JP2766520B2 - Method for manufacturing magneto-optical recording medium - Google Patents

Method for manufacturing magneto-optical recording medium

Info

Publication number
JP2766520B2
JP2766520B2 JP1202676A JP20267689A JP2766520B2 JP 2766520 B2 JP2766520 B2 JP 2766520B2 JP 1202676 A JP1202676 A JP 1202676A JP 20267689 A JP20267689 A JP 20267689A JP 2766520 B2 JP2766520 B2 JP 2766520B2
Authority
JP
Japan
Prior art keywords
magneto
optical recording
recording medium
layer
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1202676A
Other languages
Japanese (ja)
Other versions
JPH0366048A (en
Inventor
正文 中尾
貞二 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP1202676A priority Critical patent/JP2766520B2/en
Publication of JPH0366048A publication Critical patent/JPH0366048A/en
Application granted granted Critical
Publication of JP2766520B2 publication Critical patent/JP2766520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板上に誘電体層、光磁気記録層及び誘電
体層を順次設けた光磁気記録媒体の新規な製造方法に関
するものである。さらに詳しくいえば、本発明は、該光
磁気記録層の保磁力を所定の範囲の値に制御して、所望
の記録再生特性を有する、光ビームにより情報の記録、
再生及び消去が可能な光磁気記録媒体を効率よく製造す
る方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a novel method for manufacturing a magneto-optical recording medium in which a dielectric layer, a magneto-optical recording layer, and a dielectric layer are sequentially provided on a substrate. More specifically, the present invention controls the coercive force of the magneto-optical recording layer to a value within a predetermined range, and has a desired recording / reproducing characteristic.
The present invention relates to a method for efficiently manufacturing a magneto-optical recording medium capable of reproducing and erasing.

従来の技術 近年、光ビームにより情報の記録、再生及び消去が可
能な光記録媒体として、光磁気ディスクなどの光磁気記
録媒体が開発されている。この光磁気記録媒体における
情報を記録するための光磁気記録層には、記録材料とし
て、従来Mn−Biなどの合金が用いられていたが、今日で
はFeやCoなどの遷移金属とNd、Dy、Gd、Tbなどの希土類
との合金が一般的に用いられている。
2. Description of the Related Art In recent years, a magneto-optical recording medium such as a magneto-optical disk has been developed as an optical recording medium capable of recording, reproducing, and erasing information with a light beam. Conventionally, alloys such as Mn-Bi have been used as a recording material for the magneto-optical recording layer for recording information in this magneto-optical recording medium, but today, transition metals such as Fe and Co and Nd and Dy are used. , Gd, Tb and other rare earth alloys are commonly used.

ところで、情報に記録及び消去が可能な光記録媒体と
しては、他に可逆的な相変化を利用したものが知られて
いるが、磁気光学効果を利用した光記録媒体は、相変化
を利用したものと異なり、記録及び消去を磁化の向きの
反転のみで行なうことを特徴としている。すなわち、磁
気光学効果を利用した光記録媒体においては、記録する
場合、まず記録層として用いる磁性体に初期化プロセス
としてレーザーなどの光ビームを照射しながら外部磁場
を連続的に印加して磁化の向きを揃えたのち、これとは
逆向きの外部磁場と印加しながら光パルスを照射してビ
ットを形成し、一方消去する場合には前記初期化プロセ
スと同じ操作が行なわれる。このような過程は原子の移
動を伴わないので記録層変形したり、記録状態や消去状
態が変化したりするおそれが少ないという利点を有して
いる。
By the way, as an optical recording medium capable of recording and erasing information, another one utilizing a reversible phase change is known, but an optical recording medium utilizing the magneto-optical effect utilizes a phase change. Different from the above, it is characterized in that recording and erasing are performed only by reversing the direction of magnetization. That is, in an optical recording medium utilizing the magneto-optical effect, when recording, first, an external magnetic field is continuously applied while irradiating a magnetic material used as a recording layer with a light beam such as a laser as an initialization process to magnetize the magnetic material. After the orientations are aligned, a bit is formed by irradiating a light pulse while applying an external magnetic field in the opposite direction, and when erasing, the same operation as in the initialization process is performed. Since such a process does not involve the movement of atoms, there is an advantage that there is little possibility that the recording layer is deformed or the recorded state or the erased state is changed.

