JPH0522302B2 - - Google Patents

Info

Publication number
JPH0522302B2
JPH0522302B2 JP7172187A JP7172187A JPH0522302B2 JP H0522302 B2 JPH0522302 B2 JP H0522302B2 JP 7172187 A JP7172187 A JP 7172187A JP 7172187 A JP7172187 A JP 7172187A JP H0522302 B2 JPH0522302 B2 JP H0522302B2
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
recording
magnetization
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7172187A
Other languages
Japanese (ja)
Other versions
JPS63239636A (en
Inventor
Yoichi Oosato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7172187A priority Critical patent/JPS63239636A/en
Publication of JPS63239636A publication Critical patent/JPS63239636A/en
Publication of JPH0522302B2 publication Critical patent/JPH0522302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、磁気カー効果を利用して読出しがで
きるキユリー点書込みタイプの新規な光磁気記録
媒体、及びこれを使用した重ね書き可能な光磁気
記録方法に関する。 〔従来の技術〕 消去可能な光デイスクメモリとして光磁気デイ
スクが知られている。光磁気デイスクは、従来の
磁気ヘツドを使つた磁気記録媒体と比べて高密度
記録、非接触での記録再生などが可能であるとい
う長所がある反面、記録前に一度記録部分を消去
しなければならない(一方向に着磁しなければな
らない)という欠点があつた。この欠点を補う為
に、記録再生用ヘツドと消去用ヘツドを別々に設
ける方式、あるいは、レーザーの連続ビームを照
射しながら、同時に印加する磁場を変調しつつ記
録する方式などか提案されている。 〔発明が解決しようとする問題点〕 しかし、これらの方法は、装置が大がかりとな
り、コスト高になる欠点あるいは高速の変調が出
来ないなどの欠点を有する。 本発明は上述従来例の欠点を除去するためにな
されたものであり、新規な光磁気記録媒体と、こ
れを利用することによつて、従来の装置構成に簡
単な構造の磁界発生手段を付設するだけで、磁気
記録媒体と同様に重ね書き(オーバーライト)を
可能とした、光磁気記録方法とを提供することを
目的とする。 〔問題点を解決するための手段〕 上記の目的は以下の本発明によつて達成でき
る。即ち、キユリー点T1と保磁力H1を有する第
1磁性層と、キユリー点T2と保磁力H2を有する
第2磁性層と、キユリー点T3と保磁力H3を有す
る第3磁性層とからなる三層構造の垂直磁化膜を
少なくとも基板上に有して成る光磁気記録媒体で
あつて、 (A) 各磁性層が希土類と遷移金属の合金であるこ
と、 (B) H1>H3>H2 T3>T1>T2、 (C) 第2磁性層を介して現れる第1磁性層と第3
磁性層の見かけの磁壁エネルギーをσw13、第
1磁性層,第3磁性層の膜厚を順にh1,h3,と
すると、 σw13/2Ms1h1<H1且つ σw13/2Ms3h3<H3 を満たしている光磁気記録媒体と、これを使用し
た、後に代表的態様が示される記録方法である。 以下、図面を参照して本発明を詳細に説明す
る。 第1図a,bは各々本発明に用いる光磁気記録
媒体の一実施例を示す模式断面図である。第1図
aの光磁気記録媒体は、プリグルーブが設けられ
た透光性の基板B上に、第1の磁性層1と第2の
磁性層2と第3の磁性層3とが積層されたもので
ある。第1磁性層1のキユリー点をT1、その保
磁力をH1、第3磁性層3のキユリー点をT3、そ
の保磁力をH3とすると、 H1>H3 T3>T1を満たす。 (保磁力は室温におけるものである) ただし、通常は第1磁性層1のT1は70〜200
℃、H1は2〜10KOe、第3磁性層3のT3は100
〜400℃、H3は0.1〜4KOe程度の範囲内に設定す
るとよい。第2磁性層のキユリー点T2、保磁力
H2の詳細については後に詳述する。 本発明の光磁気記録媒体の第1磁性層1と第3
磁性層3とは第2磁性層を介して比較的弱く結合
している。 本発明の光磁気記録媒体では、第2磁性層を介
して現れる第1磁性層1と第3磁性層3の間の見
かけの磁壁エネルギーをσw13、第1磁性層1の
膜厚をh1,第3磁性層3の膜厚をh3、これらの層
の飽和磁化の大きさ順にMs1,Ms3とすると、2
つの磁性層1,3は次の式を満たすように結合し
ている。 σw13/2Ms1h1<H1 σw13/2Ms3h3<H3 このような結合が必要な理由の、詳細について
も後述するが、簡単に言えば記録によつて最終的
に形成されるビツトの磁化(第2図fに示す状
態)を安定にするためである。よつて、2つの磁
性層1,3は、上記の関係式を満たすようにその
膜厚、保磁力、飽和磁化の大きさ、磁壁エネルギ
ーなどが設定されればよい。 各磁性層の材料には、垂直磁気異方性を示し且
つ磁気光学効果を呈する、GdCo,GdFe,
TbFe,DyFe,GdTbFe,TbDyFe,GdFeCo,
TbFeCo,GdTbCo,GdTbFeCo等の希土類元素
と遷移金属元素との非晶質磁性合金が使用でき
る。 本発明の光磁気記録媒体の他の例である第1図
bにおいて、4,5は3つの磁性層1,2,3の
耐久性を向上させるためのあるいは光磁気効果を
向上させるための保護膜である。 6は、貼り合わせ用基板7を貼り合わすための
接着層である。貼り合わせ用基板7にも、1から
5までの層を積層し、これを接着すれば表裏で記
録・再生が可能となる。 以下、第2図〜第4図を用いて本発明の記録の
過程を示す。 第3図の35は、上述したような構成を有する
光磁気デイスクである。例えば、この磁性層のあ
る一部の磁化状態が初め第2図aのようになつて
いる。即ち、第2図では、記録前、第1、第3磁
性層の磁化の向きが平行(同じ向き)なときに安
定である場合について説明する。 光磁気デイスク35はスピンドルモータにより
回転して、磁界発生部34を通過する。このと
き、磁界発生部34の磁界の大きさを第1磁性層
1と第3磁性層3の保磁力の間の値に設定すると
(磁界の向きは本実施例では上向き)、第2図bに
示す様に第3磁性層3は一様な方向に磁化され、
一方、第1磁性層1の磁化は初めのままである。 次に光磁気デイスク35が回転して記録・再生
ヘツド31を通過するときに、2種(第1種と第
2種)のレーザーパワー値を持つレーザービーム
を、記録信号発生器32からの信号に従つて、そ
のどちらかのパワーでもつて、デイスク面に照射
する。第1種のレーザーパワーは該デイスクを第
1磁性層1のキユリー点付近まで昇温するだけの
パワーであり、第2種のレーザーパワーは該デイ
スクを第3磁性層3のキユリー点付近まで昇温可
能なパワーである。即ち、両磁性層1,3の保磁
力と温度との関係の概略を示した第4図におい
て、第1種のレーザーパワーはT1付近(T1に近
い温度で、第1磁性層の磁化の向きを均一に第3
磁性層の向きに対して安定な方向に配列可能な温
度)、第2種のレーザーパワーはT3付近(T3に近
い温度で、第3磁性層の磁化の向きを均一に反転
可能な温度)までデイスクの温度を上昇できる。 第1種のレーザーパワーにより第1磁性層1と
第3磁性層3とは、第1磁性層1のキユリー点付
近まで昇温するが、第3磁性層3はこの温度でビ
ツトが安定に存在する保磁力を有しているのでバ
イアス磁界を適正に設定しておくことにより、第
2図bに示すどちらの磁化状態からも、第2図c
の様な記録ビツトが形成される(第1種の予備記
録)。 ここで、バイアス磁界を適正に設定するとは、
次のような意味である。 第1種の予備記録では第3磁性層3の磁化の向
きに対して安定な向きに(ここでは同じ方向に)
第1磁性層1の磁化が配列する力(交換力)を受
けるので、本来はバイアス磁界は必要でない。し
かし、バイアス磁界は後述する第2種のレーザー
パワーの予備記録では第3磁性層3の磁化反転を
補助する向きに設定される。そして、このバイア
ス磁界は、第1種,第2種どちらのレーザーパワ
ーの予備記録でも、大きさ、方向を同じ状態に設
定しておくことが便宜上好ましい。かかる観点か
らバイアス磁界の設定は次記に示す原理による第
2種のレーザーパワーの予備記録に必要な最小限
の大きさに設定しておくことが好ましく、この点
を考慮したのが前でいう適正に設定するという意
味である。 一方、第2種のレーザーパワーにより、第3磁
性層3のキユリー点近くまでデイスクを昇温させ
る(第2種の予備記録)と、上記のバイアス磁界
により第3磁性層3の磁化の向きが反転する。続
いて第1磁性層1の磁化も第3磁性層3に対して
安定な向きに(ここでは同じ方向に)配列する。
即ち、第2図bのどちらの磁化状態からも第2図
dのような予備記録のビツトが形成される。 このように、バイアス磁界と、信号に応じて変
わる第1種及び第2種のレーザーパワーとによつ
て、光磁気デイスクの各箇所は第2図cかdの状
態に予備記録されることになる。 次に光磁気デイスク35を回転させ、記録ビツ
トc,dが磁界発生部34を再び通過すると、磁
界発生部34は前述したように第1磁性層1と第
3磁性層3の間に設定されているので、記録ビツ
トcは、変化が起こらずにeの状態である。一
方、記録ビツトdは第3磁性層3が磁化反転を起
こしてfの状態になる。 fの記録ビツトの状態が安定に存在する為に
は、前記したように σw13/2Ms1h1<H1 σw13/2Ms3h3<H3 となつていることが必要である。 ここで、σw13/2Ms1h1は第1磁性層に働く交
換力の強さを示す。つまりσw13/2Ms1h1の大き
さの磁界で第1磁性層の磁化の向きを、第3磁性
層の磁化の向きに対して安定な方向へ(この場合
は同じ方向に)向けようとする。そこで第1磁性
層の磁化がこの磁界に抗して反転しないために
は、第1磁性層の保磁力H1が、この交換力より
大きければよい。つまりσw13/2Ms1h1<H1であ
ればよい。 同様にして、第3磁性層には界面磁壁より
σw13/2Ms3h3の大きさで、第1磁性層の磁化に
対して安定な向きに配列させる交換力が働くの
で、fの記録ビツトが安定なためにはσw13
2Ms3h3<H3であればよい。 かかる条件(第1,第3磁性層共、働いている
交換力よりも保磁力の方が大きい)を満たすよう
にするには、すなわち、第1,第3磁性層に働く
交換力が小さくなるようにするためには、前記し
たように両層の膜厚、飽和磁化を調整するば良い
が、記録感度あるいは保磁力には適正値があるの
で、任意には設定できない。そこで、本発明では
第2磁性層を、例えば、10〜150Åのごく小さい
厚さで設けることにより、第1磁性層1と第3磁
性層3の界面で働く交換相互作用を抑制し、第2
磁性層を介して現れる見かけ上のσw13の大きさ
を小さくすることを可能とした。 第2磁性層の保磁力については、第1種の予備
記録時に、第2図bにおいて、第2磁性層の磁化
が均一に、同じ方向に配列していることが望まし
い。 そこで、デイスクが回転して磁界発生部34を
通過したときに、第2磁性層の磁化も、第3磁性
層の磁化と同様に、磁界に対して安定な方向に磁
化が配列することが望ましい。 また、第2磁性層は第1磁性層か第3磁性層ど
ちらかの磁化の向きに対して常に安定な方向に配
列していることが望ましいので、保磁力H2は小
さい方が好ましい。 そこで、保磁力の関係はH1>H3>H2とすれば
良い。 第2磁性層に用いられる材料は第1,第2磁性
層と同じ希土類元素−遷移金属元素の合金である
