JPS6148151A - Optical recording medium - Google Patents
Optical recording mediumInfo
- Publication number
- JPS6148151A JPS6148151A JP16951784A JP16951784A JPS6148151A JP S6148151 A JPS6148151 A JP S6148151A JP 16951784 A JP16951784 A JP 16951784A JP 16951784 A JP16951784 A JP 16951784A JP S6148151 A JPS6148151 A JP S6148151A
- Authority
- JP
- Japan
- Prior art keywords
- nitride film
- optical recording
- sputtering
- nitride
- recording layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B7/2578—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/254—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B2007/25705—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
- G11B2007/25706—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B2007/25705—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
- G11B2007/25713—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、光ビームにより記録・再生を行うことが可晩
な光学的記録媒体に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical recording medium on which recording and reproduction can be performed using a light beam.
従来より、光ディスクに用いられる光学的記録媒体とし
ては、希土類−遷移金属の合金#咬。Conventionally, rare earth-transition metal alloys have been used as optical recording media for optical discs.
非晶質から結晶質への相転移を利用したカルコゲン化合
物等の環元性酸化物薄膜。Thin films of cyclic oxides such as chalcogen compounds that utilize phase transition from amorphous to crystalline.
ヒートモード記録媒体、サーモプラスチック記録媒体等
が知られている0例えば、希土類−遷移金属の合金薄膜
で形成される光磁気記録媒体としては、MnB i 、
MnCuB +などの多結晶薄膜、GdCo 、GdF
e 、TbFe 。Heat mode recording media, thermoplastic recording media, etc. are known. For example, magneto-optical recording media formed of rare earth-transition metal alloy thin films include MnB i ,
Polycrystalline thin films such as MnCuB+, GdCo, GdF
e, TbFe.
DyFe 、GdTbFa 、TbDyFeなどの非晶
質@IIQ、Gd1Gなどの単結晶S膜などが知られて
いる。Amorphous @IIQ films such as DyFe, GdTbFa, and TbDyFe, and single crystal S films such as Gd1G are known.
これらの薄膜のうち、大面積のS膜な室温近傍の温度で
製作する際の成膜性、信号を小さな光熱エネルギーで書
き込むための書き込み効率、および書き込まれた信号を
S/N比よく読み出すための読み出し効率等を勘案して
、最近では前記非晶質M膜が光熱磁気記録媒体として優
れていると考えられている。GdTbFeはカー回転角
も大きく、150℃前後のキューリ一点を持つので光熱
磁気記録媒体として適している。更に発明者等はカー回
転角を向上させる目的で研究した結果、GdTbFeC
oがカー回転角が充分に大きく、S/N比の良り読み出
しが可俺な光磁気記録媒体であることを見い出した。Among these thin films, large-area S films are suitable for film formation when fabricated at temperatures near room temperature, writing efficiency for writing signals with small photothermal energy, and readout of written signals with a good S/N ratio. Recently, the amorphous M film is considered to be excellent as a photothermal magnetic recording medium, taking into consideration the readout efficiency and the like. GdTbFe has a large Kerr rotation angle and a Curie point of around 150° C., so it is suitable as a photothermal magnetic recording medium. Furthermore, as a result of research aimed at improving the Kerr rotation angle, the inventors found that GdTbFeC
It has been found that O is a magneto-optical recording medium that has a sufficiently large Kerr rotation angle, has a good S/N ratio, and is easy to read.
しかしながら、一般に前記GdTbFe等の光磁気記録
媒体をはじめとする磁気記録媒体に用いられる非晶質磁
性体は、耐食性が悪いという欠6点i持っている。すな
わち、大気、−水法気に触れると磁気特性が低下し、最
終的には完全に酸化されて透明イビするに至る。また、
この問題点は、光磁気記録媒体のみならず、前述した光
学的記録媒体の共通のIa題である。However, amorphous magnetic materials generally used in magnetic recording media such as magneto-optical recording media such as GdTbFe have a drawback of poor corrosion resistance. That is, when it comes into contact with air or water, its magnetic properties deteriorate, and eventually it becomes completely oxidized and becomes transparent. Also,
This problem is common to not only magneto-optical recording media but also the aforementioned optical recording media.
このような欠点を除くために、従来から、記録層の上に
1例えば透明物質の保護カバー、例えば5i02.Si
Oの保S層を設けたり、さらに不活性ガスによって記録
層を封じ込めたエアーサンドインチ構造や貼り合せ構造
のディスク状記録媒体が提案されているが、実用上十分
な耐食性が得られなかった。In order to eliminate this drawback, conventionally a protective cover made of, for example, a transparent material, such as 5i02. Si
Although disc-shaped recording media with an air sandwich structure or a laminated structure in which an S-retaining layer of O is provided or the recording layer is further sealed with an inert gas have been proposed, practically sufficient corrosion resistance has not been obtained.
