JPS62119756A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS62119756A
JPS62119756A JP25871885A JP25871885A JPS62119756A JP S62119756 A JPS62119756 A JP S62119756A JP 25871885 A JP25871885 A JP 25871885A JP 25871885 A JP25871885 A JP 25871885A JP S62119756 A JPS62119756 A JP S62119756A
Authority
JP
Japan
Prior art keywords
optical recording
oxide
sputtering
film
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25871885A
Other languages
Japanese (ja)
Inventor
Yoshiaki Suzuki
良明 鈴木
Hiroshi Komata
小俣 宏志
Ryuichi Yokoyama
隆一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25871885A priority Critical patent/JPS62119756A/en
Publication of JPS62119756A publication Critical patent/JPS62119756A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of the titled medium without deteriorating the characteristic as a recording medium by forming a film consisting of the oxide of at least one substance among magnesium, beryllium, and calcium on an optical recording layer. CONSTITUTION:The film consisting of the oxide of at least one substance among magnesium, beryllium, and calcium is formed on one or both sides of the optical recording layer. The oxide film is formed by vapor deposition or sputtering. Electron beam vapor deposition and RF sputtering are especially appropriate for magnesium oxide and beryllium oxide, and electron beam vapor deposition is appropriate for calcium oxide. An UV curing resin layer, etc., is provided between the oxide film and a glass sheet with the object of forming an optical guide groove when glass is used for the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ビームにより記録・再生を行うことが可能
な光学的記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical recording medium on which recording and reproduction can be performed using a light beam.

〔従来の技術〕[Conventional technology]

従来より、光ディスクに用いられる光学的記録媒体とし
ては、希土類−遷移金属の合金薄膜非晶質から結晶質へ
の相転移を利用したカルコゲン化合物等の還元性酸化物
薄膜、ヒートモード記録媒体、サーモプラスチック記録
媒体等が知られている0例えば、希土類−遷移金属の合
金薄膜で形成される光磁気記録媒体としてはMnB1゜
MnCuB1.などの多結晶薄膜、GdCo 。
Conventionally, optical recording media used in optical disks include rare earth-transition metal alloy thin films, reducing oxide thin films such as chalcogen compounds that utilize phase transition from amorphous to crystalline, heat mode recording media, and thermostats. For example, as a magneto-optical recording medium formed of a rare earth-transition metal alloy thin film, there are known plastic recording media such as MnB1°MnCuB1. Polycrystalline thin films such as GdCo.

GdFe 、TbFe 、DyFe、GdTbFe 。GdFe, TbFe, DyFe, GdTbFe.

TbDyFe、などの非晶質FJ膜、GdIGなとの単
結晶薄膜などが知られている。
Amorphous FJ films such as TbDyFe and single crystal thin films such as GdIG are known.

これらの薄膜のうち、大面積の薄膜を室温近傍の温度で
製作する際の成膜性、信号を小さな光熱エネルギーで書
き込むための書き込み効率および書き込まれた信号をS
/N比よく読み出すための読み出し効率等を勘案して、
最近では前記非晶質vfXl!2が光熱磁気記録媒体と
して優れていると考えられている。GdTbFeはカー
回転角も大きく、150°C前後のキューリ一点を持つ
ので光熱磁気記録媒体として適している。更に発明者等
はカー回転角を向上させる目的で研究した結果、GdT
bFeCoがカー回転角が充分に大きく、S/N比の良
い読み出しが可能な光磁気記録媒体であることを見い出
した。
Among these thin films, the film forming efficiency when manufacturing a large-area thin film at a temperature near room temperature, the writing efficiency for writing signals with small photothermal energy, and the write signal S
Considering readout efficiency etc. to read out with good /N ratio,
Recently, the amorphous vfXl! 2 is considered to be excellent as a photothermal magnetic recording medium. GdTbFe has a large Kerr rotation angle and has a single Curie point around 150°C, making it suitable as a photothermal magnetic recording medium. Furthermore, as a result of research aimed at improving the Kerr rotation angle, the inventors found that GdT
It has been found that bFeCo is a magneto-optical recording medium that has a sufficiently large Kerr rotation angle and can be read with a good S/N ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、一般に前記GdTbFe等の光磁気記録
媒体をはじめとする磁気記録媒体に用いられる非晶質磁
性体は、耐食性が悪いという欠点を持っている。すなわ
ち、大気、水蒸気に触れると酸化されて透明化するに至
る。またこの問題点は、光磁気記録媒体のみならず、前
記した光学的記録媒体の共通の課題である。
However, amorphous magnetic materials used in magnetic recording media, including magneto-optical recording media such as GdTbFe, generally have a drawback of poor corrosion resistance. That is, when it comes into contact with the atmosphere or water vapor, it becomes oxidized and becomes transparent. Furthermore, this problem is common not only to magneto-optical recording media but also to the optical recording media described above.