が、キユリー温度が第1磁性層よりも低いことが
必要である。これは次のような理由による。 第1磁性層と第3磁性層の界面に働く交換力
(それぞれの原子の磁気モーメントを一定方向へ
配列させる力)の大きさは、それぞれの界面に配
位する原子の種類、数、そしてそれぞれの原子間
の交換定数(相互作用の大きさを示す)、そして、
それぞれの層のキユリー温度などで決められる。 キユリー温度が関与するというのは、例えば、
キユリー温度以上では熱運動により磁気モーメン
トの配列が無くなるので、交換力が働かなくなる
からである。そこで、第1,第3磁性層間に設け
た第2磁性層のキユリー温度が低い(室温に近
い)ときは、室温においても、熱運動により磁気
モーメントの配列が起こりにくいので、第1磁性
層と第3磁性層の間に働く交換力を減少させるこ
とができる。実際にはキユリー温度が室温以下の
第2磁性層を第1,第3磁性層で挟んだ構成で
は、第1,第3両磁性層からの交換力により、室
温においても第2磁性層の磁気モーメントの配列
が生じることも実験で確認した。 本発明の記録方法では、記録ビツトの状態eと
fは、記録時のレーザーのパワーで制御され、記
録前の状態には依存しないので、重ね書き(オー
バーライト)が可能である。記録ビツトeとf
は、再生用のレーザービームを照射し、再生光を
記録信号再生器33で処理することにより、再生
できる。 第2図の説明では第1磁性層1・第2磁性層2
と第3磁性層3との磁化の向きが平行なときに安
定な例を示したが、これらの磁化の向きが反平行
のときに安定な磁性層についても同様に考えられ
る。 〔実施例〕 実施例 1 4元のターゲツト源を備えたスパツタ装置内
に、プリグルーブ、プリフオーマツト信号の刻ま
れたポリカーボネート製のデイスク状基板を、タ
ーゲツトとの間の距離10cmの間隔にセツトし、回
転させた。 アルゴン中で、第1のターゲツトより、スパツ
タ速度70Å/min、スパツタ圧8×10-3Torrで
Si3N4を保護層として650Åの厚さに設けた。次
にアルゴン中で、第2のターゲツトよりスパツタ
速度50Å/min、スパツタ圧2×10-3Torrで
TbFeCo合金をスパツタし、膜厚300Å、キユリ
ー点T1=約160℃のTb17Fe80Co3の第1磁性層を
形成した。この第1磁性層自身のH1は約12KOe
であり、副格子磁化は遷移金属の方が大きかつ
た。 上記操作を複数回実施し、できた各々に第4の
ターゲツトよりDyFe合金を2×10-3Torrのアル
ゴン圧で、スパツタし、キユリー点T2約60℃、
H2500(Oe)のDy17Fe83の第2磁性層を設けた。
その膜厚はゼロ(このときは第2磁性層は設けて
ない)から70Åまで10Åずつ変化させた。第2磁
性層自身の副格子磁化は遷移金属元素の方が大き
かつた。 次に、各々に、アルゴン中で、第3のターゲツ
トより、スパツタ速度50Å/min、スパツタ圧2
×10-3TorrでかTbFeCoCu合金をスパツタし、
膜厚250Å、T3=約190℃、Tb23Fe51Co11Cu15
第3磁性層を形成した。この第3磁性層自身の
H3は1.1KOeであり、副格子磁化は希土類元素の
方が大きかつた。 次に、各々に第1のターゲツトよりSi3N4を先
程と同じ条件でスパツタし、保護層として1200Å
の厚さのSi3N4層を設けた。 次に膜形成を終えた各々の基板を、ホツトメル
ト接着剤を用いて、ポリカーボネートの貼り合わ
せ用基板と貼り合わせ複数の光磁気デイスクのサ
ンプルを作製した。 作成した各サンプルについて、ビツトの安定性
(特にfの状態での)を調べた。これは外部磁界
を印加しながら磁性層の磁化の反転の起こる磁界
をVSM(試料振動型磁化測定器)により測定し
た。 本実施例においては第3磁性層の磁化の方がよ
り小さな外部磁界で反転が開始するので、測定で
きたのは第3磁性層に働く交換力σw13/2Ms2h2
である。 次に光磁気デイスクのサンプルを記録再生装置
にセツトし、2KOeの磁界発生部を、線速度約
9m/secで通過させつつ、約1μに集光した830mm
の波長のレーザービームを50%のデユーテイで
2MHzで変調させながら、4mWと8mWの2値の
レーザーパワーで記録を行なつた。記録ヘツド部
でのバイアス磁界は120Oeであつた。 その後1mWのレーザービームを照射して再生
を行なつたところ、2値の信号の再生ができた。
この実験を、全面記録された後のサンプルについ
て行ない、前に記録された信号成分が検出されな
いかを、つまり、オーバーライトが可能であつた
か否かをチエツクした。以上の結果を表1にまと
めて示す。
[Industrial Application Field] The present invention relates to a novel magneto-optical recording medium of the Curie point writing type that can be read using the magnetic Kerr effect, and a magneto-optical recording method that allows overwriting using the same. [Prior Art] Magneto-optical disks are known as erasable optical disk memories. Magneto-optical disks have advantages over conventional magnetic recording media using magnetic heads, such as high-density recording and non-contact recording and playback, but on the other hand, the recorded area must be erased before recording. It has the disadvantage that it cannot be magnetized in one direction (it must be magnetized in one direction). To compensate for this drawback, proposals have been made such as a method in which a recording/reproducing head and an erasing head are provided separately, or a method in which recording is performed while irradiating a continuous laser beam while simultaneously modulating the applied magnetic field. [Problems to be Solved by the Invention] However, these methods have drawbacks such as the need for large-scale equipment and high cost, or the inability to perform high-speed modulation. The present invention was made in order to eliminate the drawbacks of the above-mentioned conventional example, and by using a new magneto-optical recording medium, a magnetic field generating means of a simple structure is added to the conventional device configuration. It is an object of the present invention to provide a magneto-optical recording method that enables overwriting in the same way as with magnetic recording media by simply performing the following steps. [Means for Solving the Problems] The above objects can be achieved by the following present invention. That is, a first magnetic layer having a Kyrie point T 1 and a coercive force H 1 , a second magnetic layer having a Kyrie point T 2 and a coercive force H 2 , and a third magnetic layer having a Kyrie point T 3 and a coercive force H 3 . A magneto-optical recording medium comprising a perpendicularly magnetized film having a three-layer structure on at least a substrate, the magnetic layer comprising: (A) each magnetic layer being an alloy of rare earth and transition metal; (B) H 1 >H 3 >H 2 T 3 >T 1 >T 2 , (C) The first magnetic layer and the third magnetic layer appear through the second magnetic layer.
If the apparent domain wall energy of the magnetic layer is σw 13 and the film thicknesses of the first and third magnetic layers are h 1 and h 3 in this order, then σw 13 /2Ms 1 h 1 <H 1 and σw 13 /2Ms 3 The present invention describes a magneto-optical recording medium that satisfies h 3 <H 3 and a recording method using the same, representative embodiments of which will be shown later. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIGS. 1a and 1b are schematic cross-sectional views showing one embodiment of a magneto-optical recording medium used in the present invention. The magneto-optical recording medium shown in FIG. 1a has a first magnetic layer 1, a second magnetic layer 2, and a third magnetic layer 3 laminated on a transparent substrate B provided with a pregroove. It is something that Let T 1 be the Kyrie point of the first magnetic layer 1, H 1 be its coercive force, T 3 be the Kyrie point of the third magnetic layer 3, and H 3 be its coercive force, then H 1 > H 3 T 3 > T 1 satisfy. (The coercive force is at room temperature.) However, usually the T 1 of the first magnetic layer 1 is 70 to 200.
