JPS63224054A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPS63224054A
JPS63224054A JP5671987A JP5671987A JPS63224054A JP S63224054 A JPS63224054 A JP S63224054A JP 5671987 A JP5671987 A JP 5671987A JP 5671987 A JP5671987 A JP 5671987A JP S63224054 A JPS63224054 A JP S63224054A
Authority
JP
Japan
Prior art keywords
magnetic layer
layer
magnetic
magneto
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5671987A
Other languages
Japanese (ja)
Other versions
JPH0535496B2 (en
Inventor
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5671987A priority Critical patent/JPS63224054A/en
Priority to EP19880302220 priority patent/EP0282356B1/en
Priority to DE19883852329 priority patent/DE3852329T2/en
Publication of JPS63224054A publication Critical patent/JPS63224054A/en
Priority to US07/693,067 priority patent/US5265073A/en
Publication of JPH0535496B2 publication Critical patent/JPH0535496B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable satisfactory overwriting by forming a magnetic layer having a specified two-layered structure, incorporating a nonmagnetic element into the second magnetic layer so as to reduce exchange force applied to the second magnetic layer and using the resulting magneto-optical recording medium. CONSTITUTION:A perpendicularly magnetizable film having a two-layered struc ture subjected to exchange coupling is formed on a substrate 1 to obtain a magneto-optical recording medium. The film consists of a first magnetic layer 2 having a low Curie point TL and high coercive force HH and a second mag netic layer 3 having a higher Curie point TH and lower coercive force HL than the layer 2 and satisfies inequality I (where Ms is the saturation magnetization of the layer 3, (h) is the thickness of the layer 3 and sigmaw is the domain wall energy between the layers 2, 3). Each of the layers 2, 3 contains an amorphous alloy of a rare earth element and transition metal as the principal component. The layer 3 is formed by simultaneously vapor-depositing a rare earth element- transition metal material and a nonmagnetic element material from separately positioned evaporating sources. When the recording medium is used, satisfactory overwriting is enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気カー効果を利用して読出しすることので
きるキュリー点書込みタイプの光磁気記録媒体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a Curie point writing type magneto-optical recording medium that can be read using the magnetic Kerr effect.

〔従来の技術〕[Conventional technology]

消去可能な光デイスクメモリとして光磁気ディスクが知
られている。光磁気ディスクは、従来の磁気ヘッドを使
った磁気記録媒体と比べて高密度記録、非接触での記録
再生などが可能であるという長所がある反面、記録前に
一度記録部分を消去しなければならない(一方向に着磁
しなければならない)という欠点があフた。この欠点を
補う為に、記録再生用ヘッドと消去用ヘッドを別々に設
ける方式、あるいは、レーザーの連続ビームを照射しつ
つ、同時に印加する磁場を変調しながら記録する方式な
どが提案されている。
A magneto-optical disk is known as an erasable optical disk memory. Magneto-optical disks have advantages over magnetic recording media using conventional magnetic heads, such as high-density recording and non-contact recording and playback, but on the other hand, the recorded area must be erased before recording. The disadvantage of having to magnetize in one direction has been eliminated. In order to compensate for this drawback, proposals have been made such as a method in which a recording/reproducing head and an erasing head are provided separately, or a method in which recording is performed while irradiating a continuous laser beam and simultaneously modulating the applied magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの方法は、装置が大がかりとなリ、コス
ト高になる欠点あるいは高速の変調ができないなどの欠
点を有する。
However, these methods have drawbacks such as requiring large-scale equipment, high costs, and inability to perform high-speed modulation.

上述の公知技術の欠点を除去し、従来の装置構成に簡単
な構造の磁界発生手段を付設するだけで、磁気記録媒体
と同様な重ね書きくオーバーライド)を可能とした、光
磁気記録方法を本出願人は昭和61年7月8日に特願昭
61−158787号(該出願は昭和62年2月2日の
国内優先の基礎出願(特願昭62−20384号)とな
る)で提案した。
This book describes a magneto-optical recording method that eliminates the drawbacks of the above-mentioned known techniques and makes it possible to perform overwriting similar to that of magnetic recording media by simply adding a magnetic field generating means with a simple structure to the conventional device configuration. The applicant proposed this in Japanese Patent Application No. 158787-1987 on July 8, 1985 (this application became a basic application with domestic priority (Japanese Patent Application No. 20384) filed on February 2, 1988). .

しかし、この方法は全く新しい記録法であるが故に、こ
の方法に関連して、いまだ多くの研究課題が残っていた
。すなわち、この記録に用いるのに、よりふされしい光
磁気記録媒体の製法の探究等である。
However, since this method is a completely new recording method, there are still many research issues related to this method. In other words, we are researching methods for producing magneto-optical recording media that are more suitable for use in this recording.

そこで本発明者は更に研究を進めた結果、いくつかの成
果が得られた。
As a result of further research, the present inventors obtained several results.

本発明はこうして完成されたものであり、その目的は重
ね書き可能な記録方法を提供するだけでなく、その重ね
書き可能な記録法によりふされしい光磁気記録媒体の製
法を提供することにある。
The present invention has been completed in this way, and its purpose is not only to provide an overwritable recording method, but also to provide a method for manufacturing a magneto-optical recording medium suitable for the overwritable recording method. .