このような欠点を除くために、従来から、記録層の上に
、例えば透明物質の保護カバー、例えば5i02.Si
Oの保護層を設けたり、さらに不活性ガスによって記録
層を封じ込めたエアーサンドイッチ構造や貼り合わせ構
造のディスク状記録媒体が提案されているが、実用上充
分な耐食性が得られなかった。
In order to eliminate this drawback, conventionally a protective cover made of, for example, a transparent material, such as 5i02. Si
Although disc-shaped recording media with an air sandwich structure or a laminated structure in which a protective layer of O is provided or the recording layer is further sealed with an inert gas have been proposed, sufficient corrosion resistance for practical use has not been obtained.

本発明は上記問題点に鑑み成されたものであり、その目
的は、記録媒体としての特性を損なうことなく、耐食性
を向上せしめた光学的記録媒体を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide an optical recording medium with improved corrosion resistance without impairing the characteristics of the recording medium.

〔問題点を解決するための手段〕 本発明の上記目的は、基板上に光学的記録層を有して成
る光学的記録媒体において、該光学的記録層の片側又は
両側にマグネシウム、ベリリウム、カルシウムの内の少
くとも1つの物質の酸化物からなる膜を形成した光学的
記録媒体によって達成される。
[Means for Solving the Problems] The above object of the present invention is to provide an optical recording medium having an optical recording layer on a substrate, in which magnesium, beryllium, or calcium is added to one or both sides of the optical recording layer. This is achieved by an optical recording medium formed with a film made of an oxide of at least one of the following.

すなわち、未発明は光学的記録層の酸化を防止する効果
が、5i02.SiOより大きい酸化マグネシウム、酸
化ベリリウム、酸化カルシウムを使用した光学的記録媒
体を提供する。
That is, the effect of preventing oxidation of the optical recording layer is 5i02. An optical recording medium using magnesium oxide, beryllium oxide, and calcium oxide, which are larger than SiO, is provided.

前記の如゛き酸化物膜はいずれも蒸着法やスパッタリン
グ法によって形成される。特に酸化マグネシウムと酸化
ベリリウムは電子ビーム蒸着かRFスパッタリングが適
している。酸化カルシウムは電子ビーム蒸着が適してい
る。基板にガラスを用いる場合は、光学的案内溝形成の
目的で前記の酸化物膜とガラス板の間に、紫外線硬化型
樹脂(2P)層などを設ける。
The above-mentioned oxide films are all formed by a vapor deposition method or a sputtering method. In particular, electron beam evaporation or RF sputtering is suitable for magnesium oxide and beryllium oxide. Electron beam evaporation is suitable for calcium oxide. When glass is used for the substrate, an ultraviolet curing resin (2P) layer or the like is provided between the oxide film and the glass plate for the purpose of forming optical guide grooves.

