JPH0535499B2 - - Google Patents

Info

Publication number
JPH0535499B2
JPH0535499B2 JP62071722A JP7172287A JPH0535499B2 JP H0535499 B2 JPH0535499 B2 JP H0535499B2 JP 62071722 A JP62071722 A JP 62071722A JP 7172287 A JP7172287 A JP 7172287A JP H0535499 B2 JPH0535499 B2 JP H0535499B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
magnetization
layer
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62071722A
Other languages
Japanese (ja)
Other versions
JPS63239637A (en
Inventor
Yoichi Oosato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7172287A priority Critical patent/JPS63239637A/en
Publication of JPS63239637A publication Critical patent/JPS63239637A/en
Publication of JPH0535499B2 publication Critical patent/JPH0535499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、磁気カー効果を利用して読出しする
ことのできるキユリー点書込みタイプの新規な光
磁気記録媒体と、それを用いた重ね書き可能な光
磁気記録方法に関する。 〔従来の技術〕 消去可能な光デイスクメモリとして光磁気デイ
スクが知られている。光磁気デイスクは、従来の
磁気ヘツドを使つた磁気記録媒体と比べて高密度
記録、非接触での記録再生などが可能であるとい
う長所がある反面、記録前に一度記録部分を消去
しなければならない(一方向に着磁しなければな
らない)という欠点があつた。この欠点を補う為
に、記録再生用ヘツドと消去用ヘツドを別々に設
ける方式、あるいは、レーザーの連続ビームを照
射しつつ、同時に印加する磁場を変調しながら記
録する方式などが提案されている。 〔発明が解決しようとする問題点〕 しかし、これらの方法は、装置が大がかりとな
り、コスト高になる欠点あるいは高速の変調がで
きないなどの欠点を有する。 上述の公知技術の欠点を除去し、従来の装置構
成に簡単な構造の磁界発生手段を付設するだけ
で、磁気記録媒体と同様な重ね書き(オーバーラ
イト)を可能とした、光磁気記録方法を本出願人
は昭和61年7月8日に特願昭61−158787号[該出
願は昭和62年2月2日の国内優先権主張出願特願
昭62−20384号の基礎出願となる]で提案した。 しかし、この方法は全く新しい記録法であるが
故に、この方法に関連して、いまだ多くの研究課
題が残つていた。すなわち、この記録に用いるの
に、よりふさわしい光磁気記録媒体の探究等であ
る。 そこで本発明者は更に研究を進めた結果、いく
つかの成果が得られた。 本発明はこうして完成されたものであり、その
目的は重ね書き可能な記録方法を提供するだけで
なく、その重ね書き可能な記録方法によりふさわ
しい光磁気記録媒体を提供することにある。 〔問題点を解決するための手段〕 上記目的達成可能な本発明は、 低いキユリー点T1と高い保磁力H1とを有する
第1磁性層およびこの磁性層に比べて相対的に高
いキユリー点T2と低い保磁力H2とを有する第2
磁性層から構成される交換結合している二層の垂
直磁化膜と、該両磁性層の間に設けられた中間層
とを、基板上に有して成る光磁気記録媒体であつ
て、次の条件(A)、(B)、すなわち、 (A) 第1磁性層の飽和磁化をMs1、膜厚をh1、第
2磁性層の飽和磁化をMs2、膜厚をh2、中間層
を介して現れる二つの磁性層間の見かけの磁壁
エネルギーをσw12とすると、 σw12/2Ms1h1<H1、σw12/2Ms2h2<H2 (B) 中間層を形成する材料が無機の非磁性物質
か、あるいは室温において基板面に対して中間
層単層では、磁化成分が垂直よりも面内成分の
方が大きいような、組成である磁性材料から成
ること、 を満たしている光磁記録気媒体と、これを用い
た、後に代表的態様が示される記録方法である。 以下、図面を参照して本発明を詳細に説明す
る。 第1図a,bは各々本発明の光磁気記録媒体の
一実施例を示す模式断面図である。第1図aの光
磁気記録媒体は、プリグルーブが設けられた透光
性の基板B上に、第1の磁性層1と中間層3と第
2の磁性層2磁性層3が積層されたものである。
第1磁性層1は低いキユリー点T1と高い保磁力
H1を有し、第2磁性層2は、高いキユリー点T2
と低い保磁力H2を有する。ここで「高い」、「低