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成可能な本発明は、 低いキュリー点(TL)と高い保磁力(HH)とを有す
る第1i性層およびこの磁性層に比べて相対的に高いキ
ュリー点(Tt1)と低い保磁力(HL)とを有する第
2磁性層から構成されており、その各層とも希土類元素
と遷移金属との非晶質合金を主成分とする二層構造の交
換結合垂直磁化膜を基板上に有して成り、第2磁性層の
飽和磁化をMs、膜厚をh、二つの磁性層間の磁壁エネ
ルギーをσ胃とすると、 H”> HL 〉2 ySh を満たしている光磁気記録媒体の製造法であって、 その第2磁性層を、■希土類元素−遷移金属材料(希土
類元素と遷移金属との合金、あるいは希土類元素と遷移
金属とを単に併用した材料)と、■非磁性元素材料とを
、離れた位置に設けられた各々の蒸発源より同時に基板
に飛散させて、成膜する光磁気記録媒体の製造法である
The present invention, which can achieve the above objects, provides a first i magnetic layer having a low Curie point (TL) and high coercive force (HH), and a relatively high Curie point (Tt1) and low coercive force compared to this magnetic layer. It consists of a second magnetic layer having magnetic force (HL), and each layer has an exchange-coupled perpendicular magnetization film on the substrate with a two-layer structure mainly composed of an amorphous alloy of rare earth elements and transition metals. A method for producing a magneto-optical recording medium which satisfies H''>HL>2ySh, where the saturation magnetization of the second magnetic layer is Ms, the film thickness is h, and the domain wall energy between the two magnetic layers is σ. The second magnetic layer is made of ■a rare earth element-transition metal material (an alloy of a rare earth element and a transition metal, or a material simply using a combination of a rare earth element and a transition metal) and ■a nonmagnetic element material. This is a method of manufacturing a magneto-optical recording medium in which a film is formed by simultaneously scattering evaporation onto a substrate from evaporation sources provided at separate locations.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a) 、 (b)は各々本発明により製造され
る光磁気記録媒体の一実施例を示す模式断面図である。
FIGS. 1(a) and 1(b) are schematic sectional views each showing an example of a magneto-optical recording medium manufactured according to the present invention.

第1図(a)の光磁気記録媒体は、プリグループが設け
られた透光性の基板1上に、第1の磁性層2と第2の磁
性層3が積層されたものである。第1磁性層2は低いキ
ュリー点(TL ’)と高い保磁力(HH)を有し、第
2磁性層3は、高いキュリー点(”rn)と低い保磁力
(HL )を存する。ここで「高い」、「低い」とは内
磁性層を比較した場合の相対的な関係を表わす(保磁力
は室温における比較)。ただし、通常は第1磁性層2の
TLは70〜180℃、H,は、3〜IOにOe 、第
2磁性層3のTHは100〜400℃、HLは0,5〜
2にOe程度の範囲内にするとよい。
The magneto-optical recording medium shown in FIG. 1(a) has a first magnetic layer 2 and a second magnetic layer 3 laminated on a transparent substrate 1 provided with a pre-group. The first magnetic layer 2 has a low Curie point (TL') and a high coercive force (HH), and the second magnetic layer 3 has a high Curie point ("rn) and a low coercive force (HL). Here, "High" and "low" represent a relative relationship when comparing the inner magnetic layers (coercive force is compared at room temperature). However, normally, the TL of the first magnetic layer 2 is 70 to 180°C, the H, is Oe to 3 to IO, the TH of the second magnetic layer 3 is 100 to 400°C, and the HL is 0.5 to IO.
It is preferable to set it within the range of about 2 to Oe.

各磁性層の主成分には、垂直磁気異方性を示し且つ磁気
光学効果を呈する。希土類元素と遷移金属元素との非晶
質磁性合金が利用できる。例として、GdC:o、 G
dFe 、 TbFe、 DyFe、 GdTbFe、
 TbDyFe。
The main component of each magnetic layer exhibits perpendicular magnetic anisotropy and exhibits a magneto-optic effect. Amorphous magnetic alloys of rare earth elements and transition metal elements are available. For example, GdC:o, G
dFe, TbFe, DyFe, GdTbFe,
TbDyFe.

GdTbFeCo、 TbFeGo、 GdTb(:o
等が挙げられる。
GdTbFeCo, TbFeGo, GdTb(:o
etc.

ところで、本発明による光磁気記録媒体を用いた記録方
法では、第1磁性層2が主に再生に関与する。即ち、第
1磁性層2が呈する磁気光学効果が主に再生に利用され
、第2磁性層3は記録に重要な役割りを果たす。
By the way, in the recording method using the magneto-optical recording medium according to the present invention, the first magnetic layer 2 is mainly involved in reproduction. That is, the magneto-optic effect exhibited by the first magnetic layer 2 is mainly used for reproduction, and the second magnetic layer 3 plays an important role in recording.

一方、従来の光磁気記録方法における、交換結合二層膜
では、逆に、低いキュリー点と高い保磁力とを有する磁
性層は主に記録に関与し、高いキュリー点と低い保磁力
とを有する磁性層が主に再生に関与した。
On the other hand, in the exchange-coupled double-layer film in the conventional magneto-optical recording method, conversely, the magnetic layer with a low Curie point and high coercive force is mainly involved in recording; The magnetic layer was mainly involved in reproduction.

かかる従来の交換結合二層膜では、主に再生に関与する
磁性層の飽和磁化Msと、膜厚りと、二層間の磁壁エネ
ルギーσwの間に、次の様な関係があるのが望ましかっ
た。
In such a conventional exchange-coupled two-layer film, it is desirable that the following relationship exists between the saturation magnetization Ms of the magnetic layer mainly involved in reproduction, the film thickness, and the domain wall energy σw between the two layers. Ta.