本発明において、光学的記録層に引き続いて酸化膜を形
成する場合には、記録層をスパッタリングなどの方法で
形成した後、真空を破ることなく連続して酸化膜を形成
するのが望ましい、また基板−Eに酸化膜を形成し、そ
の上に光学的記録層を形成して更に酸化膜を形成する場
合にも真空を破らずに同一槽内で連続的に成膜したほう
がよい。
In the present invention, when forming an oxide film following the optical recording layer, it is desirable to form the oxide film continuously without breaking the vacuum after forming the recording layer by a method such as sputtering. Even when forming an oxide film on the substrate-E, forming an optical recording layer thereon, and then forming an oxide film, it is better to form the films continuously in the same tank without breaking the vacuum.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に具体的に説明するが
、本発明は下記の実施例に限らず、種々の応用が可能で
ある0例えば、光学的記録層は光磁気記録のみならず、
従来技術の説明の部分で述べたような、いかなる光学的
記録材料を用いてもかまわない。また、本発明に基づい
て構成された光学的記録媒体を、周知のエアーサンドイ
ッチ構造にしたり、或いはガラス板などと貼り合わせた
構造とする事により、更に耐腐食性を向上させることが
できる。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples and can be applied in various ways. For example, the optical recording layer can be applied not only to magneto-optical recording but also to ,
Any optical recording material may be used, such as those mentioned in the prior art section. Furthermore, the corrosion resistance can be further improved by forming the optical recording medium constructed according to the present invention into a well-known air sandwich structure or a structure in which it is bonded to a glass plate or the like.

実施例I RFスパッタ装置において1インチ角の白板ガラスを基
板とし、 100mmφの鉄コバルト合金(Fe7 C
o3 )板の上に5mm角のガドリニウムテルビウム合
金(Gd 、Tb、)の小片を均一にならべたものを複
合ターゲットとしてスパッタリングを行いGdTbFe
Coの4元系非晶質磁性膜からなる厚さtoooへの光
学的記録層を形成した。引き続いて真空槽中を4X 1
(1’ Pa程度排気した後、アルゴン(Ar)ガスを
4X 10’ Pa程度まで導入して、第2のターゲッ
トとして酸化マグネシウムを用い、スパッタリングによ
って前記記録層上に厚さ2000への酸化マグネシウム
膜を成膜した。
Example I In an RF sputtering device, a 1-inch square white glass plate was used as a substrate, and a 100 mmφ iron-cobalt alloy (Fe7C
o3) GdTbFe was sputtered using a composite target of 5 mm square small pieces of gadolinium terbium alloy (Gd, Tb,) arranged uniformly on a plate.
An optical recording layer made of a Co quaternary amorphous magnetic film and having a thickness of too much was formed. Subsequently, 4X 1 in the vacuum chamber
(After evacuation to about 1' Pa, argon (Ar) gas was introduced to about 4X 10' Pa, and using magnesium oxide as a second target, a magnesium oxide film was formed on the recording layer to a thickness of 2000 mm by sputtering. was deposited.

実施例2 RFスパッタ装置において、真空槽中を4×lO′″4
Pa程度排気した後、アルゴン(Ar)ガスを4×10
’ Pa程度まで導入した。そして、ガラス板上に紫外
線硬化型樹脂(2P)層(エポキシアクリレート)(1
0〜100JI11)を形成したものを基板として第1
のターゲットとして酸化マグネシウムを用い、スパッタ
リングによって基板上に厚さ200 への酸化マグネシ
ウム膜を形成した。その上に引き続いて実施例1のもの
と同じGd、Tb、Fe。
Example 2 In an RF sputtering device, the temperature in the vacuum chamber was 4×1O′″4
After evacuating to about Pa, 4×10 argon (Ar) gas was
' It was introduced to the level of Pa. Then, a UV-curable resin (2P) layer (epoxy acrylate) (1
0 to 100JI11) was formed as the first substrate.
Using magnesium oxide as a target, a magnesium oxide film with a thickness of 200 mm was formed on the substrate by sputtering. On top of that are the same Gd, Tb, and Fe as in Example 1.

COの複合ターゲットを第2のターゲットとして、スパ
ッタリングにより厚さ1000への記録層を形成した。
A recording layer with a thickness of 1000 mm was formed by sputtering using a CO composite target as a second target.

更に槽内を 4X 1(]’ Pa程度排気した後、ア
ルゴン(Ar)ガスを4X 10’ Pa程度まで導入
して、第1のターゲット用いて、前記記録層上に厚さ2
00OAの酸化マグネシウム膜を形成した。
Furthermore, after evacuating the inside of the tank to about 4×1(]' Pa, argon (Ar) gas was introduced to about 4×10' Pa, and using the first target, a thickness of 2×2 was deposited on the recording layer.
A magnesium oxide film of 00OA was formed.

