JPS62117157A - Optical recording medium - Google Patents
Optical recording mediumInfo
- Publication number
- JPS62117157A JPS62117157A JP25677485A JP25677485A JPS62117157A JP S62117157 A JPS62117157 A JP S62117157A JP 25677485 A JP25677485 A JP 25677485A JP 25677485 A JP25677485 A JP 25677485A JP S62117157 A JPS62117157 A JP S62117157A
- Authority
- JP
- Japan
- Prior art keywords
- optical recording
- recording layer
- sputtering
- film
- nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
- C08G73/1071—Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1057—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
- C08G73/1064—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/254—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B7/2578—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B2007/25705—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
- G11B2007/25706—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B2007/25705—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
- G11B2007/25713—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光ビームにより記録会再生を行うことが可能
な光学的記録媒体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical recording medium that can perform recording reproduction using a light beam.
従来より、光ディスクに用いられる光学的記録媒体とし
ては、希土類−遷移金属の合金薄膜非晶質から結晶質へ
の相転移を利用したカルコゲン化合物等の還元性酸化物
薄膜、ヒートモード記録媒体、サーモプラスチック記録
媒体等が知られている0例えば、希土類−遷移金属の合
金薄膜で形成される光学的記録層としてはMnB1゜M
nCuB1.などの多結晶薄膜、GdCo 。Conventionally, optical recording media used in optical disks include rare earth-transition metal alloy thin films, reducing oxide thin films such as chalcogen compounds that utilize phase transition from amorphous to crystalline, heat mode recording media, and thermostats. For example, as an optical recording layer formed of a rare earth-transition metal alloy thin film, MnB1°M is known as a plastic recording medium.
nCuB1. Polycrystalline thin films such as GdCo.
GdFe 、TbFe 、DyFe 、GdTbFe
。GdFe, TbFe, DyFe, GdTbFe
.
TbDyFe 、などの非晶質薄膜、GdIGなどの単
結晶薄膜などが知られている。Amorphous thin films such as TbDyFe and single crystal thin films such as GdIG are known.
これらの薄膜のうち、大面積の薄膜を室温近傍の温度で
製作する際の成膜性、信号を小さな光熱エネルギーで書
き込むための書き込み効率および書き込まれた信号をS
/N比よく読み出すための読み出し効率等を勘案して、
最近では前記非結品質薄膜が光熱磁気記録媒体として優
れていると考えられている。GdTbFeはカー回転角
も大きく、150″C前後のキューリ一点を持つので光
熱磁気記録媒体として適している。更に発明者等はカー
回転角を向上させる目的で研究した結果、GdTbFe
Coがカー回転角が充分に大きく、S/N比の良い読み
出しが可能な光学的記録層であることを見い出した。Among these thin films, the film forming efficiency when manufacturing a large-area thin film at a temperature near room temperature, the writing efficiency for writing signals with small photothermal energy, and the write signal S
Considering readout efficiency etc. to read out with good /N ratio,
Recently, the non-synthetic thin film is considered to be excellent as a photothermal magnetic recording medium. GdTbFe has a large Kerr rotation angle and has a single Curie point of around 150"C, making it suitable as a photothermal magnetic recording medium. Furthermore, as a result of research aimed at improving the Kerr rotation angle, the inventors found that GdTbFe
It has been found that Co has a sufficiently large Kerr rotation angle and is an optical recording layer capable of readout with a good S/N ratio.
しかしながら、一般に前記GdTbFe等の光学的記録
層をはじめとする磁気記録媒体に用いられる非晶質磁性
体は、耐食性が悪いという欠点を持っている。すなわち
、大気、水蒸気に触れると酸化されて透明化するに至る
。またこの問題点は、光学的記録層のみならず、前記し
た光学的記録媒体の共通の課題である。However, amorphous magnetic materials used in magnetic recording media, including optical recording layers such as GdTbFe, generally have a drawback of poor corrosion resistance. That is, when it comes into contact with the atmosphere or water vapor, it becomes oxidized and becomes transparent. Further, this problem is a common problem not only in the optical recording layer but also in the optical recording media described above.