HH> −> HL Msh しかし、本発明に使用する記録媒体の交換結合二層膜で
は、第2磁性層3の飽和磁化Msと膜厚りと、二磁性層
間のm璧エネルギーσwの間に、次の関係が必要である
HH>-> HL Msh However, in the exchange-coupled two-layer film of the recording medium used in the present invention, between the saturation magnetization Ms and film thickness of the second magnetic layer 3 and the m-magnetic energy σw between the two magnetic layers, The following relationship is required.

HH>HL、 >□ Msh これは、記録によって最終的に完成されるビットの磁化
状態(第2図(f)に示す)を、安定に存させるためで
ある(詳しい理由は後述する)。
HH>HL, >□Msh This is to ensure that the magnetization state of the bit finally completed by recording (shown in FIG. 2(f)) remains stable (detailed reasons will be described later).

したがって、両磁性層2.3(垂直磁化膜)の成膜に際
して、上の関係式を満たすように、各層の膜厚、保磁力
、飽和磁化の大きさ、磁壁エネルギーなどを適当に設定
すればよいが、具体的かつ現実的な方法としては、第2
磁性層の飽和磁化Msを大きくするか、膜厚りを大きく
するか、磁壁エネルギーσwを小さくするかである。し
かし、膜ghを大きくすると光磁気記録媒体の感度が低
下する欠点がある。また、飽和磁化Msを大きくすると
同時にHt、の値も小さくなるので、経験的にはHLの
値が1にOeより小さくなると、むしろHL、<0w7
2M5hとなりやすし)。
Therefore, when forming the bimagnetic layer 2.3 (perpendicular magnetization film), the film thickness, coercive force, magnitude of saturation magnetization, domain wall energy, etc. of each layer should be appropriately set so as to satisfy the above relational expression. However, as a concrete and realistic method, the second method is
The choice is to increase the saturation magnetization Ms of the magnetic layer, increase the film thickness, or decrease the domain wall energy σw. However, increasing the film gh has the disadvantage that the sensitivity of the magneto-optical recording medium decreases. In addition, as the saturation magnetization Ms increases, the value of Ht also decreases, so empirically, when the value of HL becomes 1, which is smaller than Oe, HL, <0w7
It's easy to get 2M5h).

このため、現状での最善の方法としては、Mi壁エネル
ギーa胃を小さくすることである。例えば、第1磁性層
2と第2磁性層3の間に非磁性元素による中間層を設け
ると、数十人の僅かな厚さでも中間層を介しての交換相
互作用は激減するので、見かけ上のσ胃は小さくなる。
Therefore, the best method at present is to reduce the Mi wall energy a. For example, if an intermediate layer made of a non-magnetic element is provided between the first magnetic layer 2 and the second magnetic layer 3, the exchange interaction through the intermediate layer will be drastically reduced even if the thickness is only a few tens of layers, so the apparent The upper σ stomach becomes smaller.

ところが、実際に適当な大きさのaWを有する光磁気媒
体を再現性良く作製しようとしても、前記中間層の膜厚
依存性が大きいために再現性がないという欠点がある。
However, even if an attempt is made to actually produce a magneto-optical medium having an appropriate size of aW with good reproducibility, there is a drawback that reproducibility is not possible due to the large dependence on the thickness of the intermediate layer.

そこで、研究を進め、第2磁性層中に非磁性元素を混入
したところ、交換相互作用を減少させる物質が層内に分
散していることとなり、第1、第2磁性層の磁壁な介し
て、第2磁性層に働く交換力の大きさを上記の中間層を
設けた場合と同様に減少させることができるにもかかわ
らず、その中間層とは違い第2磁性層に働く交換力を再
現性良く設定できることが明らかになった。
Therefore, we proceeded with our research and mixed a non-magnetic element into the second magnetic layer, and found that a substance that reduces exchange interaction was dispersed within the layer, and it was found that the substance that reduces the exchange interaction was dispersed within the layer, and the , although the magnitude of the exchange force acting on the second magnetic layer can be reduced in the same way as when the above-mentioned intermediate layer is provided, unlike the intermediate layer, the exchange force acting on the second magnetic layer cannot be reproduced. It became clear that the settings could be easily configured.

よって、図示した光磁気記録媒体の第2磁性層には非磁
性元素が含有されており、その非磁性元素としては、第
2磁性層に混入させたとき、その層のMgに影響を与え
にくい(MSを減少させにくい、キュリー温度を低下さ
せにくい)ものが利用されている。その好ましい例とし
ては、Cu。
Therefore, the second magnetic layer of the illustrated magneto-optical recording medium contains a non-magnetic element, and when mixed into the second magnetic layer, the non-magnetic element does not easily affect Mg in that layer. (hard to reduce MS and hard to lower Curie temperature) are used. A preferred example thereof is Cu.

Ag、Ti、Mn、 B 、 Pt、 Si、Ge等が
挙げられる。その添加量は原子量比で2%〜70%程度
が好ましい。
Examples include Ag, Ti, Mn, B, Pt, Si, and Ge. The amount added is preferably about 2% to 70% in terms of atomic weight.

キュリー温度の低下は約30℃程度以内に押さえること
が好ましいが、できたら、キュリー温度は低下しない方
がよい。
It is preferable to suppress the decrease in the Curie temperature to within about 30° C., but if possible, it is better not to decrease the Curie temperature.