℃, H 1 is 2 to 10 KOe, T 3 of the third magnetic layer 3 is 100
~400℃, H3 should be set within the range of about 0.1~4KOe. Curie point T 2 of the second magnetic layer, coercive force
Details of H 2 will be explained later. The first magnetic layer 1 and the third magnetic layer of the magneto-optical recording medium of the present invention
It is relatively weakly coupled to the magnetic layer 3 via the second magnetic layer. In the magneto-optical recording medium of the present invention, the apparent domain wall energy between the first magnetic layer 1 and the third magnetic layer 3 appearing through the second magnetic layer is σw 13 , and the film thickness of the first magnetic layer 1 is h 1 , the thickness of the third magnetic layer 3 is h 3 , and the saturation magnetization of these layers is Ms 1 and Ms 3 in order of magnitude, then 2
The two magnetic layers 1 and 3 are coupled so as to satisfy the following equation. σw 13 /2Ms 1 h 1 <H 1 σw 13 /2Ms 3 h 3 <H 3The reason why such a bond is necessary will be discussed in detail later, but to put it simply, it is This is to stabilize the magnetization of the bit (the state shown in FIG. 2f). Therefore, the film thickness, coercive force, magnitude of saturation magnetization, domain wall energy, etc. of the two magnetic layers 1 and 3 may be set so as to satisfy the above relational expression. The materials for each magnetic layer include GdCo, GdFe, which exhibits perpendicular magnetic anisotropy and magneto-optic effect.
TbFe,DyFe,GdTbFe,TbDyFe,GdFeCo,
Amorphous magnetic alloys of rare earth elements and transition metal elements such as TbFeCo, GdTbCo, and GdTbFeCo can be used. In FIG. 1b, which is another example of the magneto-optical recording medium of the present invention, 4 and 5 indicate protection for improving the durability of the three magnetic layers 1, 2, and 3 or for improving the magneto-optical effect. It is a membrane. 6 is an adhesive layer for bonding the bonding substrate 7 together. If layers 1 to 5 are also laminated on the bonding substrate 7 and bonded together, recording and reproduction can be performed on the front and back sides. The recording process of the present invention will be described below using FIGS. 2 to 4. 35 in FIG. 3 is a magneto-optical disk having the configuration described above. For example, the magnetization state of a certain part of this magnetic layer is initially as shown in FIG. 2a. That is, in FIG. 2, a case will be described in which stability is achieved when the magnetization directions of the first and third magnetic layers are parallel (same direction) before recording. The magneto-optical disk 35 is rotated by a spindle motor and passes through the magnetic field generating section 34 . At this time, if the magnitude of the magnetic field of the magnetic field generator 34 is set to a value between the coercive forces of the first magnetic layer 1 and the third magnetic layer 3 (the direction of the magnetic field is upward in this embodiment), as shown in FIG. As shown in , the third magnetic layer 3 is magnetized in a uniform direction,
On the other hand, the magnetization of the first magnetic layer 1 remains unchanged. Next, when the magneto-optical disk 35 rotates and passes the recording/reproducing head 31, a laser beam having two types (first type and second type) of laser power values is emitted by a signal from the recording signal generator 32. Accordingly, the disk surface is irradiated with either power. The first type of laser power is enough to raise the temperature of the disk to around the Curie point of the first magnetic layer 1, and the second type of laser power is enough to raise the temperature of the disk to around the Curie point of the third magnetic layer 3. It is a power that can be heated. That is, in FIG. 4, which schematically shows the relationship between the coercive force and temperature of both magnetic layers 1 and 3, the first type laser power is near T 1 (at a temperature close to T 1 , the magnetization of the first magnetic layer is The direction of the 3rd
The second type of laser power is around T 3 (temperature close to T 3 , which is the temperature at which the direction of magnetization of the third magnetic layer can be uniformly reversed). ) can increase the temperature of the disk. The temperature of the first magnetic layer 1 and the third magnetic layer 3 is raised to near the Curie point of the first magnetic layer 1 by the first type of laser power, but the bits stably exist in the third magnetic layer 3 at this temperature. By setting the bias magnetic field appropriately, the magnetization state shown in Fig. 2c can be changed from either of the magnetization states shown in Fig. 2b.
Recording bits such as the following are formed (first type of preliminary recording). Here, setting the bias magnetic field appropriately means:
The meaning is as follows. In the first type of preliminary recording, the direction is stable with respect to the direction of magnetization of the third magnetic layer 3 (in the same direction here).