このような欠点を除くために、従来から、記録層の上に
、例えば透明物質の保護カバー、例えば5i02.Si
Oの保護層を設けたり、さらに不活性ガスによって記録
層を封じ込めたエアーサンドイッチ構造や貼り合わせ構
造のディスク状記録媒体が提案されているが、実用上充
分な耐食性が得られなかった。In order to eliminate this drawback, conventionally a protective cover made of, for example, a transparent material, such as 5i02. Si
Although disc-shaped recording media with an air sandwich structure or a laminated structure in which a protective layer of O is provided or the recording layer is further sealed with an inert gas have been proposed, sufficient corrosion resistance for practical use has not been obtained.
本発明は上記問題点に鑑み成されたち、のであり、その
目的は、記録媒体としての特性を損うことなく、耐食性
を向上せしめた光学的記録媒体を提供することにある。The present invention was made in view of the above problems, and its object is to provide an optical recording medium with improved corrosion resistance without impairing the characteristics of the recording medium.
本発明の上記目的は、基板上に光学的記録層を有して成
る光学的記録媒体において、該光学的記録層の片側又は
両側にマグネシウム、ハフニウムの内の少くとも1つの
物質の窒化物からなる膜を形成した光学的記録媒体によ
って達成される。The above object of the present invention is to provide an optical recording medium having an optical recording layer on a substrate, wherein one or both sides of the optical recording layer are made of nitride of at least one of magnesium and hafnium. This is achieved by using an optical recording medium with a film formed thereon.
すなわち、本発明は光学的記録層の酸化を防止する効果
が、5i02.SiOより大きい、窒化マグネシウム、
窒化ハフニウムを使用した光学的記録媒体を提供する。That is, the present invention has the effect of preventing oxidation of the optical recording layer in accordance with 5i02. Magnesium nitride, larger than SiO,
An optical recording medium using hafnium nitride is provided.
前記の如き窒化物膜はいずれも反応性スパッタによって
形成される。基板にガラスを用いる場合は、光学的案内
溝形成の目的で前記の醸化物膜とガラス板の間に、紫外
線硬化型樹脂(2P)層などを設ける。All of the above nitride films are formed by reactive sputtering. When glass is used for the substrate, an ultraviolet curable resin (2P) layer or the like is provided between the aforesaid fermentation film and the glass plate for the purpose of forming optical guide grooves.
本発明において、光学的記録層に引き続いて窒化物膜を
形成する場合には、記録層を蒸着、スパッタリングなど
の方法で形成した後、真空を破ることなく連続して窒化
物膜を形成するのが望ましい、また基板上に窒化物膜を
形成し、その上に光学的記録層を形成して更に窒化物膜
を形成する場合にも真空を破らずに同一槽内で連続的に
成膜したほうがよい。In the present invention, when forming a nitride film following the optical recording layer, the nitride film is formed continuously without breaking the vacuum after forming the recording layer by a method such as vapor deposition or sputtering. Also, when forming a nitride film on a substrate, forming an optical recording layer on top of it, and then forming a nitride film, the films can be formed continuously in the same tank without breaking the vacuum. It's better.
以下、実施例を挙げて本発明を更に具体的説明するが。 Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1
RFスパッタ装置において、1インチ角の白板ガラスを
基板とし、100 amφの鉄コバルト合金(Fe7
C03)板の上に5+ui角のガドリニウムテルビウム
合金(Gd5Tb s)の小片を均一にならべたものを
複合ターゲットとしてスパッタリングを行ない、 Gd
TbFeCo 4元系非晶質磁性膜からなる厚さ100
0Aの光学的記録層を形成した。引き続いて真空槽内を
4 X 104Pa程度排気した後、窒素ガス(N2)
を4 X 10’ Paまで導入して、第2のターゲッ
トとして窒化マグネシウムを用い、スパッタリングによ
って前記記録層上に厚さ2000Aの窒化マグネシウム
膜を成膜した。Example 1 In an RF sputtering device, a 1-inch square white plate glass was used as a substrate, and a 100 amφ iron-cobalt alloy (Fe7
Gd
100mm thick TbFeCo quaternary amorphous magnetic film
A 0A optical recording layer was formed. Subsequently, after evacuating the vacuum chamber to approximately 4 x 104 Pa, nitrogen gas (N2) was added.
was introduced up to 4×10' Pa, and using magnesium nitride as a second target, a magnesium nitride film with a thickness of 2000 Å was formed on the recording layer by sputtering.