ここで、キュリー温度の低下は、主として、添加した非
磁性元素が第2磁性層の希土類元素あるいは遷移金属と
合金化するため、起こると考えられる。そこで、これを
阻止すべく更に検討を重ねたところ、第2磁性層の成膜
に際して、希土類元素、遷移金属元素の蒸発源と、非磁
性層元素の蒸発源とを分離して設け、好ましくは基板を
回転させながら、通常のスパッタ法、イオンビームによ
る蒸着あるいはスパッタ法、電子ビーム蒸着法。
Here, it is thought that the decrease in Curie temperature occurs mainly because the added nonmagnetic element is alloyed with the rare earth element or transition metal of the second magnetic layer. In order to prevent this, further studies were conducted and it was found that when forming the second magnetic layer, an evaporation source for rare earth elements and transition metal elements and an evaporation source for non-magnetic layer elements should be provided separately. Regular sputtering, ion beam evaporation or sputtering, and electron beam evaporation are performed while rotating the substrate.

クラスタービーム蒸着法等の成膜法にて成膜することが
有効であることが、明らかになった。すなわち、この点
が前述したように本発明の最大の特徴であり、これによ
って、非磁性層元素を多量に添加してもキュリー温度の
低下が少なく、MS低下による悪影響、つまり第1、第
2磁性層の記録感度、記録状態への悪影響を及ぼすこと
なく、見かけ上のaWを減少させることができるように
なった。この原因は、微視的に見た場合には、希土類遷
移金属金属と非磁性層元素の積層構造が形成されるため
と考えられる。
It has become clear that forming a film using a film forming method such as cluster beam evaporation is effective. That is, as mentioned above, this is the greatest feature of the present invention, and as a result, even if a large amount of non-magnetic layer elements are added, the Curie temperature does not decrease much, and the adverse effects caused by the decrease in MS, that is, the first and second It has become possible to reduce the apparent aW without adversely affecting the recording sensitivity and recording state of the magnetic layer. The reason for this is thought to be that, when viewed microscopically, a laminated structure of the rare earth transition metal and the nonmagnetic layer element is formed.

なお、両磁性層2.3は、記録時の実効的バイアス磁界
の大きさ、あるいは二値の記録ビットの安定性などを考
えると、交換結合をしていることが望ましい。
Note that, in consideration of the magnitude of the effective bias magnetic field during recording or the stability of binary recorded bits, it is desirable that both magnetic layers 2.3 are exchange-coupled.

本発明を利用して製造した第1図(b)の光磁気記録媒
体において、4.5は両磁性層の耐久性を向上させるた
めのあるいは光磁気効果を向上させるための保護膜であ
る。
In the magneto-optical recording medium of FIG. 1(b) manufactured using the present invention, 4.5 is a protective film for improving the durability of both magnetic layers or for improving the magneto-optical effect.

6は、貼り合わせ用基板7を貼り合わすための接着層で
ある。貼り合わせ用基板7にも、2から5までの層を積
層し、これを接着すれば両面で記録・再生が可能となる
6 is an adhesive layer for bonding the bonding substrate 7 together. By laminating 2 to 5 layers on the bonding substrate 7 and gluing them together, recording and reproduction can be performed on both sides.

以下、第2図〜第4図を用いて記録の過程を示すが、記
録前、両磁性層2と3の磁化の安定な向きは平行(同じ
向き)でも反平行(逆方向)でも良い。第2図では磁化
の安定な向きが平行な場合について説明する。
The recording process will be described below with reference to FIGS. 2 to 4. Before recording, the stable magnetization directions of both magnetic layers 2 and 3 may be parallel (same direction) or antiparallel (opposite directions). In FIG. 2, a case will be explained in which the stable directions of magnetization are parallel.

第3図の35は、上述したような構成を有する光磁気デ
ィスクである。例えば、この磁性層のある一部の磁化状
態が初め第2図(a)のようになっているとする。光磁
気ディスク35はスピンドルモータにより回転して、磁
界発生部34を通過する。このとき、磁界発生部34の
磁界の大きさを両磁性層2と3の保磁力の間の値に設定
すると(磁界の向きは本実施例では上向き)、第2図(
b)に示す様に第2磁性層3は一様な方向に磁化され、
一方、第1磁性層2の磁化は初めのままである。
35 in FIG. 3 is a magneto-optical disk having the configuration described above. For example, suppose that the magnetization state of a certain part of this magnetic layer is initially as shown in FIG. 2(a). The magneto-optical disk 35 is rotated by a spindle motor and passes through the magnetic field generator 34 . At this time, if the magnitude of the magnetic field of the magnetic field generator 34 is set to a value between the coercive forces of both magnetic layers 2 and 3 (the direction of the magnetic field is upward in this embodiment), as shown in FIG.
As shown in b), the second magnetic layer 3 is magnetized in a uniform direction,
On the other hand, the magnetization of the first magnetic layer 2 remains unchanged.

次に光磁気ディスク35が回転して記録・再生ヘッド3
1を通過するときに、記録信号発生器32からの信号に
従フて、2種類(第1種と第2種)のレーザーパワー値
を持つレーザービームをディスク面に照射する。第1種
のレーザーパワーは該ディスクを第1磁性層2のキュリ
ー点付近まで昇温するだけのパワーであり、第2種のレ
ーザーパワーは該ディスクを第2磁性層3のキュリー点
付近まで昇温可能なパワーである。即ち、両磁性層2.
3の保磁力と温度との関係の概略を示した第4図におい
て、第1種のレーザーパワーはTL付近、第2種のレー
ザーパワーはT、付近までディスクの温度を上昇できる
Next, the magneto-optical disk 35 rotates and the recording/reproducing head 3
1, laser beams having two types of laser power values (first type and second type) are irradiated onto the disk surface in accordance with a signal from the recording signal generator 32. The first type of laser power is enough to raise the temperature of the disk to around the Curie point of the first magnetic layer 2, and the second type of laser power is enough to raise the temperature of the disk to around the Curie point of the second magnetic layer 3. It is a power that can be heated. That is, both magnetic layers 2.
In FIG. 4, which shows an outline of the relationship between coercive force and temperature in No. 3, the first type of laser power can raise the temperature of the disk to around TL, and the second type of laser power can raise the temperature of the disk to around T.