Since the magnetization of the first magnetic layer 1 receives a force (exchange force) that aligns it, a bias magnetic field is not originally required. However, the bias magnetic field is set in a direction that assists magnetization reversal of the third magnetic layer 3 in preliminary recording using the second type of laser power, which will be described later. For convenience, it is preferable to set the bias magnetic field to have the same magnitude and direction in preliminary recording with either the first type or the second type of laser power. From this point of view, it is preferable to set the bias magnetic field to the minimum size necessary for preliminary recording of the second type of laser power according to the principle shown below, and this point was taken into consideration in the previous section. This means setting it appropriately. On the other hand, when the temperature of the disk is raised to near the Curie point of the third magnetic layer 3 using the second type of laser power (second type of preliminary recording), the direction of magnetization of the third magnetic layer 3 is changed by the above bias magnetic field. Invert. Subsequently, the magnetization of the first magnetic layer 1 is also aligned in a stable direction (here, in the same direction) with respect to the third magnetic layer 3.
That is, pre-recorded bits as shown in FIG. 2d are formed from either of the magnetization states shown in FIG. 2b. In this way, each location on the magneto-optical disk is preliminarily recorded in the state shown in FIG. Become. Next, when the magneto-optical disk 35 is rotated and the recording bits c and d pass through the magnetic field generating section 34 again, the magnetic field generating section 34 is set between the first magnetic layer 1 and the third magnetic layer 3 as described above. Therefore, the recorded bit c remains in the state e without any change. On the other hand, the third magnetic layer 3 undergoes magnetization reversal in the recording bit d, resulting in a state of f. In order for the state of the recording bit f to exist stably, it is necessary that σw 13 /2Ms 1 h 1 <H 1 σw 13 /2Ms 3 h 3 <H 3 as described above. Here, σw 13 /2Ms 1 h 1 indicates the strength of the exchange force acting on the first magnetic layer. In other words, an attempt is made to orient the magnetization direction of the first magnetic layer in a stable direction (in this case, in the same direction ) as the magnetization direction of the third magnetic layer using a magnetic field with a magnitude of σw 13 /2Ms 1 h 1. do. Therefore, in order to prevent the magnetization of the first magnetic layer from reversing against this magnetic field, it is sufficient that the coercive force H 1 of the first magnetic layer is greater than this exchange force. In other words, σw 13 /2Ms 1 h 1 <H 1 is sufficient. Similarly, an exchange force acting on the third magnetic layer that aligns the magnetization of the first magnetic layer in a stable direction with a magnitude of σw 13 /2Ms 3 h 3 from the interfacial domain wall causes the recording bit of f to be aligned in a stable direction. In order for it to be stable, σw 13 /
It is sufficient if 2Ms 3 h 3 <H 3 . In order to satisfy this condition (the coercive force is larger than the exchange force acting on both the first and third magnetic layers), the exchange force acting on the first and third magnetic layers must be reduced. In order to achieve this, the film thickness and saturation magnetization of both layers may be adjusted as described above, but since the recording sensitivity or coercive force has an appropriate value, it cannot be set arbitrarily. Therefore, in the present invention, by providing the second magnetic layer with a very small thickness of, for example, 10 to 150 Å, the exchange interaction acting at the interface between the first magnetic layer 1 and the third magnetic layer 3 is suppressed, and the second magnetic layer is
This made it possible to reduce the apparent size of σw 13 that appears through the magnetic layer. Regarding the coercive force of the second magnetic layer, it is desirable that the magnetization of the second magnetic layer is uniformly arranged in the same direction as shown in FIG. 2b during the first type of preliminary recording. Therefore, when the disk rotates and passes through the magnetic field generation section 34, it is desirable that the magnetization of the second magnetic layer be aligned in a direction that is stable with respect to the magnetic field, similar to the magnetization of the third magnetic layer. . Further, since it is desirable that the second magnetic layer is always aligned in a stable direction with respect to the direction of magnetization of either the first magnetic layer or the third magnetic layer, it is preferable that the coercive force H 2 is small. Therefore, the relationship between coercive forces may be H 1 > H 3 > H 2 . The material used for the second magnetic layer is the same rare earth element-transition metal alloy as the first and second magnetic layers, but it is necessary that the Curie temperature is lower than that of the first magnetic layer. This is due to the following reasons. The magnitude of the exchange force (the force that aligns the magnetic moments of each atom in a certain direction) acting on the interface between the first magnetic layer and the third magnetic layer depends on the type and number of atoms coordinated at each interface, and on each the exchange constant between atoms (indicating the magnitude of the interaction), and