実施例2
RFスパッタ装置において、真空槽中を4×10’Pa
程度排気後、窒素(N2)ガスを4 X 10−’ P
a程度まで導入した。そして、1インチ角のガラス板上
に紫外線硬化型樹脂(2P)エポキシアクリレート 層
(10〜100 Q)を形成したものを基板として第1
のターゲットとして窒化マグネシウムを用い、スパッタ
リングにより基板上に厚さ200人の窒化マグネシウム
膜を形成した。その上に引き続いて実施例1のものと同
じFe、 Gd、 Tb。Example 2 In an RF sputtering device, the pressure in the vacuum chamber was 4×10'Pa.
After exhausting the air, add nitrogen (N2) gas to 4 x 10-'P
It was introduced to about a level. Then, a 1-inch square glass plate with an ultraviolet curable resin (2P) epoxy acrylate layer (10 to 100 Q) formed thereon was used as the first substrate.
Using magnesium nitride as a target, a magnesium nitride film with a thickness of 200 nm was formed on the substrate by sputtering. On top of that are the same Fe, Gd, and Tb as in Example 1.
Goの複合ターゲットを第2のターゲットとして、スパ
ッタリングにより厚さ100OAの記録層を形成した。A recording layer having a thickness of 100 OA was formed by sputtering using a Go composite target as a second target.
更に槽内を4 X 10” Pa程度排気後、N2ガス
を4 X 10’ Pa導入して、第1のターゲットを
用いて前記記録層上に厚さ2000Aの窒化マグネシウ
ム膜を形成した。Furthermore, after evacuating the inside of the tank to about 4 x 10'' Pa, N2 gas was introduced at 4 x 10' Pa, and a magnesium nitride film with a thickness of 2000 Å was formed on the recording layer using the first target.
実施例3
RFスパッタ装置において、真空槽中を4×10″4P
a程度排気後、窒素(N2)ガスを4 X to’ P
a程度まで導入した。そして1インチ角のポリメチルメ
タアクリレート(PMMA)を基板として第1のターゲ
ットとして窒化マグネシウムを用いスパッタリングによ
り基板上に厚さ20OAの窒化マグネシウム膜を形成し
た。その上に引き続いて実施例1のものと同じGd、
Tb、 Fe、 Coの複合ターゲットを第2のターゲ
ットとして、スパッタリングにより厚さ100OAの記
録層を形成した。更に槽内を4X 1(1″4Pa程度
排気後、N2ガスを4 X 10−’ Pa導入して、
第1のターゲットを用いて前記記録層上に厚さ200O
Aの窒化マグネシウム膜を形成した。Example 3 In an RF sputtering device, 4×10″4P in a vacuum chamber
After exhausting about a, add nitrogen (N2) gas to 4X to'P
It was introduced to about a level. Then, using a 1-inch square polymethyl methacrylate (PMMA) substrate as a substrate, a magnesium nitride film with a thickness of 20 OA was formed on the substrate by sputtering using magnesium nitride as a first target. On top of that, the same Gd as in Example 1,
A recording layer having a thickness of 100 OA was formed by sputtering using a composite target of Tb, Fe, and Co as a second target. Furthermore, after evacuating the inside of the tank to about 4X 1 (1" 4Pa), N2 gas was introduced at 4X 10-'Pa,
A first target is used to coat the recording layer to a thickness of 200O.
A magnesium nitride film of A was formed.