第1種のレーザーパワーにより第1磁性層2は、キュリ
ー点付近まで昇温するが第2磁性層3はこの温度でビッ
トが安定に存在する保磁力を有しているので記録時のバ
イアス磁界を適正に設定しておくことにより、第2図(
b)のいづれからも第2図(c)のようなビットが形成
される(第1種の予備記録)。
The temperature of the first magnetic layer 2 is raised to near the Curie point by the first type of laser power, but the second magnetic layer 3 has a coercive force that allows bits to stably exist at this temperature, so the bias magnetic field during recording is By setting properly, Figure 2 (
A bit as shown in FIG. 2(c) is formed from any of the bits (b) (first type preliminary recording).

ここでバイアス磁界を適正に設定するとは、次のような
意味である。即ち、第1種の予備記録では、第2磁性層
3の磁化の向きに対して安定な向きに(ここでは同じ方
向に)第1磁性層2の磁化が配列する力(交換力)を受
けるので2本来はバイアス磁界は必要でない。しかし、
バイアス磁界は後述する第2種のレーザーパワーを用い
た予備記録では第2磁性層3の磁化反転を補助する向き
(すなわち、第1種の予備記録を妨げる向き)に設定さ
れる。そして、このバイアス磁界は、第1種、第2種ど
ちらのレーザーパワーの予備記録でも、大きさ、方向を
同じ状態に設定しておくことが便宜上好ましい。
Here, setting the bias magnetic field appropriately means the following. That is, in the first type of preliminary recording, the magnetization of the first magnetic layer 2 receives a force (exchange force) that aligns it in a stable direction (here, in the same direction) as the direction of magnetization of the second magnetic layer 3. Therefore, a bias magnetic field is not necessary in the first place. but,
The bias magnetic field is set in a direction that assists magnetization reversal of the second magnetic layer 3 in preliminary recording using the second type of laser power (described later) (that is, in a direction that hinders the first type of preliminary recording). For convenience, it is preferable that the bias magnetic field is set to have the same magnitude and direction in preliminary recording with either the first type or the second type of laser power.

かかる観点からバイアス磁界の設定は次記に示す原理に
よる第2種のレーザーパワーの予備記録に必要最小限の
大きさに設定しておくことが好ましく、これを考慮した
設定が前でいう適正な設定である。
From this point of view, it is preferable to set the bias magnetic field to the minimum size necessary for preliminary recording of the second type of laser power based on the principle shown below, and settings that take this into account are the appropriate setting as mentioned above. It is a setting.

次に第2種の予備記録について説明する。Next, the second type of preliminary recording will be explained.

第2種のレーザーパワーにより、第2磁性層3のキュリ
ー点近くまで昇温させる(第2種の予備記録)と、上述
のように設定されたバイアス磁界により第2磁性層3の
磁化の向きが反転する。続いて第1磁性層2の磁化も第
2磁性層3に対して安定な向きに(ここでは同じ方向に
)配列する。
When the temperature of the second magnetic layer 3 is raised to near the Curie point using the second type of laser power (second type of preliminary recording), the direction of magnetization of the second magnetic layer 3 is changed by the bias magnetic field set as described above. is reversed. Subsequently, the magnetization of the first magnetic layer 2 is also aligned in a stable direction (here, in the same direction) with respect to the second magnetic layer 3.

即ち、第2図(b)のいづれからも第2図(d)のよう
なビットが形成される。
That is, a bit as shown in FIG. 2(d) is formed from any of the bits shown in FIG. 2(b).

このように、バイアス磁界と、信号に応じて変わる第1
種及び第2種のレーザーパワーとによって、光磁気ディ
スクの各箇所は第2図(C)か(d)の状態に予備記録
されることになる。
In this way, the bias magnetic field and the first
Depending on the laser power of the seed and the second type, each location on the magneto-optical disk is preliminarily recorded in the state shown in FIG. 2(C) or FIG. 2(d).

次に光磁気ディスク35を回転させ、予備記録のビット
(C) 、 (d)が磁界発生部34を再び通過すると
、磁界発生部34の磁界の大きさは前述したように磁性
層2と3の保磁力間に設定されているので、記録ビット
(C)は、変化が起こらずに(e)の状態である(fi
終的な記録状態)。一方、記録ビット(d)は第2磁性
層3が磁化反転を起こして(f)の状態になる(もう一
つの最終的な記録状態)。
Next, when the magneto-optical disk 35 is rotated and the preliminary recorded bits (C) and (d) pass through the magnetic field generating section 34 again, the magnitude of the magnetic field of the magnetic field generating section 34 changes between the magnetic layers 2 and 3 as described above. Therefore, the recording bit (C) remains in the state (e) without any change (fi
final recording state). On the other hand, in the recording bit (d), the second magnetic layer 3 undergoes magnetization reversal and becomes the state (f) (another final recording state).

(f)の記録ビットの状態が安定に存在する為には、第
2磁性層3の飽和磁化の大きさをMs、膜厚をり、@性
層2.3間の磁壁エネルギーをσ胃とすると、前述した
ように次の様な関係があれば良い。
In order for the state of the recorded bit (f) to exist stably, the magnitude of the saturation magnetization of the second magnetic layer 3 must be Ms, the film thickness must be changed, and the domain wall energy between the Then, as mentioned above, the following relationship is sufficient.