実施例3〜6 実施例1.2の酸化マグネシウムに代えて各々酸化ベリ
リウム、酸化カルシウムから成る保護膜を設けた光学的
記録媒体を作成した。光学的記録層としては厚さ100
OA(7)GdTbaFeC0(7)4元系非晶質磁性
膜を用い、酸化膜は全てRFスパッタ装置により形成し
た。
Examples 3 to 6 Optical recording media were prepared in which protective films made of beryllium oxide and calcium oxide were provided in place of magnesium oxide in Examples 1 and 2, respectively. As an optical recording layer, the thickness is 100 mm.
An OA(7)GdTbaFeC0(7) quaternary amorphous magnetic film was used, and all oxide films were formed using an RF sputtering device.

実施例7 RFスパッタ装置において、真空槽中を4×10″Pa
程度排気した後、アルゴン(At)ガスを4×10’ 
Pa程度まで導入した。そしてポリメチルメタアクリレ
ート(PMMA)を基板をして第1のターゲットとして
酸化マグネシウムを用い、スパッタリングによって基板
上に厚さ200人の酸化マグネシウム膜を形成した。そ
の上に引き続いて実施例1のものと同じGd、Tb、F
e、Coc7)複合ターゲットを第2のターゲットとし
て、スパッタリングにより厚さ100OAの記録層を形
成した。更に槽内を4X 1(1’ Pa程度排気した
後、アルゴン(Ar)ガスを4X 1O−IPa程度ま
で導入して、第1のターゲット用いて、前記記録層上に
厚さ2000Aの酸化マグネシウム膜を形成した。
Example 7 In an RF sputtering device, the pressure in the vacuum chamber was 4×10″Pa.
After exhausting the air to a certain extent, add argon (At) gas to 4×10'
It was introduced up to about Pa. Then, using polymethyl methacrylate (PMMA) as a substrate and using magnesium oxide as a first target, a magnesium oxide film with a thickness of 200 mm was formed on the substrate by sputtering. On top of that, the same Gd, Tb, and F as in Example 1 are successively added.
e, Coc7) A recording layer with a thickness of 100 OA was formed by sputtering using the composite target as a second target. Furthermore, after evacuating the tank to about 4X 1 (1'Pa), argon (Ar) gas was introduced to about 4X 1O-IPa, and a magnesium oxide film with a thickness of 2000A was formed on the recording layer using the first target. was formed.

実施例8 RFスパッタ装置において、真空槽中を4×10″Pa
程度排気した後、アルゴン(Ar)ガスを4×1O−1
Pa程度まで導入した。そしてポリカーボネイト(PC
)を基板として第1のターゲットとして酸化マグネシウ
ムを用い、スパッタリングによって基板上に厚さ200
 Aの酸化マグネシウム膜を形成した。その上に引き続
いて実施例1のものと同じGd、Tb、Fe、Coの複
合ターゲットを第2のターゲットとして、スパッタリン
グにより厚さ1000Aの記録層を形成した。更に槽内
を4X104Pa程度排気した後、アルゴン(A ’r
 )ガスを 4XlO−IPa程度まで導入して、第1
のターゲット用いて。
Example 8 In an RF sputtering device, the pressure in the vacuum chamber was 4×10″Pa.
After evacuation to a certain extent, argon (Ar) gas was added to 4×1O−1
It was introduced up to about Pa. And polycarbonate (PC)
) was used as a substrate and magnesium oxide was used as the first target, and a thickness of 200 mm was deposited on the substrate by sputtering.
A magnesium oxide film of A was formed. Subsequently, a recording layer having a thickness of 1000 Å was formed thereon by sputtering using the same composite target of Gd, Tb, Fe, and Co as in Example 1 as a second target. Furthermore, after evacuating the inside of the tank to about 4X104Pa, argon (A'r
) Gas was introduced to about 4XlO-IPa, and the first
using the target.

前記記録層上に厚さ2000 Aの酸化マグネシウム膜
・ を形成した。
A magnesium oxide film with a thickness of 2000 A was formed on the recording layer.