実施例4
RFスパッタ装置において、真空槽中を4×10″”P
a程度排気後、窒素(N2)ガスを4 X 10’ P
a程度まで導入した。そして1インチ角のポリカーボネ
イト(PC)を基板として第1のターゲットとして窒化
マグネシウムを用いスパッタリングにより基板上に厚さ
200人の窒化マグネシウム膜を形成した。その上に引
き続いて実施例1のものと同じGd、 Tb、 Fe、
Goの複合ターゲットを第2のターゲットとして、ス
パッタリングにより厚さ1000Aの記録層を形成した
。更に槽内を4X104Pa程度排気後、NZガスを4
X 10’ Pa導入して、第1のターゲットを用い
て前記記録層上に厚さ2000人の窒化マグネシウム膜
を形成した。Example 4 In an RF sputtering device, 4×10''P in a vacuum chamber
After exhausting about a, add nitrogen (N2) gas to 4 x 10'P
It was introduced to about a level. Then, using a 1-inch square polycarbonate (PC) substrate as a substrate and using magnesium nitride as a first target, a magnesium nitride film with a thickness of 200 mm was formed on the substrate by sputtering. On top of that, the same Gd, Tb, Fe, as in Example 1,
A recording layer having a thickness of 1000 Å was formed by sputtering using a Go composite target as a second target. Furthermore, after evacuating the inside of the tank to about 4X104Pa, NZ gas was
A magnesium nitride film having a thickness of 2000 nm was formed on the recording layer using a first target by introducing X 10'Pa.
実施例5
RFスパッタ装置において、1インチ角の白板ガラスを
基板とし、実施例1のものと同じGd。Example 5 In an RF sputtering apparatus, a 1-inch square white plate glass was used as a substrate, and the same Gd as in Example 1 was used.
Tb、 Fe、 Goの複合ターゲットを用いてスパッ
タリングにより厚さ200への記録層を形成した。続い
て真空槽内を4×10″Pa程度排気した後、窒素(N
2)ガスを4 X 10’ Paまで導入して、第2の
ターゲットとして窒化マグネシウムを用い、スパッタリ
ングによって前記記録層上に厚さ100OAノ窒化マグ
ネシウム膜を成膜した。さらに真空槽内を2 X 10
4Pa程度排気後、電子ビーム蒸発源によりアルミニウ
ム(A1)を蒸発させ、窒化マグネシウム膜上に反射膜
として厚さ500AのAI膜を形成し、最後にこの上に
スパッタリングによって厚さ2000Aの窒化マグネシ
ウム膜を成膜した。A recording layer with a thickness of 200 mm was formed by sputtering using a composite target of Tb, Fe, and Go. Next, after evacuating the vacuum chamber to about 4×10"Pa, nitrogen (N
2) A magnesium nitride film having a thickness of 100 OA was formed on the recording layer by sputtering by introducing gas up to 4×10' Pa and using magnesium nitride as a second target. Furthermore, inside the vacuum chamber, 2 x 10
After evacuation to about 4 Pa, aluminum (A1) is evaporated using an electron beam evaporation source to form a 500A thick AI film as a reflective film on the magnesium nitride film, and finally a 2000A thick magnesium nitride film is formed on this by sputtering. was deposited.
実施例6
RFスパッタ装置において、真空槽中を4XlO″4P
a程度排気後、窒素(N2)ガスを4 X 10’ P
aまで導入して、ガラス板上に紫外線硬化型樹脂(2P
)エポキシアクリレート層(10〜100鱗)を形成し
たものを基板として第1のターゲットとして窒化マグネ
シウムを用い、スパッタリングにより基板上に厚さ20
0人の窒化マグネシウム膜を形成した。その上に引き続
いて実施例1のものと同じGd、 Tb、 Fe、 G
oの複合ターゲットを第2のターゲットとしてスパッタ
リングにより厚さ200への記録層を形成した。更に槽
内を4×10→Pa程度排気後、窒素(N2)ガスを4
X 10’ Pa導入して、第1のターゲットを用い
て前記記録層上に厚さ100OAの窒化マグネシウム膜
を形成した。続いて真空槽内を2×10″Pa程度排気
後、電子ビーム蒸発源によりアルミニウム(A1)を蒸
発させ、窒化マグネシウム膜上に反射膜として厚さ50
0AのAI膜を形成し、最後にこめ上にスパッタリング
によって厚さ200OAの窒化マグネシウム膜を成膜し
た。Example 6 In an RF sputtering device, 4XlO″4P was used in a vacuum chamber.
After exhausting about a, add nitrogen (N2) gas to 4 x 10'P
a, and place an ultraviolet curing resin (2P) on the glass plate.
) Using an epoxy acrylate layer (10 to 100 scales) as a substrate and using magnesium nitride as the first target, a layer with a thickness of 20 mm was formed on the substrate by sputtering.
0 magnesium nitride films were formed. On top of that, the same Gd, Tb, Fe, G as in Example 1 were successively added.