It is determined by the Curie temperature of each layer. For example, the Kyrie temperature is involved.
This is because at temperatures above the Curie temperature, the alignment of magnetic moments disappears due to thermal motion, so exchange forces no longer work. Therefore, when the Curie temperature of the second magnetic layer provided between the first and third magnetic layers is low (close to room temperature), it is difficult for the magnetic moments to align due to thermal motion even at room temperature, so the first magnetic layer The exchange force acting between the third magnetic layers can be reduced. In fact, in a configuration in which a second magnetic layer whose Curie temperature is below room temperature is sandwiched between the first and third magnetic layers, the exchange force from both the first and third magnetic layers causes the second magnetic layer to become magnetic even at room temperature. We also confirmed through experiments that an array of moments occurs. In the recording method of the present invention, the states e and f of the recorded bits are controlled by the laser power during recording and do not depend on the state before recording, so overwriting is possible. Recording bits e and f
can be reproduced by irradiating a reproduction laser beam and processing the reproduction light by the recording signal regenerator 33. In the explanation of FIG. 2, the first magnetic layer 1 and the second magnetic layer 2 are
Although an example has been shown in which the magnetic layer is stable when the directions of magnetization of the magnetic layer and the third magnetic layer 3 are parallel, the same can be considered for a magnetic layer that is stable when the directions of magnetization are antiparallel. [Examples] Example 1 A polycarbonate disk-shaped substrate with pregroove and preformat signals engraved thereon was set in a sputtering device equipped with a four-dimensional target source at a distance of 10 cm from the target. Rotated. In argon, from the first target at a sputtering speed of 70 Å/min and a sputtering pressure of 8×10 -3 Torr.
A protective layer of Si 3 N 4 was provided to a thickness of 650 Å. Next, in argon, a second target was sputtered at a sputtering speed of 50 Å/min and a sputtering pressure of 2×10 -3 Torr.
A TbFeCo alloy was sputtered to form a first magnetic layer of Tb 17 Fe 80 Co 3 with a film thickness of 300 Å and a Kyrie point T 1 =about 160°C. The H 1 of this first magnetic layer itself is approximately 12KOe
, and the sublattice magnetization was larger in transition metals. The above operation was carried out several times, and DyFe alloy was sputtered from the fourth target onto each of the resulting targets under an argon pressure of 2×10 -3 Torr, and the Curie point T 2 was approximately 60°C.
A second magnetic layer of Dy 17 Fe 83 with H 2 500 (Oe) was provided.
The film thickness was varied in steps of 10 Å from zero (no second magnetic layer was provided at this time) to 70 Å. The sublattice magnetization of the second magnetic layer itself was larger in the transition metal element. Next, each was sputtered from a third target in argon at a sputtering speed of 50 Å/min and a sputtering pressure of 2.
Sputter TbFeCoCu alloy at ×10 -3 Torr,
A third magnetic layer of Tb 23 Fe 51 Co 11 Cu 15 was formed with a film thickness of 250 Å and T 3 =approximately 190°C. This third magnetic layer itself
H 3 was 1.1KOe, and the sublattice magnetization was larger for rare earth elements. Next, Si 3 N 4 was sputtered from the first target under the same conditions as before to form a protective layer of 1200 Å.
4 layers of Si 3 N with a thickness of . Next, each of the substrates on which the film had been formed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to produce a plurality of magneto-optical disk samples. The stability of bits (particularly in the f state) was investigated for each of the prepared samples. This was done by applying an external magnetic field and measuring the magnetic field at which the magnetization of the magnetic layer was reversed using a vibrating sample magnetometer (VSM). In this example, since the magnetization of the third magnetic layer starts to be reversed by a smaller external magnetic field, we were able to measure the exchange force acting on the third magnetic layer σw 13 /2Ms 2 h 2
It is. Next, the sample of the magneto-optical disk was set in the recording/reproducing device, and the 2KOe magnetic field generator was set at a linear velocity of approximately
830mm light focused to approximately 1μ while passing at 9m/sec
laser beam with a wavelength of 50% duty.
Recording was performed with binary laser powers of 4 mW and 8 mW while modulating at 2 MHz. The bias magnetic field at the recording head was 120 Oe. After that, a 1mW laser beam was irradiated to reproduce the signal, and a binary signal could be reproduced.
This experiment was carried out on samples after the entire surface had been recorded to check whether previously recorded signal components were detected, that is, whether overwriting was possible. The above results are summarized in Table 1.