実施例9〜12 実施例7,8の酸化マグネシウムに代えて各々酸化へリ
リウム、酸化カルシウムから成る保護膜を設けた光学的
記録媒体を作成した。光学的記録層としは、厚さ100
OA(7)G dT b F e Coの4元系非晶質
磁性膜を用い、酸化膜は全てRFスパッタ装置により形
成した。
Examples 9 to 12 Optical recording media were prepared in which protective films made of helium oxide and calcium oxide were provided in place of magnesium oxide in Examples 7 and 8, respectively. The optical recording layer has a thickness of 100
A quaternary amorphous magnetic film of OA(7)G dT b Fe Co was used, and all oxide films were formed by an RF sputtering device.

実施例13 RFスパッタ装置において1インチ角の白板ガラスを基
板とし、実施例1のものと同じGd。
Example 13 In an RF sputtering device, a 1-inch square white plate glass was used as a substrate, and the same Gd as in Example 1 was used.

Tb 、Fe 、Coの複合ターゲットを用いて、スパ
ッタリングにより厚さ200への記録層を形成した。続
いて真空槽中を4X 1(1’ Pa程度排気した後、
アルゴン(Ar)ガスを4X 1O−1Pa程度まで導
入して、第2のターゲットとして酸化マグネシウムを用
い、スパッタリングによって前記記録層上に厚さ100
0への酸化マグネシウム膜を成膜した。続いて真空槽中
を2X 1(1″4Pa程度排気した後、電子ビーム蒸
発源によりアルミニウム(AI)を蒸発させ、酸化マグ
ネシウム膜上に反射膜として厚さ500へのAI膜を形
成し最後にこの醸化マグネシウムから成る保護膜をスパ
ッタリングにより2000Aに成膜した。
A recording layer with a thickness of 200 mm was formed by sputtering using a composite target of Tb, Fe, and Co. Next, after evacuating the vacuum chamber to about 4×1 (1' Pa),
Argon (Ar) gas is introduced to about 4X 1O-1Pa, magnesium oxide is used as a second target, and a thickness of 100 mm is formed on the recording layer by sputtering.
A magnesium oxide film was formed on the substrate. Next, after evacuating the vacuum chamber to about 2×1 (1″4 Pa), aluminum (AI) was evaporated using an electron beam evaporation source, and an AI film with a thickness of 500 mm was formed as a reflective film on the magnesium oxide film. A protective film made of this fermented magnesium was formed to a thickness of 2000A by sputtering.

実施例14 RFスパッタ装置において、真空槽中を4×1(1’ 
Pa程度排気した後、アルゴン(Ar)ガスを4×1O
−IPa程度まで導入した。そして、ガラス板上に紫外
線硬化型樹脂(2P) (エポキシアクリレート)層(
10〜100μs)を形成したものを基板として第1の
ターゲットとして酸化マグネシウムを用い、スパッタリ
ングによって基板上に厚さ200への酸化マグネシウム
膜を形成した。その上に引き続いて実施例1のものと同
じGd、Tb、Fe 、C。
Example 14 In an RF sputtering device, 4×1 (1'
After evacuation to about Pa, argon (Ar) gas was added to 4×1O
-Introduced up to about IPa. Then, a layer of ultraviolet curable resin (2P) (epoxy acrylate) (
A magnesium oxide film with a thickness of 200 μm was formed on the substrate by sputtering using magnesium oxide as a first target. On top of that, the same Gd, Tb, Fe, and C as in Example 1 were successively added.

の複合ターゲットを第2のターゲットとしそ、スパッタ
リングにより厚さ200人の記録層を形成した。更に真
空槽内を4×lO→Pa程度排気した後、アルゴン(A
r)ガスを4X 1O−IPa程度まで導入して、第1
のターゲット用いて、前記記録層上に厚さ100OAの
酸化マグネシウム膜を形成した。続いて真空槽中を2X
 1(1’ Pa程度排気した後、電子ビーム蒸発源に
よりアルミニウム(A1)を蒸発させ、酸化マグネシウ
ム膜上に反射膜として厚さ500AのA1膜を形成し最
後にこの酸化マグネシウムから成る保護膜をスパッタリ
ングにより200OAに成膜した。
Using this composite target as a second target, a recording layer having a thickness of 200 mm was formed by sputtering. Furthermore, after evacuating the vacuum chamber to approximately 4×1O→Pa, argon (A
r) Introduce gas to about 4X 1O-IPa and
A magnesium oxide film with a thickness of 100 OA was formed on the recording layer using the target. Then 2X in the vacuum chamber
After evacuation to about 1' Pa, aluminum (A1) is evaporated using an electron beam evaporation source to form an A1 film with a thickness of 500A as a reflective film on the magnesium oxide film, and finally a protective film made of this magnesium oxide is applied. A film of 200 OA was formed by sputtering.