A recording layer having a thickness of 200 mm was formed by sputtering using the composite target of 200 mm as a second target. Furthermore, after evacuating the tank to about 4×10→Pa, nitrogen (N2) gas was
A magnesium nitride film having a thickness of 100 OA was formed on the recording layer using the first target by introducing X 10' Pa. Next, after evacuating the vacuum chamber to about 2×10″ Pa, aluminum (A1) was evaporated using an electron beam evaporation source, and a reflective film with a thickness of 50 mm was formed on the magnesium nitride film.
An AI film of 0A was formed, and finally a magnesium nitride film with a thickness of 200A was formed on the temple by sputtering.
実施例7
RFスパッタ装置において、真空槽中を4×10′4P
a程度排気後、窒素(N2)ガスを4 X 10’ P
aまで導入して、ポリメチルメタアクリレート(PMM
A)を基板として、第1のターゲットとじて窒化マグネ
シウムを用い、スパッタリングにより基板上に厚さ20
0への窒化マグネシウム膜を形成した。その上に引き続
いて、実施例1のものと同じGd、 Tb、 Fe、
Goの複合ターゲットを第2のターゲットとして、スパ
ッタリングにより厚さ200人の記録層を形成した。更
に槽内を4×10→Pa程度排気後、窒素(N2)ガス
を4 X 10’ Pa導入して、第1のターゲットを
用いて前記記録層上に厚さ1000Aの窒化マグネシウ
ム膜を形成した。続いて真空槽内を2 X 1(1′4
Pa程度排出後、電子ビーム蒸発源によりアルミニウム
(AI)を蒸発させ、窒化マグネシウム膜上に反射膜と
して厚さ500AのAI膜を形成し、最後にこの上にス
パッタリングによって厚さ200OAの窒化マグネシウ
ム膜を成膜した。Example 7 In an RF sputtering device, 4×10'4P in a vacuum chamber
After exhausting about a, add nitrogen (N2) gas to 4 x 10'P
Polymethyl methacrylate (PMM
A) is used as a substrate, magnesium nitride is used as the first target, and a thickness of 20 mm is deposited on the substrate by sputtering.
A magnesium nitride film was formed on the substrate. On top of that, the same Gd, Tb, Fe, as in Example 1,
A recording layer having a thickness of 200 mm was formed by sputtering using a Go composite target as a second target. Furthermore, after evacuating the tank to about 4 x 10 Pa, nitrogen (N2) gas was introduced at 4 x 10' Pa, and a magnesium nitride film with a thickness of 1000 A was formed on the recording layer using the first target. . Next, the inside of the vacuum chamber was 2 x 1 (1'4
After ejecting approximately 100 Å of Pa, aluminum (AI) is evaporated using an electron beam evaporation source to form a 500A thick AI film as a reflective film on the magnesium nitride film.Finally, a 200OA thick magnesium nitride film is deposited on top of this by sputtering. was deposited.
実施例8
RFスパッタ装置において、真空槽中を4×10″Pa
程度排気後、窒素(N2)ガスを4 X 10−’ P
aまで導入して、ポリカーボネイト(PC)を基板とし
て第1のターゲットとして窒化マグネシウムを用い、ス
パッタリングにより基板上に厚さ200人の窒化マグネ
シウム膜を形成した。その上に引き続いて、実施例1の
ものと同じGdTbFe(:oの複合ターゲットを第2
のターゲットとして、スパッタリングにより厚さ200
人の記録層を形成した。更に槽内を4 X 10” P
a導入して、第1のターゲットを用いて前記記録層上に
厚さ100OAの窒化マグネシウム膜を形成した。続い
て真空槽内を2X104Pa程度排出後、電子ビーム蒸
発源によりアルミニウム(AI)を蒸発させ、窒化マグ
ネシウム膜上に反射膜として厚さ500AのAI膜を形
成し、最後にこの上のスパッタリングによって厚さ20
0OAの窒化マグネシウム膜を成膜した。Example 8 In an RF sputtering device, the pressure in the vacuum chamber was 4×10″Pa.
After exhausting the air, add nitrogen (N2) gas to 4 x 10-'P
A magnesium nitride film was formed on the substrate by sputtering using polycarbonate (PC) as a substrate and magnesium nitride as a first target. On top of that, a second composite target of GdTbFe(:o), which is the same as in Example 1, was applied.