い」とは両磁性層を比較した場合の相対的な関係
を表わす(保磁力は室温における比較)。ただし、
通常は第1磁性層1のT1は70〜200℃、H1は、2
〜10KOe、第2磁性層2のT2は100〜400℃、H2
は0.1〜4KOe程度の範囲内とするとよい。 各磁性層の主成分には、垂直磁気異方性を示し
且つ磁気光学効果を呈するものが使用できるが、
希土類元素と遷移金属元素との非晶質磁性合金が
利用できる。例として、GdCo、GdFe、TbFe、
DyFe、GdTbFe、TbDyFe、GdTbFeCo、
TbFeCo、GdTbCo、等が挙げられる。 本発明の光磁気記録媒体の第1磁性層1と第2
磁性層2とは中間層3を介して比較的弱く交換結
合している。そして、第1磁性層1の飽和磁化
MS1、その膜厚h1、第2磁性層2の飽和磁化
MS2、その膜厚h2、二磁性層間の見かけの磁壁エ
ネルギーσw12の間に、次の関係が必要である。 σw12/2Ms1h1<H1 σw12/2Ms2h2<H2 これは、記録によつて最終的に完成されるビツ
トの磁化状態(第2図fに示す)を、安定に存在
させるためである(詳しい理由は後述する)。 したがつて、2つの磁性層1,2(垂直磁化
膜)が上の関係式を満たすように、本来は各磁性
層の膜厚、保磁力、飽和磁化の大きさ、磁壁エネ
ルギーなどを設定すればよい。ただし、こうする
ことが必ずしも適切でないことがあるので、中間
層3を設けたのである。(中間層3を設けた詳し
い理由も後述する)。 中間層3は非磁性物質(例えばSi3、N4、SiC、
ZnS、Si、Cr等)か、室温において基板面に対し
て磁化成分が垂直よりも面内成分の方が大きい磁
性材料(例えばFe90Dy10、Fe60Gd20Tb20など)
か、主たる容易磁化方向が光磁気記録媒体の基板
面方向に向いている物質(例えばFe、Co、Ni、
Fe95Tb5等)を用いることが望ましい。 第1図bにおいて、4,5は2つの磁性層1,
2及び中間層3のの耐久性を向上させるためのあ
るいは光磁気効果を向上させるための保護膜であ
る。 6は、貼り合わせ用基板7を貼り合わすための
接着層である。貼り合わせ用基板7にも、1から
5までの層を積層し、これを接着すれば両面で記
録・再生が可能となる。 以下、第2図〜第4図を用いて本発明の記録の
過程を示す。 第3図の35は、上述したような構成を有する
光磁気デイスクである。例えば、この磁性層のあ
る一部の磁化状態が初め第2図aのようになつて
いる。即ち、第2図では、記録前、第1、第2磁
性層の磁化の向きが平行なとき(同じ向き)に安
定である場合について説明する。 光磁気デイスク35はスピンドルモータにより
回転して、磁界発生部34を通過する。このと
き、磁界発生部34の磁界の大きさを両磁性層1
と2の保磁力の間の値に設定すると(磁界の向き
は本実施例では上向き)、第2図bに示す様に第
2磁性層2は一様な方向に磁化され、一方、第1
磁性層1の磁化は初めのままである。 次に光磁気デイスク35が回転して記録・再生
ヘツド31を通過するときに、記録信号発生器3
2からの信号に従つて、2種類(第1種と第2
種)のレーザーパワー値を持つレーザービーム
を、そのどちらかのパワーでもつて、デイスク面
に照射する。第1種のレーザーパワーは該デイス
クを第1磁性層1のキユリー点付近まで昇温する
だけのパワーであり、第2種のレーザーパワーは
該デイスクを第2磁性層2のキユリー点付近まで
昇温可能なパワーである。即ち、両磁性層1,2
の保磁力と温度との関係の概略を示した第4図に
おいて、第1種のレーザーパワーはT1付近、第
2種のレーザーパワーはT2付近までデイスクの
温度を上昇できる。 第1種のレーザーパワーにより第1磁性層1
は、キユリー点付近まで昇温するが第2磁性層2
はこの温度でビツトが安定に存在する保磁力を有
しているので記録時のバイアス磁界を適正に設定
しておくことにより、第2図bのいずれからも第
2図cのようなビツトが形成される(第1種の予
備記録)。 ここでバイアス磁界を適正に設定するとは、次
のような意味である。即ち、第1種の予備記録で
は、第2磁性層2の磁化の向きに対して安定な向
きに(ここでは同じ方向に)第1磁性層1の磁化
が配列する力(交換力)を受けるので、本来はバ
イアス磁界は必要でない。しかし、バイアス磁界
は後述する第2種のレーザーパワーを用いた予備
記録では第2磁性層2の磁化反転を補助する向き
(すなわち、第1種の予備記録を妨げる向き)に
設定される。そして、このバイアス磁界は、第1
種、第2種どちらのレーザーパワーの予備記録で
も、大きさ、方向を同じ状態に設定しておくこと
が便宜上好ましい。 かかる観点からバイアス磁界の設定は次記に示
す原理による第2種のレーザーパワーの予備記録
に必要最小限の大きさに設定しておくことが好ま
しく、これを考慮した設定が前でいう適正な設定
である。 一方、第2種のレーザーパワーにより、第2磁
性層2のキユリー点近くまで昇温させる(第2種
の予備記録)と、上述のように設定されたバイア
ス磁界により第2磁性層2の磁化の向きが反転す