実施例15〜18 実施例13.14の酸化マグネシウムに代えて各々酸化
ベリリウム、酸化カルシウムから成る保護膜を設けた光
学的記録媒体を作成した。光学的記録層トじは、厚さ2
00 AのGdTbFeCoの4元系非晶質磁性膜を用
い、酸化膜は全てRFスパッタ装置により形成した。
Examples 15 to 18 Optical recording media were prepared in which protective films were provided with beryllium oxide and calcium oxide in place of magnesium oxide in Examples 13 and 14, respectively. The optical recording layer has a thickness of 2
A quaternary amorphous magnetic film of GdTbFeCo of 0.00 A was used, and all oxide films were formed using an RF sputtering device.

実施例19 RFスパッタ装置において、真空槽中を4×10″4P
a程度排気した後、アルゴン(Ar)ガスを4×1O−
IPa程度まで導入した。そして、ポリメチルメタクリ
レート(PMMA)を基板として第1のターゲットとし
て酸化マグネシウムを用い、スパッタリングによって基
板上に厚さ200への酸化マグネシウム膜を形成した。
Example 19 In an RF sputtering device, 4×10″4P in a vacuum chamber
After evacuation to about a degree, argon (Ar) gas was
It was introduced to the level of IPa. Then, using polymethyl methacrylate (PMMA) as a substrate and using magnesium oxide as a first target, a magnesium oxide film with a thickness of 200 mm was formed on the substrate by sputtering.