200mm thick by sputtering as a target for
Formed a human record layer. Furthermore, the inside of the tank is 4 x 10”
A magnesium nitride film with a thickness of 100 OA was formed on the recording layer using a first target. Next, after the vacuum chamber was evacuated to about 2×104 Pa, aluminum (AI) was evaporated using an electron beam evaporation source, and an AI film with a thickness of 500 A was formed as a reflective film on the magnesium nitride film. Sa20
A 0OA magnesium nitride film was formed.
実施例9〜16
実施例1〜9の窒化マグネシウムに代えて各々、窒化ハ
フニウムから成る保護膜を設けた光学的記録媒体を作成
した0表1にそれらの構成をまとめて示す、記録層とし
てはGdTbFeCoの4元系非晶質磁性膜を用いた。Examples 9 to 16 Optical recording media were prepared in which a protective film made of hafnium nitride was provided instead of magnesium nitride in Examples 1 to 9. Table 1 summarizes the composition of the recording layer. A quaternary amorphous magnetic film of GdTbFeCo was used.
窒化膜は全てスパッタリングにより形成した。All nitride films were formed by sputtering.
比較例1
2000A厚の窒化マグネシウム層の代わりに300O
AのSi0層を設けた以外は、実施例1と同様にして光
学的記録媒体を作成した。Comparative Example 1 300A instead of 2000A thick magnesium nitride layer
An optical recording medium was produced in the same manner as in Example 1 except that the Si0 layer of A was provided.
比較例2
200OAの窒化マグネシウム層を設けなかった以外は
実施例1と同様にして光学的記録媒体を作成した。Comparative Example 2 An optical recording medium was produced in the same manner as in Example 1 except that the 200 OA magnesium nitride layer was not provided.
比較例3
窒化マグネシウムの代わりにSiOを使用した以外は実
施例5と同様にして光学記録媒体を作成した。Comparative Example 3 An optical recording medium was produced in the same manner as in Example 5 except that SiO was used instead of magnesium nitride.
比較例4
最外殻の保護膜が無く、他の保護膜がSiO膜である以
外は実施例5と同様にして光学記録媒体を作成した。Comparative Example 4 An optical recording medium was produced in the same manner as in Example 5 except that the outermost protective film was not provided and the other protective films were SiO films.
#腐食性試験
前述の実施例1〜16、比較例1〜4に従って作成した
光学的記録媒体を70℃、85%RHの恒温恒湿槽に入
れて、耐腐食性試験を行った。そのうち実施例1と5及
び比較例1〜4の結果を第1図及び第2図に示す、第1
図、第2図において、横軸は試験時間〔単位は時間(H
)〕を示し、縦軸は保磁力Hcの変化を保磁力の初期値
Heoに対する比で示した。ここで保磁力の低下が激し
い程、腐食が進行したことを示す、なお実施例2〜4゜
9〜12の結果は実施例1とほぼ同様、又実施例6〜8
,13〜16の結果は実施例5とほぼ同様であった。第
1図及び第2図かられかるように、窒化マグネシウム、
窒化ハフニウムを保護層として用いると光学的記録媒体
の耐腐食性を向上させることができる。#Corrosion Test The optical recording media prepared according to Examples 1 to 16 and Comparative Examples 1 to 4 described above were placed in a constant temperature and humidity chamber at 70° C. and 85% RH, and a corrosion resistance test was conducted. The results of Examples 1 and 5 and Comparative Examples 1 to 4 are shown in Figures 1 and 2.
In Figure 2, the horizontal axis is the test time [unit: hours (H
)], and the vertical axis shows the change in coercive force Hc as a ratio to the initial value Heo of coercive force. Here, the more the coercive force decreases, the more corrosion progresses.The results of Examples 2 to 4 and 9 to 12 are almost the same as those of Example 1, and the results of Examples 6 to 8
, 13 to 16 were almost the same as in Example 5. As can be seen from Figures 1 and 2, magnesium nitride,
The use of hafnium nitride as a protective layer can improve the corrosion resistance of optical recording media.