る。続いて第1磁性層1の磁化も第2磁性層2に
対して安定な向きに(ここでは同じ方向に)配列
する。即ち、第2図bのいづれからも第2図dの
ようなビツトが形成される。 このように、バイアス磁界と、信号に応じて変
わる第1種及び第2種のレーザーパワーとによつ
て、光磁気デイスクの各箇所は第2図cかdの状
態に予備記録されることになる。 次に光磁気デイスク35を回転させ、予備記録
のビツト(c)、(d)が磁界発生部34を再び通過する
と、磁界発生部34の磁界の大きさは前述したよ
うに磁性層1と2の保磁力間に設定されているの
で、記録ビツト(c)は、変化が起こらずに(e)の状態
である(最終的な記録状態)。一方、記録ビツト
(d)は第2磁性層2が磁化反応を起こして(f)の状態
になる(もう一つの最終的な記録状態)。 (f)の記録ビツトの状態が安定に存在する為に
は、前述したように次の様な関係が必要である。 σw12/2Ms1h1<H1 σw12/2Ms2h2<H2 ここでσw12/2Ms1h1は第1磁性層1に働く交
換力の強さを示す。つまり、σw12/2Ms1h1の大
きさの磁界で第1磁性層1の磁化の向きを、第2
磁性層2の磁化の向きに対して安定な方向へ(こ
の場合は同じ方向へ)向けようとする。そこで第
1磁性層1がこの磁界に抗して磁化が反転しない
ためには第1磁性層1の保磁力をH1として
σw12/2Ms1h1<H1であればよい。 同様にして第2磁性層2には、界面磁壁より
σw12/2Ms1h1の大きさで第1磁性層1の磁化に
対して安定な向きに配列させる交換力が働くの
で、(f)の記録ビツトが安定なためには、σw12
2Ms2h2<H2であればよい。 前述したように、上記の条件を満たすようにす
る(つまり交換力が小さくする)には、両磁性層
の膜厚、飽和磁化を調節すればよいが、かかる調
整では適切でない場合がある。記録感度あるいは
保磁力などには適正値があるので、任意には設定
できないからである。そこで、その対策を研究し
た結果、中間層を設けることが有効であることが
判明したのである。中間層を10〜50Åの厚さに設
けることにより、第1磁性層と第2磁性層の界面
で働く交換相互作用を抑制し、見かけ上σw12
大きさを小さくすることが可能である。つまり、
上記要件を見たすようにすることが極めて容易に
なり、結局、良好なオーバーライトにふさわしい
ものとなる。 記録ビツトの状態(e)と(f)は、記録時のレーザー
のパワーで制御され、記録前の状態には依存しな
いので、重ね書き(オーバーライト)が可能であ
る。記録ビツト(e)と(f)は、再生用のレーザービー
ムを照射し、再生光を記録信号再生器33で処理
することにより、再生できる。 第2図の説明では第1磁性層1と第2磁性層2
の磁化の向きが同じときに安定な例を示したが、
磁化の向きが反平行のときに安定な磁性層につい
ても同様に考えられる。 〔実施例〕 実施例 1 4元のターゲツト源を備えたスパツタ装置内
に、プリグルーブ、プリフオーマツト信号の刻ま
れたポリカーボネート製のデイスク状基板を、タ
ーゲツトとの間の距離10cmの間隔にセツトし、回
転させた。 アルゴン中で、第1のターゲツトより、スパツ
タ速度70Å/min、スパツタ圧8×10-3Torrで
Si3N4を保護層として650Åの厚さに設けた。次
にアルゴン中で、第2のターゲツトよりスパツタ
速度50Å/min、スパツタ圧2×10-3Torrで
TbFeCo合金をスパツタし、膜厚200Å、T1=約
160℃のTb17Fe80Co3の第1磁性層を形成した。
この第1磁性層自身のH1は約12KOeであり、副
格子磁化は遷移金属の方が大きかつた。 上記操作をそれぞれセツトした基板について実
施し、できた各々に第1のターゲツトよりSi3N4
を先程と同じ条件でスパツタし、中間層を設け
た。その膜厚はゼロ(このときはSi3N4は設けて
ない)から70Åまで10Åずつ変化させた。 次に、その各々にアルゴン中で、第3のターゲ
ツトより、スパツタ速度50Å/min、スパツタ圧
2×10-3TorrでかTbFeCoTi合金をスパツタし、
膜厚400Å、T2=約190℃、Tb23Fe51Co11Ti15
第2磁性層を形成した。この第2磁性層自身の
H2は1.1KOeであり、副格子磁化は希土類元素の
方が大きかつた。 次に、各々に第1のターゲツトよりを先程と同
じ条件でスパツタし、保護層として1200Åの厚さ
のSi3N4層を設けた。次に膜形成を終えた各々の
基板をホツトメルト接着剤を用いて、ポリカーボ
ネートの貼り合わせ用基板と貼ゐ合わせ複数の光
磁気デイスクのサンプルを作製した。 作成した各サンプルについて、ビツトの安定性
(特に(f)の状態での)を調べた。これは外部磁界
を印加しながら磁性層の磁化の反転の起こる磁界
をVSM(試料振動型磁化測定器)により測定し
た。 本実施例においては第2磁性層の磁化の方がよ
り小さな外部磁界で反転が開始するので、測定で
きたのは第2磁性層に働く交換力σw12/2Ms2h2
である。 次に各サンプルを記録再生装置にセツトし、
2KOeの磁界発生部を、線速度約9m/secで通