また、この種の薄膜を形成する方法も種々検討されて
いるが、前記の光磁気記録媒体の記録層においては、構
成元素の蒸気圧や生産性などの点から、一般にスパッタ
法が用いられている。
In addition, various methods for forming this kind of thin film have been studied. However, in the recording layer of the magneto-optical recording medium, a sputtering method is generally used from the viewpoints of vapor pressure of constituent elements and productivity. I have.

このスパッタ法の中でも、光磁気記録層としてTbFeCo
やNdDyFeCoなどの合金をスパッタ法で形成する場合、T
b、NdDyなどの希土類とFeCoの遷移金属とを別々にター
ゲットから共にスパッタする場合と、TbFeCo、NdDyFeCo
の複合合金ターゲットからスパッタする場合があるが、
簡便性の点から後者の方が有利である。
Among the sputtering methods, TbFeCo is used as the magneto-optical recording layer.
When forming alloys such as NdDyFeCo by sputtering, T
b, a rare earth such as NdDy and a transition metal of FeCo are separately sputtered together from a target, and TbFeCo, NdDyFeCo
May be sputtered from the composite alloy target of
The latter is more advantageous in terms of simplicity.

しかしながら、このような複合合金ターゲットからス
パッタ法により製造された光記録媒体においては、光磁
気記録膜の保磁力やカー回転角などの磁性特性はフェリ
磁性であるために希土類−遷移金属比に大きく依存し、
例えばTbFeCoの場合、膜組成中のTbの原子比が1原子%
変動するだけで、保持力が大きく変化し、カー回転角も
変動する結果、記録時の磁場感度及び再生信号振幅など
に大きく影響を与えるため、膜の組成変動を0.5原子%
以下に抑制する必要がある。しかしながら、この膜の組
成はターゲットの組成によりほぼ決まるが、ターゲット
を希土類組成1原子%以下の再現性で作製することはか
なり困難である。したがって、ターゲットの組成が1〜
2原子%程度変動しても、光磁気記録層の磁性特性を所
望の範囲におさめることが必要である。
However, in an optical recording medium manufactured by sputtering from such a composite alloy target, the magnetic properties such as the coercive force and the Kerr rotation angle of the magneto-optical recording film are ferrimagnetic, so that the rare earth-transition metal ratio is large. Depends on
For example, in the case of TbFeCo, the atomic ratio of Tb in the film composition is 1 atomic%.
As a result, the coercive force changes greatly, and the Kerr rotation angle also changes. As a result, the magnetic field sensitivity during recording and the amplitude of the reproduced signal are greatly affected.
It is necessary to suppress the following. However, although the composition of this film is almost determined by the composition of the target, it is quite difficult to produce the target with a reproducibility of a rare earth composition of 1 atomic% or less. Therefore, the composition of the target is 1 to
It is necessary to keep the magnetic characteristics of the magneto-optical recording layer within a desired range even if the fluctuation is about 2 atomic%.

該磁気記録層の組成は、同一ターゲットを用いた場合
でも、ガス圧、スパッタ印加電力によっても変わるが、
その範囲は0.5%程度である。したがって、他の方法で
光磁気記録層の組成を調製することが必要である。
The composition of the magnetic recording layer, even when the same target is used, varies depending on the gas pressure and the power applied by sputtering.
The range is about 0.5%. Therefore, it is necessary to prepare the composition of the magneto-optical recording layer by another method.

発明が解決しようとする課題 本発明は、このような事情のもとで、光磁気記録媒体
における光磁気記録層の希土類−遷移金属比を見掛け上
調節して、磁性特性を最適化し、所望の記録再生特性を
有する光磁気記録媒体を容易に製造するための方法を提
供することを目的としてなされたものである。
Under these circumstances, the present invention apparently adjusts the rare earth-transition metal ratio of the magneto-optical recording layer in the magneto-optical recording medium to optimize the magnetic properties, It is an object of the present invention to provide a method for easily manufacturing a magneto-optical recording medium having recording / reproducing characteristics.

