterized by having . 前記H層が0.5〜4at%のCr、Nb、Al、Ga、Zn、Cuのうちの少なくとも1種の元素を含有する請求項1に記載のR−TM−B系交換スプリング磁石。The R-TM-B exchange spring magnet according to claim 1 , wherein the H layer contains 0.5 to 4 at% of at least one element of Cr, Nb, Al, Ga, Zn, and Cu . 基板上に、室温の基板温度で、S層(磁化の大きさが1.3T以上である軟磁性層)と、H層(10〜20at%のR(RはYを含む希土類元素のうちの少なくとも1種)、5〜20at%のB、残部TM(TMはFeまたはFeの一部をCoで置換したもの)及び不可避的な不純物を含む硬磁性層)とをそれぞれ少なくとも1層成膜した後、773K(500℃)〜1073K(800℃)の温度で熱処理することを特徴とするR−TM−B系交換スプリング磁石の製造方法。An S layer (a soft magnetic layer having a magnetization of 1.3 T or more) and an H layer (10 to 20 at% of R (R is a rare earth element including Y) are formed on a substrate at a substrate temperature of room temperature. At least one), 5 to 20 at% of B, the balance TM (TM is Fe or a part of Fe replaced with Co), and at least one hard magnetic layer containing unavoidable impurities. Thereafter, a heat treatment is performed at a temperature of 773 K (500 ° C.) to 1073 K (800 ° C.).
JP6758496A 1995-12-27 1996-03-25 Exchange spring magnet and method of manufacturing the same Expired - Lifetime JP3598171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6758496A JP3598171B2 (en) 1995-12-27 1996-03-25 Exchange spring magnet and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34088295 1995-12-27
JP7-340882 1995-12-27
JP6758496A JP3598171B2 (en) 1995-12-27 1996-03-25 Exchange spring magnet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09237714A JPH09237714A (en) 1997-09-09
JP3598171B2 true JP3598171B2 (en) 2004-12-08

Family

ID=26408799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6758496A Expired - Lifetime JP3598171B2 (en) 1995-12-27 1996-03-25 Exchange spring magnet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3598171B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015206A1 (en) * 2000-08-02 2002-02-21 Sumitomo Special Metals Co., Ltd. Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
JP2002270418A (en) 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Rare earth thick film magnet manufacturing method and magnet motor using rare earth thick film magnet manufactured through the above method
JP4422953B2 (en) 2002-08-22 2010-03-03 株式会社日立製作所 Method for manufacturing permanent magnet
JP4654409B2 (en) * 2004-12-13 2011-03-23 独立行政法人物質・材料研究機構 Manufacturing method of nanocomposite magnet
WO2006109615A1 (en) * 2005-04-05 2006-10-19 Namiki Seimitsu Houseki Kabushiki Kaisha Stacked permanent magnet
WO2007119271A1 (en) * 2006-03-20 2007-10-25 Namiki Seimitsu Houseki Kabushiki Kaisha Thin-film rare earth magnet and method for manufacturing the same
ITTO20080462A1 (en) * 2008-06-13 2009-12-14 Torino Politecnico METHOD FOR THE PRODUCTION OF NANOSTRUCTURED MACROSCOPIC MAGNETS WITH HIGH DENSITY OF MAGNETIC ENERGY AND RELATED MAGNETS
JP5327433B2 (en) * 2008-08-22 2013-10-30 ミネベア株式会社 Method for manufacturing rotor magnet of micro rotating electric machine
JP5390996B2 (en) * 2009-08-28 2014-01-15 株式会社豊田中央研究所 Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet
FR3025357A1 (en) * 2014-09-01 2016-03-04 Vivier Harry J P PERMANENT MAGNETS STRUCTURES IN STRATES
JPWO2022045260A1 (en) * 2020-08-27 2022-03-03

Also Published As

Publication number Publication date
JPH09237714A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
Shindo et al. Magnetic properties of exchange-coupled α-Fe/Nd–Fe–B multilayer thin-film magnets
US5587026A (en) Ferromagnetic film
JPH09320846A (en) Magnetic device
JP3598171B2 (en) Exchange spring magnet and method of manufacturing the same
KR100734062B1 (en) Thin permanent-magnet film and process for producing the same
JP3318204B2 (en) Perpendicular magnetic film, method of manufacturing the same, and perpendicular magnetic recording medium
JP3759191B2 (en) Thin film magnetic element
EP1329912B1 (en) Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JP3392444B2 (en) Magnetic artificial lattice film
JP3632869B2 (en) Replacement spring magnet
JP3305790B2 (en) Manufacturing method of thin film permanent magnet
JPWO2006109615A1 (en) Multilayer permanent magnet
JPH09162034A (en) Film magnet and its formation method
JPH0744108B2 (en) Soft magnetic thin film
JPH07272929A (en) Rare earth element-fe-b-thin film permanent magnet
JP2696989B2 (en) Multilayer magnetic film
JPH11214219A (en) Thin film magnet and its manufacture
JP5390996B2 (en) Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet
JP3287481B2 (en) Magnetic core made of ultra-microcrystalline alloy excellent in direct current superposition characteristics, method of manufacturing the same, and choke coil and transformer using the same
JP2016207680A (en) Thin film magnet
JPH04219912A (en) Formation of rare-earth thin film magnet
JP2006173210A (en) Nano composite magnet and its manufacturing method
JPH09219313A (en) R-tm-b hard magnetic thin film and its manufacture
JPH0567322A (en) Perpendicular magnetization film and magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040430

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

EXPY Cancellation because of completion of term