本発明の目的は、記録媒体としての特性を損なう事なく
、耐食性を向上−せしめた、光学的記録媒体を提供する
事にある。An object of the present invention is to provide an optical recording medium that has improved corrosion resistance without impairing its characteristics as a recording medium.
本発明の上記目的は、基板上に光学的記録層を設けて成
る光学的記録媒体において、#光学的記録層の片側又は
両側に、タングステン、ジルコニララム、チタン、ニオ
ブ、バナジウム及びタンタルの内から選択される物質の
窒化膜、を形成する事によって達成される。The above-mentioned object of the present invention is to provide an optical recording medium comprising an optical recording layer on a substrate, in which a material selected from tungsten, zirconialum, titanium, niobium, vanadium and tantalum is used on one or both sides of the optical recording layer. This is achieved by forming a nitride film of the material to be used.
tiii述の如き窒化膜は蒸着法或いはスパーリング′
法などによって形成される。特に窒化タングステア19
.窒化ジルコニウム膜、窒化バナジウム膜、窒化タンタ
ル膜の形成にはRFスパッタ或いは反応性RFスパツタ
などが適しており、窒化チタン膜、窒化ニオブ膜の形成
には反応性A着或いは反応性fjFスパッタなどが適し
ている。The nitride film as described in iii.
Formed by law etc. Especially nitride tungsteer 19
.. RF sputtering or reactive RF sputtering is suitable for forming zirconium nitride films, vanadium nitride films, and tantalum nitride films, and reactive A deposition or reactive fjF sputtering is suitable for forming titanium nitride films and niobium nitride films. Are suitable.
本発明において、光学的記録層に引き続いて窒化膜を形
成する場合には、記録層をスパッタリングなどの方法で
形成した後、真空を破ることなくI!11統して窒化膜
を形成するのが望ましい。In the present invention, when forming a nitride film subsequent to the optical recording layer, after forming the recording layer by a method such as sputtering, the I! It is preferable to form the nitride film in a uniform manner.
また、 、1.li版板上窒化膜を形成し、その上に光
学 ゛的記録層を形成して、更に窒化膜を
形成する場合にも、真空を破らずに同一槽内で連続的に
成膜したほうが良い。Also, ,1. Even when forming a nitride film on a Li plate, forming an optical recording layer on top of it, and then forming a nitride film, it is better to form the films continuously in the same tank without breaking the vacuum. .
以下実施例をあげて1本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.
〔実施例1〕
RFスパッタ装置において、1インチ角の白板ガラスを
基板とし、100mmφの鉄(F e)片の上”に5m
m角のガドリニウム(Gd)およびテルビウム(Tb)
の小片を均一にならべたものを複合ターゲットとしてス
パッタリングを行ない、GdTbFe3元系非晶質磁性
膜からなる厚さ1000人の光学的記録層を形成した。[Example 1] In an RF sputtering device, a 1-inch square white glass plate was used as a substrate, and a 5 m long plate was placed on a 100 mmφ iron (Fe) piece.
m square gadolinium (Gd) and terbium (Tb)
Sputtering was performed using a uniform array of small pieces of as a composite target to form an optical recording layer with a thickness of 1000 nm consisting of a GdTbFe ternary amorphous magnetic film.
引き続いて真空槽内を4XIO−4F勾程度排気後、ア
ルゴジ(Ar)ガスを4XIO−IP−a゛導入、同一
槽内にある第2゛のターゲットとして窒化タングステン
を用いて、スパータリングにより前記記Q層上に厚さ2
000人の窒化タングステン181te威膜した。Subsequently, the inside of the vacuum chamber was evacuated to the level of 4XIO-4F, and Ar gas was introduced into 4XIO-IP-a. Using tungsten nitride as a second target in the same chamber, the above-mentioned information was removed by spartering. Thickness 2 on top of Q layer
000 tungsten nitride 181te films were used.