課題を解決するための手段 本発明者らは前記目的を達成するために鋭意研究を重
ねた結果、光磁気記録層の形成後に特定濃度範囲の酸素
を作用させて、該記録層成分中の希土類の一部を酸化す
ることで、光磁気記録媒体における記録に要する必要最
低記録磁場を所定値以下に低下させることにより、希土
類−遷移金属比を見掛け上調節して、磁性特性を最適化
することが可能であることを見い出し、この知見により
本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, after forming a magneto-optical recording layer, a specific concentration range of oxygen was acted on to form a rare earth element in the recording layer component. By oxidizing a part of the magnetic recording medium, the necessary minimum recording magnetic field required for recording in the magneto-optical recording medium is reduced to a predetermined value or less, so that the rare earth-transition metal ratio is apparently adjusted to optimize the magnetic characteristics. Were found possible, and this finding led to the completion of the present invention.

すなわち、本発明は、基板上に誘電体層、光磁気記録
層及び誘電体層を順次スパッタ法により成膜して、少な
くとも3層から成る光磁気記録媒体を製造するに当り、
光磁気記録層の形成後に酸素分圧0.1〜10mTorrの条件下
で酸素を作用させ、該光磁気記録層の一部を、光磁気記
録媒体の必要最低記録磁場が300以下になるまで酸化
させることを特徴とする光磁気記録媒体の製造方法を提
供するものである。
That is, according to the present invention, a dielectric layer, a magneto-optical recording layer, and a dielectric layer are sequentially formed on a substrate by a sputtering method to manufacture a magneto-optical recording medium including at least three layers.
After the formation of the magneto-optical recording layer, oxygen is applied under conditions of an oxygen partial pressure of 0.1 to 10 mTorr, and a part of the magneto-optical recording layer is oxidized until the required minimum recording magnetic field of the magneto-optical recording medium becomes 300 or less. And a method for manufacturing a magneto-optical recording medium characterized by the following.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明方法により得られる光磁気記録媒体は、基板上
に誘電体層、一部酸化させた光磁気記録層及び誘電体層
を順次積層した少なくとも3層から成る構造を有してい
るが、所望に応じ、カー回転角を高めるために、光磁気
記録層の上に設けられた誘電体層上に、さらにAl、Ni、
Cr、Auなどの金属から成る反射層を設けてもよい。
The magneto-optical recording medium obtained by the method of the present invention has a structure comprising at least three layers in which a dielectric layer, a partially oxidized magneto-optical recording layer and a dielectric layer are sequentially laminated on a substrate. According to the above, in order to increase the Kerr rotation angle, on the dielectric layer provided on the magneto-optical recording layer, further Al, Ni,
A reflective layer made of a metal such as Cr or Au may be provided.

該光磁気記録媒体における基板としては、通常の光記
録材料の基板に慣用されている材料から成るもの、例え
ばガラス、ガラスやプラスチック上に紫外線などで硬化
するポリマー層を設けたもの、アクリル樹脂、スチレン
樹脂、ポリカーボネート樹脂、酢酸ビニル樹脂、塩化ビ
ニル、ポリオレフィン樹脂などの透明基板、あるいはア
ルミニウムなどの不透明材料から成る基板が用いられ
る。これらの基板にはアドレス情報その他を含む凹凸が
形成されていてもよい。
As the substrate in the magneto-optical recording medium, those made of materials commonly used for substrates of ordinary optical recording materials, such as glass, glass or plastic provided with a polymer layer curable by ultraviolet light or the like, acrylic resin, A transparent substrate such as a styrene resin, a polycarbonate resin, a vinyl acetate resin, vinyl chloride, or a polyolefin resin, or a substrate made of an opaque material such as aluminum is used. Irregularities including address information and the like may be formed on these substrates.