【表】 表1でオーバーライトの可否の判断で2値の信
号記録が可能なものに○印、そうでないものに×
印、不完全なものに△印を付けた。記録が不充分
だつたのは、第1種のビツトを行なつたビツト
で、表1の第3磁性層に働く交換力の測定値とを
対応させることができる。すなわち、サンプル1
−1と1−2とは交換力の大きさが第3磁性層の
保磁力H3に比して小さくない値で、fの記録ビ
ツトが安定に存在しないためである。 サンプル1−8は第2磁性層、第1磁性層共に
働く交換力が小さすぎて、第1種の記録が完全に
行なえず、第1磁性層の磁化を反転させることが
できないためと考えられる。 実施例 2 第4のターゲツトを用いて第2磁性層2の材料
と膜厚を変化させたほかは、実施例1と同じ構
成、同じ材料を用いて光磁気デイスクのサンプル
を作成した。 用いた第2磁性層の材料は、キユリー温度が80
℃であるDy12Tb6Fe82、キユリー温度が30℃であ
るDyFeCrキユリー温度が5℃であるDy17Fe78
Cr5、それぞれ用いて、膜厚を変化させて設けた。 作成したそれぞれのサンプルについて、実施例
1と同様な評価を行なつた。結果を表2に示す。
[Table] In Table 1, when determining whether overwriting is possible, mark ○ for those that can record binary signals, and mark × for those that cannot.
I marked the incomplete ones with a △ mark. The bits that were insufficiently recorded were the bits for which the first type of bits were performed, and can be correlated with the measured value of the exchange force acting on the third magnetic layer in Table 1. That is, sample 1
-1 and 1-2 are values in which the magnitude of the exchange force is not smaller than the coercive force H3 of the third magnetic layer, and this is because the recording bit of f does not exist stably. This is thought to be because, in sample 1-8, the exchange force acting on both the second magnetic layer and the first magnetic layer was too small to allow complete type 1 recording, making it impossible to reverse the magnetization of the first magnetic layer. . Example 2 A magneto-optical disk sample was prepared using the same configuration and materials as in Example 1, except that a fourth target was used and the material and film thickness of the second magnetic layer 2 were changed. The material used for the second magnetic layer has a Kyrie temperature of 80
Dy 12 Tb 6 Fe 82 whose Kyrie temperature is 30 °C, DyFeCr whose Kyrie temperature is 5 °C Dy 17 Fe 78
Cr 5 was used, and the film thickness was varied. The same evaluation as in Example 1 was performed for each of the prepared samples. The results are shown in Table 2.