その上に引き続いて実施例1のものと同じGd、Tb、
Fe、Coc7)複合ターゲットを第2のターゲットと
して、スパッタリングにより厚さ200人の記録層を形
成した。更に槽内を4X 10” Pa程度排気した後
、アルゴン(Ar)ガスを4X 1G−’ Pa程度ま
で導入して、第1のターゲット用いて、前記記録層上に
厚さ100OAの酸化マグネシウム膜を形成した。続い
て真空槽中を2X 1G’ Pa程度排気した後、電子
ビーム蒸発源によりアルミニウム(AI)を蒸発させ、
酸化マグネシウム膜上に反射膜として厚さ500 Aの
AI膜を形成し最後にこの酸化マグネシウムから成る保
護膜をスパッタリングにより2000 Aに成膜した実
施例20 RFスパッタ装置において、真空槽中を4×104Pa
程度排気した後、アルゴン(Ar)ガスを4×10’ 
Pa程度まで導入した。そして、ポリカーポネイ) (
PC)を基板として第1のターゲットとして酸化マグネ
シウムを用い、スパッタリングによって基板上に厚さ2
00への酸化マグネシウム膜を形成した。その上に引き
続いて実施例1のものと同じGd、Tb、Fe、Coの
複合ターゲットを第2のターゲットとして、スパッタリ
ングにより厚さ200人の記録層を形成した。更に槽内
を4X10’Pa程度排気した後、アルゴン(A「)ガ
スを4X10−’Pa程度まで導入して、第1のターゲ
ット用いて、前記記録層上に厚さ100OAの酸化マグ
ネシウム膜を形成した。続いて真空槽中を2X 10″
4Pa程度排気した後、電子ビーム蒸発源によりアルミ
ニウム(AI)を蒸発させ、酸化マグネシウム膜上に反
射膜として厚さ500人のA1膜を形成し最後にこの上
に酸化マグネシウムから成る保1膜をスパッタリングに
より2000八に成膜した 実施例21〜24 実施例19.20の酸化マグネシウムに代えて各々酸化
ベリリウム、酸化カルシウムから成る保護膜を設けた光
学的記録媒体を作成した。光学的記録層としは、厚さL
QQOA(7)G dT b F e Coの4元系非
晶質磁性膜を用い、酸化膜は全てRFスパッタ装置によ
り形成した。
On top of that, the same Gd, Tb as in Example 1,
A recording layer having a thickness of 200 mm was formed by sputtering using a Fe, CoC7) composite target as a second target. Furthermore, after evacuating the tank to about 4X 10" Pa, argon (Ar) gas was introduced to about 4X 1G-' Pa, and a magnesium oxide film with a thickness of 100 OA was formed on the recording layer using the first target. Subsequently, after evacuating the vacuum chamber to approximately 2×1 G' Pa, aluminum (AI) was evaporated using an electron beam evaporation source.
Example 20 An AI film with a thickness of 500 A was formed as a reflective film on the magnesium oxide film, and finally a protective film made of this magnesium oxide was formed to a thickness of 2000 A by sputtering. 104Pa
After exhausting the air to a certain extent, add argon (Ar) gas to 4×10'
It was introduced up to about Pa. and Polycarponei) (
PC) as a substrate and magnesium oxide as the first target, a thickness of 2 mm was deposited on the substrate by sputtering.
A magnesium oxide film was formed on 00. Subsequently, using the same composite target of Gd, Tb, Fe, and Co as in Example 1 as a second target, a recording layer having a thickness of 200 mm was formed thereon by sputtering. Furthermore, after evacuating the inside of the tank to about 4X10'Pa, argon (A'') gas was introduced to about 4X10-'Pa, and a magnesium oxide film with a thickness of 100OA was formed on the recording layer using the first target. Then, 2X 10'' was placed in the vacuum chamber.
After evacuation to about 4 Pa, aluminum (AI) was evaporated using an electron beam evaporation source, and an A1 film with a thickness of 500 mm was formed as a reflective film on the magnesium oxide film.Finally, a protective film made of magnesium oxide was applied on top of this. Examples 21 to 24 Films were formed in 2000 by sputtering. Optical recording media were prepared in which protective films were formed of beryllium oxide and calcium oxide in place of magnesium oxide in Examples 19 and 20, respectively. The optical recording layer has a thickness L
A quaternary amorphous magnetic film of QQOA(7)G dT b Fe Co was used, and all oxide films were formed by an RF sputtering device.

比較例1 2000A厚ノMgO層の代わりニ300OA (1)
 Sin層を設けた以外は、実施例1と同様にして光学
的記録媒体を作成した。
Comparative Example 1 300OA instead of 2000A thick MgO layer (1)
An optical recording medium was produced in the same manner as in Example 1 except that the Sin layer was provided.

比較例2 2000AのMgO層を設けなかった以外は実施例1と
同様にして光学的記録媒体を作成した。
Comparative Example 2 An optical recording medium was produced in the same manner as in Example 1 except that the 2000A MgO layer was not provided.

比較例3 Mg0の代わりにSiOを使用した以外は実施例13と
同様にして光学記録媒体を作成した。
Comparative Example 3 An optical recording medium was produced in the same manner as in Example 13 except that SiO was used instead of Mg0.

比較例4 保mM及び反射層を設けない以外は実施例13と同様に
して光学的記録媒体を作成した。
Comparative Example 4 An optical recording medium was produced in the same manner as in Example 13, except that the retention mM and reflective layer were not provided.

耐腐食性試験 前述の実施例1〜24、比較例1〜4に従って作成した
光学的記録媒体を70℃、85%RHの恒温恒湿槽に入
れて、耐腐食性試験を行った。そのうち実施例1と13
及び比較例1〜4の結果を第1図及び第2図に示す、第
1図、第2図において、横軸は試験時間〔単位は時間(
H)〕を示し、縦軸は保磁力Hcの変化を保磁力の初期
値Hcoに対する比で示した。ここで保磁力の低下が激
しい程、腐食が進行したことを示す、なお実施例2〜1
2の結果は実施例1とほぼ同様、又実施例14〜24の
結果は実施例13とほぼ同様であった。
Corrosion Resistance Test The optical recording media prepared according to Examples 1 to 24 and Comparative Examples 1 to 4 described above were placed in a constant temperature and humidity chamber at 70° C. and 85% RH to conduct a corrosion resistance test. Examples 1 and 13
The results of Comparative Examples 1 to 4 are shown in Figs. 1 and 2. In Figs. 1 and 2, the horizontal axis represents the test time [unit: hours].
H)], and the vertical axis shows the change in coercive force Hc as a ratio of the coercive force to the initial value Hco. Here, the more the coercive force decreases, the more the corrosion progresses.Examples 2 to 1
The results of Example 2 were almost the same as those of Example 1, and the results of Examples 14 to 24 were almost the same as Example 13.