前記基板上に設けられる光磁気記録層としては、保持
力Hcが高く、磁化Msの小さな材料から成るアモルファス
の垂直磁化膜が用いられる。このようなものとしては、
例えばTbFe、GdTbFe、TbFeCo、NdDyFeCo、TbFeNiなどの
フェリ磁性膜が好ましく挙げられる。また、保磁力Hcを
調節するために、これらの材料を積層化して、交換結合
膜としてもよい。これらの材料の中で特にTbFeCo、NdDy
FeCoなどが好ましく用いられる。
As the magneto-optical recording layer provided on the substrate, an amorphous perpendicular magnetization film made of a material having a high coercive force Hc and a small magnetization Ms is used. As such,
For example, a ferrimagnetic film such as TbFe, GdTbFe, TbFeCo, NdDyFeCo, and TbFeNi is preferably exemplified. Further, in order to adjust the coercive force Hc, these materials may be laminated to form an exchange coupling film. Among these materials, especially TbFeCo, NdDy
FeCo is preferably used.

これらの材料は、補償点組成を中心に保磁力Hcが急激
に低下するという特徴を有している。図面はTbx(Fe0.9
Co0.11-xにおけるx(原子%)と保磁力Hcとの関係を
示すグラフである。この図面から分かるように、補償点
近傍では、希土類元素の組成変化に対して保磁力Hcが大
きく変化する。例えばTb21(Fe0.9Co0.179からTb
20(Fe0.9Co0.180と変化することにより、保磁力Hcは
13Kから8Kへと大きく変化し、これに伴ない光磁気
記録媒体における記録に要する必要最低記録磁場(必要
最低記録磁場は、最適記録レーザーパワーで記録する場
合、最高C/Nが得られる最低磁場の大きさを意味する)
は400(エルステッド)から250へと大きく変化す
る。
These materials have a feature that the coercive force Hc sharply decreases centering on the composition of the compensation point. The drawing is Tb x (Fe 0.9
Co 0.1) is a graph showing the relationship between the coercive force Hc x (atomic%) in 1-x. As can be seen from this drawing, near the compensation point, the coercive force Hc greatly changes with a change in the composition of the rare earth element. For example, from Tb 21 (Fe 0.9 Co 0.1 ) 79 to Tb
By changing to 20 (Fe 0.9 Co 0.1 ) 80 , the coercive force Hc becomes
It changes greatly from 13K to 8K, and accompanying this, the minimum recording magnetic field required for recording on the magneto-optical recording medium (the minimum recording magnetic field is the minimum magnetic field where the maximum C / N is obtained when recording with the optimum recording laser power) Means the size of
Changes significantly from 400 (Oersted) to 250.

前記材料は、真空系内で酸化性雰囲気を作用させると
希土類元素が選択的に反応し、一部希土類の酸化物とな
り、見掛け上の希土類−遷移金属比が変化する。すなわ
ちTb21(Fe0.9Co0.179であったとしても、Tbが一部酸
化することにより見掛け上の組成がTb20〜19(Fe0.9Co
0.180〜81のものと同等となる。これにより保磁力
は、13Kから7〜8Kと変化するとともに、必要最低
記録磁場も400から300〜200への低下させること
が可能になる。
When an oxidizing atmosphere is applied to the material in a vacuum system, the rare-earth element selectively reacts to form a rare-earth oxide, and the apparent rare-earth-transition metal ratio changes. That Tb 21 (Fe 0.9 Co 0.1) as were 79, the composition of the apparent Tb from 20 to 19 by Tb is partially oxidized (Fe 0.9 Co
0.1 ) Equivalent to 80-81 . Thereby, the coercive force changes from 13K to 7 to 8K, and the required minimum recording magnetic field can be reduced from 400 to 300 to 200.

真空系内において、酸化性雰囲気を作用させる方法の
1例としては、光磁気記録層形成後、系内に酸素を導入
し、その分圧が0.1〜10mTorr、好ましくは0.5〜1mTorr
の範囲にある雰囲気に暴露させる方法がある。この分圧
は所望の値に適宜調節されるが、10mTorrを超えると光
磁気記録層が酸化されすぎて、磁気特性が逆に悪化する
し、0.1mTorr未満では本発明の効果が十分に発揮されな
い。
As an example of a method of applying an oxidizing atmosphere in a vacuum system, oxygen is introduced into the system after forming the magneto-optical recording layer, and the partial pressure is 0.1 to 10 mTorr, preferably 0.5 to 1 mTorr.
There is a method of exposing to an atmosphere in the range of This partial pressure is appropriately adjusted to a desired value. However, if it exceeds 10 mTorr, the magneto-optical recording layer is excessively oxidized, and the magnetic properties are adversely deteriorated, and if it is less than 0.1 mTorr, the effect of the present invention is not sufficiently exhibited. .