ここで0w72M5hは第2磁性層に働く交換力の強さ
を示す。つまり、0w / 2M5hの大きさの磁界で
第2磁性層3の磁化の向きを、第1磁性層2の磁化の向
きに対して安定な方向へ(この場合は同じ方向)向けよ
うとする。そこで第2磁性層3がこの磁界に抗して磁化
が反転しないためには第2磁性層3の保磁力をHLとし
てHL>0w72M5hであればよい。
Here, 0w72M5h indicates the strength of the exchange force acting on the second magnetic layer. That is, a magnetic field with a magnitude of 0w/2M5h attempts to direct the magnetization direction of the second magnetic layer 3 in a direction that is stable with respect to the magnetization direction of the first magnetic layer 2 (in this case, the same direction). Therefore, in order to prevent the magnetization of the second magnetic layer 3 from being reversed against this magnetic field, it is sufficient that the coercive force of the second magnetic layer 3 is HL>0w72M5h.

記録ビットの状態(e)と(f)は、記録時のレーザー
のパワーで制御され、記録前の状態には依存しないので
、重ね書き(オーバーライド)が可能である。記録ビッ
ト(e)と(f)は、再生用のレーザービームを照射し
、再生光を記録信号再生器33で処理することにより、
再生できる。
The states (e) and (f) of the recorded bits are controlled by the power of the laser during recording and do not depend on the state before recording, so overwriting is possible. Recording bits (e) and (f) are generated by irradiating a laser beam for reproduction and processing the reproduction light by a recording signal regenerator 33.
Can be played.

第2図の説明では第1磁性層2と第2Mi性層3の磁化
の向きが同じときに安定な例を示したが、磁化の向きが
反対のときに安定な磁性層についても同様に考えられる
。第5図に、この場合の記録過程の磁化状態を第2図に
対応させて示しておく。
In the explanation of FIG. 2, an example was shown in which the first magnetic layer 2 and the second Mi layer 3 are stable when their magnetization directions are the same, but the same idea can be applied to magnetic layers that are stable when their magnetization directions are opposite. It will be done. FIG. 5 shows the magnetization state during the recording process in this case, corresponding to FIG. 2.

〔実施例〕〔Example〕

実施例1 3元のターゲット源を備えたスパッタ装置内に、プリグ
ループ、プリフォーマット信号の刻まれたポリカーボネ
ート製のディスク状基板を、ターゲットとの間の距離1
0cmの間隔にセットし、15rpmで回転させた。
Example 1 A polycarbonate disc-shaped substrate with pregroup and preformat signals engraved thereon is placed in a sputtering apparatus equipped with three target sources at a distance of 1 from the target.
They were set at 0 cm intervals and rotated at 15 rpm.

スパッタ装置内をI×10福Torr以下に排気後、ア
ルゴン中で、第1のターゲットより、スパッタ速度10
0人/win、スパッタ圧sx to−:(Torrで
ZnSを保護層として1000人の厚さに設けた。次に
アルゴン中で、第2のターゲットよりスパッタ速度io
o人/win、スパッタ圧5X 10−’ Torrで
TbFe合金をスパッタし、膜厚300 A、 TI、
=約140℃、HH=約10KOeのTb+aFeaz
のFe元素の副格子磁化優位の第1磁性層を形成した。
After evacuating the inside of the sputtering apparatus to below I×10 Torr, the sputtering speed was set to 10 from the first target in argon.
0 people/win, sputtering pressure sx to -: (Torr) ZnS was formed as a protective layer to a thickness of 1000 people. Next, in argon, sputtering speed io was increased from the second target.
TbFe alloy was sputtered at a sputtering pressure of 5X 10-' Torr with a film thickness of 300 A, TI,
= approx. 140°C, HH = approx. 10 KOe Tb+aFeaz
A first magnetic layer was formed in which the sublattice magnetization of the Fe element was dominant.

次に、アルゴン中、スパッタ圧5x IQ−:I To
rrで第3のターゲットよりTbFeCo合金を、第4
のターゲットよりCuを同時にスパッタし、スパッタ速
度100人/minにて、膜厚500人、T、4=約2
00℃、HL=約1にOeのTI)+a、 4Fesa
CO6,s CLI2oのTb元素の副格子磁化優位の
第2磁性層を形成した。
Next, in argon, sputtering pressure 5x IQ-:I To
TbFeCo alloy from the third target at rr,
Cu was simultaneously sputtered from the target at a sputtering speed of 100 sputtering/min, a film thickness of 500 sputtering, T, 4 = approximately 2
00°C, HL = approx. 1 Oe TI) + a, 4Fesa
A second magnetic layer in which the sublattice magnetization of the Tb element of CO6,s CLI2o is dominant was formed.

次にアルゴン中で第1のターゲットよりスパッタ速度1
00人/min、スパッタ圧5 X 10”3Torr
で、ZnSを保護層として2000人の厚さに設けた。
Next, in argon, the first target is sputtered at a sputtering rate of 1
00 people/min, sputtering pressure 5 x 10” 3 Torr
Then, ZnS was formed as a protective layer to a thickness of 2000 mm.

次に膜形成を終えた上記の基板を、ホットメルト接着剤
を用いて、ポリカーボネートの貼り合わせ用基板と貼り
合わせ光磁気ディスクのサンプルを作成した。
Next, the above substrates on which the film had been formed were bonded to a polycarbonate bonding substrate using a hot melt adhesive to create a sample of a magneto-optical disk.