本発明により耐腐食性の優れた光学的記録媒体が得られ
た。According to the present invention, an optical recording medium with excellent corrosion resistance was obtained.
第1図及び第2図は1夫々本発明に基づく光学的記録媒
体の耐腐蝕性試験の結果を示す図である。
1;実施例1の保磁力曲線
2:比較例1の保磁力曲線
3:比較例2の保磁力曲線
4:実施例5の保磁力曲線
5:比較例3の保磁力曲線
6:比較例4の保磁力曲線
特許出願人 キャノン株式会社
代 理 人 若 林 忠第1図
試験時開
番人シ兜時16)
手続補正書(実船
昭和61年2月21日FIGS. 1 and 2 are diagrams showing the results of a corrosion resistance test of an optical recording medium based on the present invention, respectively. 1; Coercive force curve 2 of Example 1: Coercive force curve 3 of Comparative Example 1: Coercive force curve 4 of Comparative Example 2: Coercive force curve 5 of Example 5: Coercive force curve 6 of Comparative Example 3: Comparative Example 4 Coercive force curve patent applicant: Canon Co., Ltd. Agent: Tadashi Wakabayashi Figure 1 test open guard (16) Procedural amendment (actual ship February 21, 1985)
Claims (1)
において、前記光学的記録層の片側又は両側にマグネシ
ウム、ハフニウムの内の少くとも1つの物質の窒化物か
らなる膜を形成したことを特徴とする光学的記録媒体。2. In an optical recording medium having an optical recording layer on a substrate, a film made of a nitride of at least one of magnesium and hafnium is formed on one or both sides of the optical recording layer. An optical recording medium characterized by:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25677485A JPS62117157A (en) | 1985-11-18 | 1985-11-18 | Optical recording medium |
FR8611401A FR2590066B1 (en) | 1985-08-07 | 1986-08-06 | MEMORY ELEMENT WITH MAGNETIC BUBBLES |
US06/897,368 US4772505A (en) | 1985-08-07 | 1986-08-18 | Magnetic bubble memory element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25677485A JPS62117157A (en) | 1985-11-18 | 1985-11-18 | Optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62117157A true JPS62117157A (en) | 1987-05-28 |
Family
ID=17297257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25677485A Pending JPS62117157A (en) | 1985-08-07 | 1985-11-18 | Optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62117157A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120270035A1 (en) * | 2011-04-22 | 2012-10-25 | Hon Hai Precision Industry Co., Ltd. | Process for surface treating magnesium alloy and article made with same |
-
1985
- 1985-11-18 JP JP25677485A patent/JPS62117157A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120270035A1 (en) * | 2011-04-22 | 2012-10-25 | Hon Hai Precision Industry Co., Ltd. | Process for surface treating magnesium alloy and article made with same |
US8790497B2 (en) * | 2011-04-22 | 2014-07-29 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Process for surface treating magnesium alloy and article made with same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0481817B2 (en) | ||
US4920007A (en) | Magneto-optical recording medium with 9:1-1:9 aluminum or silicon oxide and aluminum or silicon nitride mixture | |
JPS6129437A (en) | Photomagnetic recording medium | |
US4777068A (en) | Optical recording medium | |
JPH0352142B2 (en) | ||
JPS62117157A (en) | Optical recording medium | |
JPS60219655A (en) | Optical recording medium | |
JPH04219650A (en) | Optical recording medium | |
JPS62121943A (en) | Optical recording medium | |
JPS6148151A (en) | Optical recording medium | |
US4939023A (en) | Opto-magnetic recording medium | |
JPS62119756A (en) | Optical recording medium | |
JPH0555941B2 (en) | ||
JPS60246041A (en) | Photo thermomagnetic recording medium | |
JPH0352143B2 (en) | ||
JPS62119757A (en) | Optical recording medium | |
JPS6145441A (en) | Optical recording medium | |
JPS6157053A (en) | Optical recording medium | |
JPH051536B2 (en) | ||
JPS6252743A (en) | Optical recording medium | |
JPS61278061A (en) | Photomagnetic recording medium | |
JPS60197967A (en) | Optical recording medium | |
JPS60197965A (en) | Magnetic recording medium | |
JPH0410132B2 (en) | ||
JPS6371959A (en) | Production of magneto-optical recording medium |