本発明においては、このような酸化条件下で、光磁気
記録媒体の必要最低記録磁場が実質上300以下になる
まで光磁気記録層の一部を酸化させる。
In the present invention, a part of the magneto-optical recording layer is oxidized under such oxidizing conditions until the required minimum recording magnetic field of the magneto-optical recording medium becomes substantially 300 or less.

該光磁気記録層の上下に設けられる誘電体層には、例
えば、SiNx、SiNxOy、SiOx、SiAlNx、SiAlOxNy、AlNx
AlOxNy、ZnSなどの材料が用いられる。この誘電体層は
前記化合物をターゲットとしてスパッタリングして設け
てもよいし、Si、Alなどの金属や半金属をターゲットと
し、反応性スパッタ法により設けてもよい。
The dielectric layers provided above and below the magneto-optical recording layer include, for example, SiN x , SiN x O y , SiO x , SiAlN x , SiAlO x N y , AlN x ,
Materials such as AlO x N y and ZnS are used. This dielectric layer may be provided by sputtering using the compound as a target, or may be provided by a reactive sputtering method using a metal or semimetal such as Si or Al as a target.

これらの方法は、すべてスパッタ成膜時に行なうが、
スパッタ装置としては、例えば基板通過型成膜方式のも
のや基板自公転型の成膜方式のものが用いられるが、こ
れらの中で、量産性の点から基板通過型成膜方式のもの
が好ましい。
All of these methods are performed at the time of sputtering film formation.
As the sputtering apparatus, for example, a substrate passing type film forming method or a substrate revolving type film forming method is used. Among these, a substrate passing type film forming method is preferable from the viewpoint of mass productivity. .

発明の効果 本発明方法によると、光磁気記録層を形成するための
スパッタターゲットの組成が所望の磁気特性が得られる
組成と異なっていても成膜時に見掛け上の組成を調節す
ることが可能で、保磁力を所定の値に制御することがで
き、所望の記録再生特性を有する光磁気記録媒体を容易
に製造することができる。
According to the method of the present invention, even when the composition of a sputter target for forming a magneto-optical recording layer is different from the composition capable of obtaining desired magnetic characteristics, it is possible to adjust the apparent composition at the time of film formation. The coercive force can be controlled to a predetermined value, and a magneto-optical recording medium having desired recording / reproducing characteristics can be easily manufactured.

実施例 次に、実施例により本発明をさらに詳細に説明する
が、本発明はこれらの例によってなんら限定されるもの
ではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

比較例1 射出成形により成形した130mm径、厚さ1.2mmのポリカ
ーボネート基板を用い、通過型スパッタ法により以下の
手順で光磁気記録媒体を作製した。
Comparative Example 1 A magneto-optical recording medium was produced by the following procedure using a polycarbonate substrate having a diameter of 130 mm and a thickness of 1.2 mm formed by injection molding by a pass-through sputtering method.

まずSi3N4をターゲットとして、ガス圧5mTorrでSiNx
層を1000Å厚に成膜したのち、この上にTbFeCoの複合合
金ターゲットAを用いてガス圧3mTorrでTbFeCo光磁気記
録層を250Åの厚さに形成した。この記録層の組成はTb
22(Fe0.9Co0.178であった。次に、Si3N4をターゲッ
トとして、ガス圧5mTorrでSiNx層を300Åの厚さに成膜
し、次いでこの上に、反射層としてAl層を400Åの厚さ
に成膜した。
First, using Si 3 N 4 as a target, SiN x at a gas pressure of 5 mTorr
After forming the layer to a thickness of 1000 mm, a TbFeCo magneto-optical recording layer was formed thereon with a thickness of 250 mm at a gas pressure of 3 mTorr using a TbFeCo composite alloy target A. The composition of this recording layer is Tb
22 (Fe 0.9 Co 0.1 ) 78 . Next, a SiN x layer was formed to a thickness of 300 mm at a gas pressure of 5 mTorr using Si 3 N 4 as a target, and an Al layer was formed thereon as a reflective layer to a thickness of 400 mm.