〔実施例2〕
nkスパッタ装置において、1インチ角の白板ガラスを
基板とし、実施例1のものと回じFe、Gd、Tbの複
合ターゲットを用いてスパッタリングにより厚さtoo
o人の記録層を形成した。引き続いて真空槽内を4 X
I O−4Pa程度排気した後、窒素ガス(N2)を
4×1O−IPaまで導入して、第2のターゲットとし
て窒化タングステンを用い、スパー2タリングによって
前記記録層上、に厚さ2000人の窒化タングステン膜
を成膜した。[Example 2] In an NK sputtering apparatus, a 1-inch square white plate glass was used as a substrate, and a composite target of Fe, Gd, and Tb was sputtered to a thickness of
o recording layers were formed. Subsequently, inside the vacuum chamber 4X
After evacuating to about I O-4 Pa, nitrogen gas (N2) was introduced to a level of 4×1 O-IPa, and using tungsten nitride as a second target, a layer with a thickness of 2000 μm was deposited on the recording layer by spartering. A tungsten nitride film was formed.
〔実施例3〕
RFスパッタ装置において、真空槽中を4×1(14P
a程度排気後、アルゴン(Ar)ガスを4X10−IP
a程度まで導入した。そして、ポリメチルメタアクリレ
ート(P M M、 A )を基板として第1のターゲ
ットとして窒化タングステンを用い、スパッタリングに
より基板上に厚さ200人の窒化タングステン膜を形成
した。[Example 3] In an RF sputtering device, 4×1 (14P
After evacuation to a degree, argon (Ar) gas is 4X10-IP
It was introduced to about a level. Then, using polymethyl methacrylate (PMM,A) as a substrate and tungsten nitride as a first target, a tungsten nitride film with a thickness of 200 mm was formed on the substrate by sputtering.
その上に引き続いて実施例1のものと同じFe。Continuing on top of that is the same Fe as in Example 1.
G cj +−T bの複合ターゲットを第2のターゲ
ットとして、スパッ、タリングにより厚さ1000人の
記録層を形成した。更に槽内を4X、1O−4Pa程度
排′A?&、Arガスを4XlO−IPa導入して、第
1のターゲットを用いて前記亭録層上に厚さ2000人
の窒化タングステン11りを形成した。Using a composite target of G cj +-T b as a second target, a recording layer with a thickness of 1000 layers was formed by sputtering and talling. Furthermore, exhaust the inside of the tank 4X, about 1O-4Pa? & Ar gas of 4XlO-IPa was introduced, and a tungsten nitride layer 11 with a thickness of 2000 nm was formed on the recording layer using a first target.
〔実施例4〕
RFスパッタ装置において、真空槽中を4×10−4
P a程度排気後、窒2(N2)ガスを4XIO−IP
a程度まで導入した。そして、ポリメチルメタアクリレ
−) (PMMA)を基板として第1のターゲツ°トと
して窒化タングステンを用い、スパッタリングにより基
板上に厚さ200人の窒化タングステン膜を形成した。[Example 4] In an RF sputtering device, 4 x 10-4
After exhausting to about P a, nitrogen 2 (N2) gas is 4XIO-IP
It was introduced to about a level. Then, using polymethyl methacrylate (PMMA) as a substrate and using tungsten nitride as a first target, a tungsten nitride film with a thickness of 200 nm was formed on the substrate by sputtering.
その上に引き続いて実施例1のものと同じFe。Continuing on top of that is the same Fe as in Example 1.
Gd 、Tbの複合ターゲットを第2のターゲットとし
て、スパッタリングにより厚さtoo。Using a composite target of Gd and Tb as a second target, a thickness of too thick is formed by sputtering.
人の記録層を形成した。更に槽内を4×−10−4Pa
程度排気後、N2ガスを4XlO−IPa導入して、第
1のターゲットを用いて前記記録層上に厚さ2000人
の窒化タングステン膜を形成した。Formed a human record layer. Furthermore, the inside of the tank is 4×-10-4Pa.
After evacuation, 4XlO-IPa of N2 gas was introduced, and a tungsten nitride film with a thickness of 2000 nm was formed on the recording layer using a first target.
前述の実施例1〜4に従って作成した光学的記録媒体を
70℃、85%RHの恒温恒湿槽に入れて、耐腐食に1
試験を行なった結果を第1図及び第2図に示す、第1図
、第2図において。The optical recording media prepared according to Examples 1 to 4 described above were placed in a constant temperature and humidity chamber at 70° C. and 85% RH to provide corrosion resistance of 1.
The results of the tests are shown in Figures 1 and 2.
横軸は試験時間〔単位は時間(H)〕を示し。The horizontal axis shows the test time [unit: hours (H)].
縦軸は保磁力Haの変化を保磁力の初期値Hcoに対す
る比で示した。ここで保磁力の低下が激しい程、腐食が
進行したことを示す。The vertical axis represents the change in the coercive force Ha as a ratio of the coercive force to the initial value Hco. Here, the more the coercive force decreases, the more corrosion progresses.