このサンプルを記録再生装置にセットし、2.5にOe
の磁界発生部を、線速度約8 m/secで通過させつ
つ、約1μに集光した830mmの波長のレーザービー
ムを50%のデユーティで2 MHzで変調させながら
、4mWと8mWの2値のレーザーパワーで記録を行な
った。バイアス磁界は1000eであった。その後1.
5*Wのレーザービームを照射して再生を行なフたとこ
ろ、2値の信号の再生ができた。
Set this sample on the recording/playback device and set Oe to 2.5.
A laser beam with a wavelength of 830 mm condensed to approximately 1 μm is passed through the magnetic field generating part at a linear velocity of approximately 8 m/sec, and is modulated at 2 MHz with a duty of 50%. Recording was performed using laser power. The bias magnetic field was 1000e. After that 1.
After irradiation with a 5*W laser beam for reproduction, a binary signal could be reproduced.

次に、上記と同様の実験を、全面記録された後の光磁気
ディスクについて行なった。この結果前に記録された信
号成分は検出されず、オーバーライドが可能であること
が確認された。
Next, an experiment similar to the above was conducted on the magneto-optical disk after the entire surface had been recorded. As a result, previously recorded signal components were not detected, confirming that overriding is possible.

実施例2と比較例 実施例1と同様な方法にて、第2磁性層に添加する非磁
性元素の種類、添加量、及び成膜時の基板回転数を変イ
ヒさせた以外は、あるいは比較のため第2磁性層を1つ
のターゲットより成膜した以外は、実施例1と同じ材料
、膜厚、保磁力の、表1に示すような光磁気ディスクの
サンプルを作製した。
Example 2 and Comparative Example The same method as Example 1 was used except that the type and amount of the non-magnetic element added to the second magnetic layer and the number of rotations of the substrate during film formation were changed. Therefore, magneto-optical disk samples as shown in Table 1 were prepared using the same materials, film thickness, and coercive force as in Example 1, except that the second magnetic layer was formed using one target.

実施例1を含めた各サンプルについて、記録ビット(f
)の安定性を調べるために、外部磁界を印加しながら第
1、第2磁性層の磁化の反転が起きる磁界の大きさを調
べた。次に外部磁界を印加しない状態での記録ビット(
f)の安定性を調べた。安定なものはO印を、そうでな
いものはX印を表1に付した。
For each sample including Example 1, the recording bit (f
), while applying an external magnetic field, the magnitude of the magnetic field at which reversal of the magnetization of the first and second magnetic layers occurs was investigated. Next, record bits without applying an external magnetic field (
The stability of f) was investigated. Those that are stable are marked with an O, and those that are not are marked with an X in Table 1.

次に表1に示した各サンプルについて、第2磁性層の膜
厚だけを変化させたサンプルを作製し、記録ビット(f
)が不安定になり始めるときの第2磁性層の膜厚を調べ
た。この結果も表1に示す。
Next, for each sample shown in Table 1, samples were prepared in which only the thickness of the second magnetic layer was changed, and the recording bit (f
) The thickness of the second magnetic layer when it starts to become unstable was investigated. The results are also shown in Table 1.

表1の結果より、第2磁性層の蒸発源(スパッタ源)を
磁性材料と非磁性材料とに分けたサンプルについては、
いずれもキュリー温度の低下が少なくビット(f)の安
定性が良いことがわかる。
From the results in Table 1, for the sample in which the evaporation source (sputter source) of the second magnetic layer is divided into magnetic material and non-magnetic material,
It can be seen that in all cases, the Curie temperature decreases little and the stability of the bit (f) is good.

サンプル2−4.2−8.2−12でビット(f)の安
定性がx印のものは、第2磁性層の保磁力が低下したた
めである。特に蒸発源を分離した効果は、Cr、  A
nなどの、遷移金属に添加してキュリー温度を低下させ
る作用の大きな材料について著しい。
In sample 2-4.2-8.2-12, the stability of bit (f) is marked x because the coercive force of the second magnetic layer has decreased. In particular, the effect of separating the evaporation sources is that Cr, A
This is remarkable for materials such as n, which have a large effect of lowering the Curie temperature when added to transition metals.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、低いキュリー点(”rt、
 >と高い保磁力(I(H)を有する第1の磁性層と、
相対的に高いキュリー点(T、)と低い保磁力()II
、 )を有する第2の磁性層とからなる二層構造の磁性
層を有し、その第2磁性層に非磁性元素を添加して第2
磁性層に働く交換力を減少させるよう調整した光磁気記
録媒体を用い、記録時に、記録ヘッドと別位置に磁界発
生部を設け、2値レーザーパワーで記録することによっ
て、良好な重ね書き(オーバーライド)が可能になった
As explained in detail above, the low Curie point ("rt,
> and a first magnetic layer having a high coercive force (I(H));
Relatively high Curie point (T, ) and low coercive force ()II
, ), and a second magnetic layer is formed by adding a non-magnetic element to the second magnetic layer.
Using a magneto-optical recording medium adjusted to reduce the exchange force acting on the magnetic layer, a magnetic field generating section is installed at a separate position from the recording head during recording, and recording is performed using binary laser power, thereby achieving good overwriting. ) is now possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は各々本発明で使用する光磁
気媒体の一例構成を示す図、第2図は、本発明の記録法
を実施中の、磁性層2.3の磁化の向きを示す図、第3
図は、記録・再生装置の概念図、第4図は内磁性層2と
3の保磁力と温度との関係を示す概略図である。第5図
は本発明の他の実施例における磁性層の磁化状態を示す
図である。 1ニブリグルーブ付の透光性基板、 2.3:磁性層 4.5:保護層、 6:接着層、 7:貼り合わせ用基板、 31:記録・再生用ヘッド、 32:記録信号発生器、 33:記録信号再生器 34:磁界発生部 35:光磁気ディスク、
FIGS. 1(a) and 1(b) each show an example of the structure of the magneto-optical medium used in the present invention, and FIG. 2 shows the magnetization of the magnetic layer 2.3 during the recording method of the present invention. Diagram showing orientation, 3rd
The figure is a conceptual diagram of the recording/reproducing apparatus, and FIG. 4 is a schematic diagram showing the relationship between the coercive force of the inner magnetic layers 2 and 3 and temperature. FIG. 5 is a diagram showing the magnetization state of the magnetic layer in another embodiment of the present invention. 1 Transparent substrate with nibli groove, 2.3: Magnetic layer 4.5: Protective layer, 6: Adhesive layer, 7: Bonding substrate, 31: Recording/reproducing head, 32: Recording signal generator, 33 : Recorded signal regenerator 34 : Magnetic field generator 35 : Magneto-optical disk,