このように作製した光磁気記録媒体の記録再生特性を
評価したところ、保磁力Hcは15Kより大きく、基板回
転数1800rpm、記録周波数1MHz、記録半径30mmの位置で
のC/N比は56dBであった。また最適記録パワーでC/N比が
飽和する最低記録磁場は400が必要であった。
When the recording and reproduction characteristics of the magneto-optical recording medium thus manufactured were evaluated, the coercive force Hc was larger than 15 K, the C / N ratio at the position of the substrate rotation speed of 1800 rpm, the recording frequency of 1 MHz, and the recording radius of 30 mm was 56 dB. Was. Also, the minimum recording magnetic field at which the C / N ratio was saturated at the optimum recording power required 400.

実施例1 比較例1と同様に、射出成形により成形した130mm
径、厚さ1.2mmのポリカーボネート基板を用い、通過型
スパッタ法により以下の手順で光磁気記録膜媒体を作製
した。
Example 1 130 mm molded by injection molding in the same manner as Comparative Example 1.
Using a polycarbonate substrate having a diameter and a thickness of 1.2 mm, a magneto-optical recording medium was manufactured by the following procedure by a pass-through sputtering method.

まずガス圧5mTorrでSiNx層を1000Åの厚さに成膜した
のち、この上に、TbFeCoのターゲットAを用いて、ガス
圧3mTorrでTbFeCo光磁気記録層を250Åの厚さに形成し
た。この記録層の組成は比較例と同様にTb22(Fe0.9Co
0.178であった。次に真空槽内にO2を5mTorrまで導入
し、20秒間処理をした後、Si3N4をターゲットとして、
ガス圧5mTorrでSiNx層を300Åの厚さに成膜し、次いで
この上に、反射層としAl層を400Åの厚さに成膜した。
First, a SiN x layer was formed to a thickness of 1000 mm at a gas pressure of 5 mTorr, and a TbFeCo magneto-optical recording layer was formed thereon at a gas pressure of 3 mTorr to a thickness of 250 mm using a target A of TbFeCo. The composition of this recording layer was Tb 22 (Fe 0.9 Co
0.1 ) 78 . Next, O 2 was introduced into the vacuum chamber to 5 mTorr, and after a treatment for 20 seconds, using Si 3 N 4 as a target,
An SiN x layer was formed to a thickness of 300 mm at a gas pressure of 5 mTorr, and an Al layer was formed thereon as a reflective layer to a thickness of 400 mm.

このように作製した光磁気記録媒体の記録再生特性を
評価したところ、保磁力Hcは8Kであり、基板回転数18
00rpm、記録周波数1MHz、記録半径30mmの位置でのC/N比
は58dBであった。また最適記録パワーでC/N比が飽和す
る最低記録磁場は250とC/N比の改善と磁場感度の改善
が認められた。
When the recording / reproducing characteristics of the magneto-optical recording medium thus manufactured were evaluated, the coercive force Hc was 8K and the substrate rotation speed was 18
The C / N ratio at a position of 00 rpm, a recording frequency of 1 MHz, and a recording radius of 30 mm was 58 dB. The minimum recording magnetic field at which the C / N ratio was saturated at the optimum recording power was 250, indicating that the C / N ratio was improved and the magnetic field sensitivity was improved.

以下の結果、TbFeCo記録層形成後、酸素処理を行なう
ことにより、見掛け上の組成としてTb20(Fe0.9Co0.1
80程度のものが得られ、記録再生特性を改善しうること
が確認された。
As a result, by performing oxygen treatment after forming the TbFeCo recording layer, the apparent composition was Tb 20 (Fe 0.9 Co 0.1 ).
About 80 were obtained, and it was confirmed that the recording / reproducing characteristics could be improved.