【表】【table】

【表】 表1,2の結果から、第1磁性層のキユリー温
度より低い温度をもつ第2磁性層を第1磁性層と
第3磁性層の間に適正膜厚で設けることにより第
3磁性層に働く交換力を減少させることができる
ことが明らかである。 キユリー温度を、例えば、室温あるいは室温以
下の第2磁性層を用いると、第2磁性層の膜厚が
50〜150Å程度の厚さで、記録ビツトが安定にな
るので、記録層の厚さ(第1,第2,第3磁性層
の膜厚の和)を小さな値に設定できるため、記録
感度が低下することがない。 比較例 1 第4のターゲツトを用いて、第2磁性層の構成
位置に次の材料を、膜厚を変化させて設けたほか
は、実施例1,2と同じ構成、同じ材料を用いて
光磁気デイスクのサンプルを作製した。 用いた材料は非磁性層であるSiとキユリー温度
が第1磁性層のT1より大きい170℃であり、保磁
力が第3磁性層よりも小さい500(Oe)である
Tb15Fe82Co3の2種を用いて膜厚を変化させて設
けた。 作製したサンプルそれぞれについて、実施例1
と同様の評価を行なつた。結果を表3に示す。
[Table] From the results in Tables 1 and 2, it is clear that by providing a second magnetic layer with a temperature lower than the Curie temperature of the first magnetic layer with an appropriate thickness between the first and third magnetic layers, the third magnetic layer It is clear that the exchange forces acting on the layers can be reduced. For example, if the second magnetic layer is used with a Curie temperature of room temperature or below room temperature, the thickness of the second magnetic layer will increase.
Recording bits become stable at a thickness of about 50 to 150 Å, so the recording layer thickness (the sum of the first, second, and third magnetic layer thicknesses) can be set to a small value, which improves recording sensitivity. It never declines. Comparative Example 1 A fourth target was used, and the same configuration and materials as Examples 1 and 2 were used, except that the following materials were provided at the positions of the second magnetic layer with varying thicknesses. A sample of a magnetic disk was produced. The material used is Si, which is a nonmagnetic layer, and has a Curie temperature of 170°C, which is higher than T 1 of the first magnetic layer, and a coercive force of 500 (Oe), which is lower than that of the third magnetic layer.
Two types of Tb 15 Fe 82 Co 3 were used with varying film thicknesses. For each of the prepared samples, Example 1
A similar evaluation was conducted. The results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように光磁気媒体として、
キユリー点T1と保磁力H1を有する第1磁性層と、
キユリー点T2と保磁力H2を有する第2磁性層と、
キユリー点T3と保磁力H3を有する第3磁性層と
からなる三層の磁性層を有し。且つ他の所定の要
件を満たす媒体を用い、記録時に、記録ヘツドと
別位置に磁界発生手段を設け、2値レーザーパワ
ーで記録することにより、良好な重ね書き(オー
バーライト)が可能になつた。
As explained in detail above, as a magneto-optical medium,
a first magnetic layer having a Kyrie point T 1 and a coercive force H 1 ;
a second magnetic layer having a Kyrie point T 2 and a coercive force H 2 ;
It has three magnetic layers consisting of a third magnetic layer having a Kyrie point T 3 and a coercive force H 3 . In addition, by using a medium that satisfies other predetermined requirements, providing a magnetic field generating means at a location separate from the recording head during recording, and recording with binary laser power, good overwriting has become possible. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは各々本発明で使用する光磁気媒
体の一例の構成を示す図、第2図は、本発明の記
録法を実施中の、磁性層1,3の磁化の向きを示
す図、第3図は、記録・再生装置の概念図、第4
図は第1磁性層1と第3磁性層3の保磁力と温度
との関係を示す概略図である。 B……プリグルーブ付の透光性基板、1,2,
3……磁性層、4,5……保護層、6……接着
層、7……貼り合わせ用基板、31……記録・再
生用ヘツド、32……記録信号発生器、35……
光磁気デイスク。
FIGS. 1a and 1b are diagrams each showing the structure of an example of a magneto-optical medium used in the present invention, and FIG. 2 is a diagram showing the magnetization directions of magnetic layers 1 and 3 during implementation of the recording method of the present invention. Figure 3 is a conceptual diagram of the recording/reproducing device;
The figure is a schematic diagram showing the relationship between coercive force and temperature of the first magnetic layer 1 and the third magnetic layer 3. B...Transparent substrate with pregroove, 1, 2,
3... Magnetic layer, 4, 5... Protective layer, 6... Adhesive layer, 7... Bonding substrate, 31... Recording/reproducing head, 32... Recording signal generator, 35...
Magneto-optical disk.

Claims (1)