第1図の夏は実施例1の試験−結果を示し。Summer in FIG. 1 shows the test results of Example 1.
2.3は比較例の結果を示す、3の比較例はガラス基板
上に実施例1と同様のGdTbFe3元系非晶質磁性膜
から成る厚さ1000人の光学的記録層を形成し、保護
膜を設けないもの。2.3 shows the results of a comparative example. In the comparative example 3, an optical recording layer with a thickness of 1000 nm consisting of the same GdTbFe ternary amorphous magnetic film as in Example 1 was formed on a glass substrate, and Those without a membrane.
2の比較例゛は3の比較例の58層の上に保:jIII
5IとしてSiOを3000人蒸着したものである。Comparative Example 2 was kept on top of the 58 layer of Comparative Example 3: jIII
3000 people deposited SiO as 5I.
と
このように窒化タングステン、保護4層として設けたも
のは、従来の光学的記録媒体に比較して耐腐食性が格役
に優れていることがわかる。実施例2の媒体に同様の試
験を行なったところ、実施例1とほとんど同じ結果が得
られた。It can be seen that the four protective layers made of tungsten nitride have much better corrosion resistance than conventional optical recording media. When the medium of Example 2 was subjected to a similar test, almost the same results as in Example 1 were obtained.
第2図の4は、実施例3の試験結果を示し、5.6に比
較例の結果を示す、6の比較例は。4 in FIG. 2 shows the test results of Example 3, 5.6 shows the results of the comparative example, and 6 shows the test results.
PMMA基板上に実施例3と同様のGdTbFe3元系
非晶質磁性膜から成る厚さioo。The same GdTbFe ternary amorphous magnetic film as in Example 3 was formed on a PMMA substrate with a thickness of ioo.
を200人設け、この上にGdTbFeから成る厚さ1
000人の記録層を形成して、更に記録層の上にSiO
から成る保:1IIllを3000人累着したものであ
る。第2図においても、窒化タングステンの保護膜が、
耐腐食性の向上に右動であることがわかる。゛実施例4
の媒体に同様の試験を行なったところ、実施例3とほと
んど同じ結果が得られた。200 people were installed, and on top of this, a layer of 1 thick made of GdTbFe was
000 recording layer is formed, and SiO is further formed on the recording layer.
This is a total of 3,000 people consisting of 1 IIll. Also in Figure 2, the tungsten nitride protective film is
It can be seen that there is a right-handed movement in improving corrosion resistance.゛Example 4
When similar tests were conducted on the medium of Example 3, almost the same results as in Example 3 were obtained.
〔実施例5〜23〕 実施例1〜4の窒化タングステンに代えて。[Examples 5 to 23] In place of tungsten nitride in Examples 1-4.
各々窒化ジルコニウム、窒化チタン、窒化ニオブ、窒化
バナジウム、窒化タンタルから成る保護膜を設けた光学
的記録媒体を作成した6表1にそれらの構成をまとめて
示す、光学的記録層としては、厚さt ooo人のGd
TbFe3元系非晶質磁性膜を用い、窒化膜は表1に示
すガスを4XIO−IPa導入して、RFスパッタリン
グによって形成した。Optical recording media with protective films each made of zirconium nitride, titanium nitride, niobium nitride, vanadium nitride, and tantalum nitride were created.Table 1 summarizes their composition. toooo people's Gd
A TbFe ternary amorphous magnetic film was used, and the nitride film was formed by RF sputtering by introducing 4XIO-IPa of the gas shown in Table 1.
上記実施例5〜23に従って作成した光学的記録媒体を
70℃、85%RHの恒温恒湿槽に入れて、耐腐食性試
験を行なった。結果は、第1図及びi2図の保護Vとし
て窒化タングステンを用いた場合と全く同様であった。The optical recording media prepared according to Examples 5 to 23 above were placed in a constant temperature and humidity chamber at 70° C. and 85% RH, and a corrosion resistance test was conducted. The results were exactly the same as when tungsten nitride was used as the protection V in FIGS. 1 and i2.
即ち、保護119として窒化ジルコニウム、窒化チタン
、窒化ニオブ、窒化バナジウム、窒化タンタルを用いた
場合にも、光学的記録媒体の耐腐食性を格段に向上させ
る73が出来る。That is, even when zirconium nitride, titanium nitride, niobium nitride, vanadium nitride, or tantalum nitride is used as the protection 119, it is possible to significantly improve the corrosion resistance of the optical recording medium 73.