【図面の簡単な説明】[Brief description of the drawings]

図は光磁気記録層におけるTbx(Fe0.9Co0.11-xの補償
組成近傍の保磁力Hcを示すグラフである。
The figure is a graph showing the coercive force Hc near the compensation composition of Tb x (Fe 0.9 Co 0.1 ) 1-x in the magneto-optical recording layer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G11B 11/10 541 G11B 11/10 501──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G11B 11/10 541 G11B 11/10 501

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に誘電体層、光磁気記録層及び誘電
体層を順次スパッタ法により成膜して、少なくとも3層
から成る光磁気記録媒体を製造するに当り、光磁気記録
層の形成後に酸素分圧0.1〜10mTorrの条件下で酸素を作
用させ、該光磁気記録層の一部を、光磁気記録媒体の必
要最低記録磁場が300以下になるまで酸化させること
を特徴とする光磁気記録媒体の製造方法。
1. A method of manufacturing a magneto-optical recording medium comprising at least three layers by sequentially forming a dielectric layer, a magneto-optical recording layer and a dielectric layer on a substrate by a sputtering method. After formation, oxygen is acted on under a condition of an oxygen partial pressure of 0.1 to 10 mTorr, and a part of the magneto-optical recording layer is oxidized until the required minimum recording magnetic field of the magneto-optical recording medium becomes 300 or less. A method for manufacturing a magnetic recording medium.
JP1202676A 1989-08-04 1989-08-04 Method for manufacturing magneto-optical recording medium Expired - Lifetime JP2766520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202676A JP2766520B2 (en) 1989-08-04 1989-08-04 Method for manufacturing magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202676A JP2766520B2 (en) 1989-08-04 1989-08-04 Method for manufacturing magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH0366048A JPH0366048A (en) 1991-03-20
JP2766520B2 true JP2766520B2 (en) 1998-06-18

Family

ID=16461309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202676A Expired - Lifetime JP2766520B2 (en) 1989-08-04 1989-08-04 Method for manufacturing magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2766520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287881A (en) * 1994-04-20 1995-10-31 Nec Corp Magneto-optical recording medium and its production
JP2000231749A (en) * 1999-02-09 2000-08-22 Sony Corp Magneto-optical recording medium and its production
JP4185054B2 (en) * 2003-04-01 2008-11-19 富士通株式会社 Magneto-optical recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460836A (en) * 1987-09-01 1989-03-07 Hitachi Ltd Magneto-optical recording medium and production thereof
JPH01119939A (en) * 1987-11-04 1989-05-12 Hitachi Maxell Ltd Magneto-optical recording medium and its production

Also Published As

Publication number Publication date
JPH0366048A (en) 1991-03-20

Similar Documents

Publication Publication Date Title
US4995024A (en) Magneto-optical recording element
JP3178025B2 (en) Magneto-optical recording medium and method of manufacturing the same
JP2766520B2 (en) Method for manufacturing magneto-optical recording medium
US4992336A (en) Magneto-optical recording medium
JP2000235743A (en) Optical memory device and its production
US5710746A (en) Magneto-optical recording medium and reading method with magnetic layers of different coercivity
US6033538A (en) Magneto-optical recording medium production method
JP2943607B2 (en) Method for manufacturing magneto-optical recording medium
JP2830385B2 (en) Method for manufacturing magneto-optical recording medium
JP3074104B2 (en) Magneto-optical recording medium
JPS62121943A (en) Optical recording medium
JP2900957B2 (en) Method for manufacturing magneto-optical recording medium
JP2616120B2 (en) Magneto-optical recording medium and method of manufacturing the same
JP2825871B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPS63224054A (en) Production of magneto-optical recording medium
JPH04281240A (en) Production of magneto-optical recording medium
JPS62298044A (en) Magneto-optical disk
JPH0464940A (en) Magneto-optical recording medium
JPH06139632A (en) Magneto-optical recording medium
JPH0917050A (en) Magneto-optical disk
JPH06124488A (en) Manufacture of magneto-optical recording medium
JPH02235232A (en) Production of magneto-optical recording medium
JPH06180880A (en) Method of correcting saturated magnetic moment and production of magneto-optical recording medium
JPH0594647A (en) Production of magneto-optical recording medium
JPH03276440A (en) Production of magneto-optical recording medium