Claims (1)

【特許請求の範囲】 1)低いキュリー点(T_L)と高い保磁力(H_H)
とを有する第1磁性層およびこの磁性層に比べて相対的
に高いキュリー点(T_H)と低い保磁力(H_L)と
を有する第2磁性層から構成され、その各層とも希土類
元素と遷移金属との非晶質合金を主成分とする二層構造
の交換結合している垂直磁化膜を基板上に有して成り、
第2磁性層の飽和磁化をMs、膜厚をh、二つの磁性層
間の磁壁エネルギーをσwとすると、 H_H>H_L>(σw/2Msh) を満たしている光磁気記録媒体の製造法であって、 その第2磁性層を、希土類元素−遷移金属材料と非磁性
元素材料とを、離れた位置に設けられた各々の蒸発源よ
り同時に基板に蒸着して、成膜することを特徴とする光
磁気媒体の製造法。
[Claims] 1) Low Curie point (T_L) and high coercive force (H_H)
and a second magnetic layer having a relatively high Curie point (T_H) and low coercive force (H_L) compared to this magnetic layer, each of which contains a rare earth element and a transition metal. It consists of a two-layer exchange-coupled perpendicular magnetization film mainly composed of an amorphous alloy of
A method for producing a magneto-optical recording medium that satisfies H_H>H_L>(σw/2Msh), where the saturation magnetization of the second magnetic layer is Ms, the film thickness is h, and the domain wall energy between the two magnetic layers is σw. , the second magnetic layer is formed by simultaneously depositing a rare earth element-transition metal material and a nonmagnetic element material onto the substrate from separate evaporation sources provided at separate positions. Method of manufacturing magnetic media.
JP5671987A 1987-03-13 1987-03-13 Production of magneto-optical recording medium Granted JPS63224054A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5671987A JPS63224054A (en) 1987-03-13 1987-03-13 Production of magneto-optical recording medium
EP19880302220 EP0282356B1 (en) 1987-03-13 1988-03-14 Magneto-optical recording medium and method
DE19883852329 DE3852329T2 (en) 1987-03-13 1988-03-14 Magneto-optical recording medium and method.
US07/693,067 US5265073A (en) 1987-03-13 1991-05-01 Overwritable magneto-optical recording medium having two-layer magnetic films wherein one of the films contains one or more of Cu, Ag, Ti, Mn, B, Pt, Si, Ge, Cr and Al, and a method of recording on the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5671987A JPS63224054A (en) 1987-03-13 1987-03-13 Production of magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS63224054A true JPS63224054A (en) 1988-09-19
JPH0535496B2 JPH0535496B2 (en) 1993-05-26

Family

ID=13035296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5671987A Granted JPS63224054A (en) 1987-03-13 1987-03-13 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPS63224054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003892A1 (en) * 1992-07-29 1994-02-17 Seiko Epson Corporation Magneto-optic recording medium and method of its manufacture method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016205657A1 (en) * 2015-06-19 2016-12-22 Vector Surgical, Llc Ink for marking a tissue specimen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003892A1 (en) * 1992-07-29 1994-02-17 Seiko Epson Corporation Magneto-optic recording medium and method of its manufacture method
US5772856A (en) * 1992-07-29 1998-06-30 Seiko Epson Corporation Magneto-optical recording medium and method of manufacturing the same
US5976688A (en) * 1992-07-29 1999-11-02 Seiko Epson Corporation Magneto-optical recording medium and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0535496B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
US5265073A (en) Overwritable magneto-optical recording medium having two-layer magnetic films wherein one of the films contains one or more of Cu, Ag, Ti, Mn, B, Pt, Si, Ge, Cr and Al, and a method of recording on the same
JPH0535499B2 (en)
JPH0522303B2 (en)
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPH0395745A (en) Magneto-optical recording method and recording device
JPH0542062B2 (en)
JPH0535494B2 (en)
JPS63224054A (en) Production of magneto-optical recording medium
JPH0522301B2 (en)
JPS63153752A (en) Magneto-optical recording medium and its recording method
JPH0535498B2 (en)
JPS63193351A (en) Magneto-optical recording medium and recording system
JPH0535493B2 (en)
JP2555272B2 (en) Magneto-optical recording / reproducing method
JPS63224053A (en) Magneto-optical recording medium and recording method
JP2589453B2 (en) Magneto-optical recording method
JPS63237242A (en) Magneto-optical recording system
JP2674815B2 (en) Magneto-optical recording method
JPH0522302B2 (en)
JP2770836B2 (en) Method for manufacturing magneto-optical recording medium
JPH0522300B2 (en)
JPH0535492B2 (en)
JPH0535497B2 (en)
JPS63191338A (en) Magneto-optical recording medium and recording system
JPH0522306B2 (en)