本発明は、上記実施例に限らず種々の応用が可能である
0例えば、光学的記i層は光磁気記録の磁性膜のみなら
ず、従来技術のaEJIの部分で述べたような、いかな
る光学的記録材料を用いてもかまわない、また1本発明
に基づいて構成された光学的記録媒体を1周知のエアー
サンドイッチ構造にしたり、或いはガラス板などと貼り
合せた構造とする事により、更に耐腐食性を向上させる
事が出来る。The present invention is not limited to the above-mentioned embodiments and can be applied in various ways. For example, the optical recording i-layer is not limited to a magnetic film for magneto-optical recording, but can be applied to any optical Furthermore, the optical recording medium constructed according to the present invention can be made into a well-known air sandwich structure, or a structure in which it is bonded to a glass plate, etc., to make it even more durable. Corrosivity can be improved.
以上説明したように1本発明は光学的記録媒体において
、記a層の片側又は両側に、タングステン、ジルコニウ
ム、チタン、ニオブ、バナジウム及びタンタルの内から
選択される物質の窒化膜を形成する事によって、耐腐食
性を格段に向上せしめる効果を有するものである。As explained above, the present invention provides an optical recording medium by forming a nitride film of a material selected from tungsten, zirconium, titanium, niobium, vanadium, and tantalum on one or both sides of the recording layer. , which has the effect of significantly improving corrosion resistance.
第1図及び第2図は、夫々本発明に基づく光学的記録媒
体の耐腐食性試験の結果を示す図である。
割り噌時間FIG. 1 and FIG. 2 are diagrams showing the results of a corrosion resistance test of an optical recording medium based on the present invention, respectively. Wariso time
Claims (1)
グステン、ジルコニウム、チタン、ニオブ、バナジウム
及びタンタルの内から選択される物質の窒化膜を形成し
たことを特徴とする光学的記録媒体。[Claims] An optical recording medium comprising an optical recording layer provided on a substrate, in which a material selected from tungsten, zirconium, titanium, niobium, vanadium and tantalum is provided on one or both sides of the recording layer. An optical recording medium comprising a nitride film formed thereon.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16951784A JPS6148151A (en) | 1984-08-13 | 1984-08-13 | Optical recording medium |
US07/233,921 US4939023A (en) | 1984-08-13 | 1988-08-18 | Opto-magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16951784A JPS6148151A (en) | 1984-08-13 | 1984-08-13 | Optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6148151A true JPS6148151A (en) | 1986-03-08 |
Family
ID=15887971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16951784A Pending JPS6148151A (en) | 1984-08-13 | 1984-08-13 | Optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6148151A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63113835A (en) * | 1986-10-29 | 1988-05-18 | Kyocera Corp | Magneto-optical recording element |
US5192626A (en) * | 1988-12-14 | 1993-03-09 | Teijin Limited | Optical recording medium |
-
1984
- 1984-08-13 JP JP16951784A patent/JPS6148151A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63113835A (en) * | 1986-10-29 | 1988-05-18 | Kyocera Corp | Magneto-optical recording element |
US5192626A (en) * | 1988-12-14 | 1993-03-09 | Teijin Limited | Optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4920007A (en) | Magneto-optical recording medium with 9:1-1:9 aluminum or silicon oxide and aluminum or silicon nitride mixture | |
JPH0481817B2 (en) | ||
JPS6129437A (en) | Photomagnetic recording medium | |
US4777068A (en) | Optical recording medium | |
JPH0352142B2 (en) | ||
JPS6148151A (en) | Optical recording medium | |
JPS60219655A (en) | Optical recording medium | |
JPH0555941B2 (en) | ||
JPH02265052A (en) | Production of optical recording medium | |
US4939023A (en) | Opto-magnetic recording medium | |
JPS60246041A (en) | Photo thermomagnetic recording medium | |
JPH04219650A (en) | Optical recording medium | |
JPS6157053A (en) | Optical recording medium | |
JPS6145441A (en) | Optical recording medium | |
JPS62121943A (en) | Optical recording medium | |
JPS62117157A (en) | Optical recording medium | |
JPS6192459A (en) | Optical recording medium | |
JPS62222609A (en) | Photomagnetic recording medium | |
JPH0410132B2 (en) | ||
JPS6252743A (en) | Optical recording medium | |
JPS62119756A (en) | Optical recording medium | |
JPS59168953A (en) | Opto-thermo-magnetic recording medium | |
JPS62209750A (en) | Photomagnetic recording medium | |
JPS60197965A (en) | Magnetic recording medium | |
JPS62119757A (en) | Optical recording medium |