【特許請求の範囲】 1 キユリー点T1と保磁力H1を有する第1磁性
層と、キユリー点T2と保磁力H2を有する第2磁
性層と、キユリー点T3と保磁力H3を有する第3
磁性層とからなる三層構造の垂直磁化膜を少なく
とも基板上に有して成る光磁気記録媒体であつ
て、次の条件を満たしていることを特徴とする光
磁気記録媒体。 (A) 各磁性層が希土類元素と遷移金属の合金であ
ること、 (B) H1>H3>H2 T3>T1>T2、 (C) 第2磁性層を介して現れる第1磁性層と第3
磁性層の見かけの磁壁エネルギーをσw13、第
1磁性層,第3磁性層の膜厚を順にh1,h3、と
すると、 σw13/2Ms1h1<H1且つ σw13/2Ms3h3<H3 2 第2磁性層のキユリー温度が室温以下であ
り、第2磁性層の膜厚が10〜150Åである特許請
求の範囲第1項記載の光磁気記録媒体。 3 キユリー点T1と保磁力H1を有する第1磁性
層と、キユリー点T2と保磁力H2を有する第2磁
性層と、キユリー点T3と保磁力H3を有する第3
磁性層とからなる三層構造の垂直磁化膜を少なく
とも基板上に有して成る光磁気記録媒体であつ
て、次の条件(A)〜(B)、すなわち、 (A) 各磁性層が希土類と遷移金属の合金であるこ
と、 (B) H1>H3>H2 T3>T1>T2、 (C) 第2磁性層を介して現れる第1磁性層と第3
磁性層の見かけの磁壁エネルギーをσw13、第
1磁性層,第3磁性層の膜厚を順にh1,h3とす
ると、 σw13/2Ms1h1<H1且つ σw13/2Ms3h3<H3 を満たしている光磁気記録媒体を使用して、次の
二値の記録を行なうことを特徴とする記録方法。 (a) 該媒体に対して、記録用ヘツドと異なる場所
で、保磁力H3の第3磁性層を一方向に磁化さ
せるのに充分で保磁力H1の第1磁性層の磁化
の向きを反転させることのない大きさの磁界B
を加え、 (b) 次に、記録ヘツドにより、バイアス磁界を印
加すると同時に第1磁性層のキユリー点T1
近まで該媒体が昇温するだけのレーザーパワー
を照射することにより、第3磁性層の磁化の向
きを変えないまま第1磁性層と第2磁性層の磁
化の向きを第3磁性層に対して安定な向きにそ
ろえる第1種の予備記録か、バイアス磁界を印
加すると同時に第3磁性層のキユリー点T3
近まで該媒体が昇温するだけのレーザーパワー
を照射することにより、第3磁性層の磁化の向
きを反転させて、同時に第1,第2磁性層を共
に第3磁性層に対して安定な向きに磁化する第
2種の予備記録かを、信号に応じて実施し、 (c) 次に、該媒体を運動させて、予備記録された
ビツトを前記磁界Bを通過させることにより、
第1種の予備記録により形成されたビツトにつ
いては、第1磁性層、第2磁性層、第3磁性層
それぞれの磁化の向きをそのまま変化させず、 第2種の予備記録により形成されたビツトにつ
いては、第2,3磁性層の磁化の向きを前記磁界
Bと同方向に反転させ、第1磁性層の磁化の向き
はそのまま変化させないとする、二値の記録。
[Claims] 1. A first magnetic layer having a Kyrie point T 1 and a coercive force H 1 , a second magnetic layer having a Kyrie point T 2 and a coercive force H 2 , and a Kyrie point T 3 and a coercive force H 3. the third with
1. A magneto-optical recording medium comprising a perpendicularly magnetized film having a three-layer structure including a magnetic layer on at least a substrate, the magneto-optical recording medium satisfying the following conditions. (A) Each magnetic layer is an alloy of a rare earth element and a transition metal, (B) H 1 > H 3 > H 2 T 3 > T 1 > T 2 , (C) the magnetic layer appears through the second magnetic layer. 1 magnetic layer and 3rd magnetic layer
If the apparent domain wall energy of the magnetic layer is σw 13 and the film thicknesses of the first and third magnetic layers are h 1 and h 3 in this order, then σw 13 /2Ms 1 h 1 <H 1 and σw 13 /2Ms 3 h 3 <H 3 2 The magneto-optical recording medium according to claim 1, wherein the Curie temperature of the second magnetic layer is below room temperature and the thickness of the second magnetic layer is 10 to 150 Å. 3. A first magnetic layer having a Kyrie point T 1 and a coercive force H 1 , a second magnetic layer having a Kyrie point T 2 and a coercive force H 2 , and a third magnetic layer having a Kyrie point T 3 and a coercive force H 3 .
A magneto-optical recording medium having a perpendicularly magnetized film with a three-layer structure consisting of a magnetic layer on at least a substrate, which satisfies the following conditions (A) to (B): (A) Each magnetic layer is made of a rare earth metal. (B) H 1 > H 3 > H 2 T 3 > T 1 > T 2 , (C) The first magnetic layer appearing through the second magnetic layer and the third
If the apparent domain wall energy of the magnetic layer is σw 13 and the film thicknesses of the first and third magnetic layers are h 1 and h 3 in this order, then σw 13 /2Ms 1 h 1 <H 1 and σw 13 /2Ms 3 h A recording method characterized by recording the following binary values using a magneto-optical recording medium that satisfies 3 < H 3 . (a) At a location different from the recording head on the medium, change the direction of magnetization of the first magnetic layer with coercive force H 1 in a direction sufficient to magnetize the third magnetic layer with coercive force H 3 in one direction. Magnetic field B of a magnitude that does not cause reversal
(b) Next, by applying a bias magnetic field using the recording head and at the same time irradiating the medium with enough laser power to raise the temperature of the first magnetic layer to near the Curie point T1 , the third magnetic layer is heated. The first type of preliminary recording involves aligning the magnetization directions of the first and second magnetic layers in a stable direction with respect to the third magnetic layer without changing the magnetization direction of the third magnetic layer, or the first type of preliminary recording involves applying a bias magnetic field and simultaneously recording the third By irradiating the medium with enough laser power to heat up the medium to near the Curie point T 3 of the magnetic layer, the direction of magnetization of the third magnetic layer is reversed, and at the same time both the first and second magnetic layers are heated to the third magnetic layer. A second type of preliminary recording, in which the magnetic layer is magnetized in a stable direction, is carried out in response to the signal; (c) Next, the medium is moved and the preliminary recorded bits are exposed to the magnetic field B. By passing
Regarding the bits formed by the first type of preliminary recording, the magnetization directions of the first magnetic layer, the second magnetic layer, and the third magnetic layer are not changed as they are, and the bits formed by the second type of preliminary recording are For binary recording, the direction of magnetization of the second and third magnetic layers is reversed in the same direction as the magnetic field B, and the direction of magnetization of the first magnetic layer is left unchanged.
JP7172187A 1987-03-27 1987-03-27 Magneto-optical recording medium and magneto-optical recording method Granted JPS63239636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7172187A JPS63239636A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and magneto-optical recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7172187A JPS63239636A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and magneto-optical recording method

Publications (2)

Publication Number Publication Date
JPS63239636A JPS63239636A (en) 1988-10-05
JPH0522302B2 true JPH0522302B2 (en) 1993-03-29

Family

ID=13468669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7172187A Granted JPS63239636A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and magneto-optical recording method

Country Status (1)

Country Link
JP (1) JPS63239636A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630976B2 (en) * 1988-03-19 1997-07-16 富士通株式会社 Magneto-optical recording medium
JPH056590A (en) * 1991-06-28 1993-01-14 Toshiba Corp Magneto-optical recorder

Also Published As

Publication number Publication date
JPS63239636A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JPH0535499B2 (en)
JPH0522303B2 (en)
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPH0395745A (en) Magneto-optical recording method and recording device
JPH0535494B2 (en)
JPH0542062B2 (en)
JPH0522301B2 (en)
JPH0522302B2 (en)
JPH0535498B2 (en)
JPS63153752A (en) Magneto-optical recording medium and its recording method
JPH0535493B2 (en)
JP2555272B2 (en) Magneto-optical recording / reproducing method
JPH087885B2 (en) Magneto-optical recording method
JP2674815B2 (en) Magneto-optical recording method
JP2589451B2 (en) Magneto-optical recording / reproducing device
JP2589453B2 (en) Magneto-optical recording method
JPH0535496B2 (en)
JPS63237242A (en) Magneto-optical recording system
JPS63193351A (en) Magneto-optical recording medium and recording system
JPH0522300B2 (en)
JPH08221823A (en) Magneto-optical recording medium and magneto-optical recording and reproducing device using the same
JPH0535495B2 (en)
JPS63133337A (en) Magneto-optical recording method
JPH0535497B2 (en)
JPH0522306B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term