第1図及び第2図かられかるように、酸化マグネシウム
、酸化ベリリウム、酸化カルシウムを保護層として用い
ると光学的記録媒体の耐g蝕性を向上させることができ
る。
As can be seen from FIGS. 1 and 2, when magnesium oxide, beryllium oxide, or calcium oxide is used as a protective layer, the corrosion resistance of the optical recording medium can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明により耐腐食性の優れた光学的記録媒体が得られ
た。
According to the present invention, an optical recording medium with excellent corrosion resistance was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、夫々本発明に基づく光学的記録媒
体の耐腐蝕性試験の結果を示す図である。 工:実施例1の保磁力曲線 2:比較例1の保磁力曲線 3:比較例2の保磁力曲線 4:実施例13の保磁力曲線 5:比較例3の保磁力曲線 6:比較例4の保磁力曲線
FIG. 1 and FIG. 2 are diagrams showing the results of a corrosion resistance test of an optical recording medium based on the present invention, respectively. Coercive force curve 2 of Example 1: Coercive force curve 3 of Comparative example 1: Coercive force curve 4 of Comparative example 2: Coercive force curve 5 of Example 13: Coercive force curve 6 of Comparative example 3: Comparative example 4 coercive force curve of

Claims (1)

【特許請求の範囲】[Claims] 基板上に光学的記録層を有して成る光学的記録媒体にお
いて、前記光学的記録層の片側又は両側にマグネシウム
、ベリリウム、カルシウムの内の少くとも1つの物質の
酸化物からなる膜を形成したことを特徴とする光学的記
録媒体。
In an optical recording medium having an optical recording layer on a substrate, a film made of an oxide of at least one of magnesium, beryllium, and calcium is formed on one or both sides of the optical recording layer. An optical recording medium characterized by:
JP25871885A 1985-11-20 1985-11-20 Optical recording medium Pending JPS62119756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25871885A JPS62119756A (en) 1985-11-20 1985-11-20 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25871885A JPS62119756A (en) 1985-11-20 1985-11-20 Optical recording medium

Publications (1)

Publication Number Publication Date
JPS62119756A true JPS62119756A (en) 1987-06-01

Family

ID=17324125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25871885A Pending JPS62119756A (en) 1985-11-20 1985-11-20 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS62119756A (en)

Similar Documents

Publication Publication Date Title
US4658388A (en) Optical recording medium which includes a corrosion resistant film of a mixture of a carbide and a nitride
JPS6129437A (en) Photomagnetic recording medium
US4777068A (en) Optical recording medium
JPH0352142B2 (en)
JPH04364249A (en) Magneto-optical recording medium
JPS60219655A (en) Optical recording medium
JPS62119756A (en) Optical recording medium
JPH0550400B2 (en)
JPS62121943A (en) Optical recording medium
JPS62117157A (en) Optical recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPH0555941B2 (en)
JP2766520B2 (en) Method for manufacturing magneto-optical recording medium
JPH04219650A (en) Optical recording medium
JPS6148151A (en) Optical recording medium
US4939023A (en) Opto-magnetic recording medium
JPS62119757A (en) Optical recording medium
JPS6145441A (en) Optical recording medium
JPS6252743A (en) Optical recording medium
JPH0352143B2 (en)
JPS60197965A (en) Magnetic recording medium
JPH0410132B2 (en)
JPS61278061A (en) Photomagnetic recording medium
JPH051536B2 (en)
JPS6157053A (en) Optical recording medium