過させつつ、約1μに集光した830nmの波長のレ
ーザービームを50%のデユーテイで2MHzで変調
させながら、4mWと8mWの2値のレーザーパ
ワーで記録を行なつた。記録ヘツド部でのバイア
ス磁界は120 Oeであつた。その後1mWのレー
ザービームを照射して再生を行なつたところ、2
値の信号の再生ができた。 この実験を、全面記録された後の各サンプルに
ついて行なつい、本実施例の前に記録された信号
成分が検出されないことを、つまり、オーバーラ
イトが可能であつたか否かをチエツクした。以上
の結果を表1にまとめて示す。
[Field of Industrial Application] The present invention relates to a novel magneto-optical recording medium of the Curie point writing type that can be read using the magnetic Kerr effect, and a magneto-optical recording method that allows overwriting using the same. [Prior Art] Magneto-optical disks are known as erasable optical disk memories. Magneto-optical disks have advantages over conventional magnetic recording media using magnetic heads, such as high-density recording and non-contact recording and playback, but on the other hand, the recorded area must be erased before recording. It has the disadvantage that it cannot be magnetized in one direction (it must be magnetized in one direction). In order to compensate for this drawback, methods have been proposed in which a recording/reproducing head and an erasing head are provided separately, or a method in which recording is performed while irradiating a continuous laser beam and simultaneously modulating the applied magnetic field. [Problems to be Solved by the Invention] However, these methods have drawbacks such as the need for large-scale equipment, high costs, and the inability to perform high-speed modulation. We have developed a magneto-optical recording method that eliminates the drawbacks of the above-mentioned known techniques and enables overwriting similar to that of magnetic recording media by simply adding a magnetic field generating means of a simple structure to the conventional device configuration. The present applicant filed Japanese Patent Application No. 61-158787 on July 8, 1988 [this application is the basis of Japanese Patent Application No. 62-20384, which was filed on February 2, 1988 and claimed domestic priority]. Proposed. However, since this method is a completely new recording method, there are still many research issues related to this method. In other words, we are searching for a magneto-optical recording medium that is more suitable for use in this recording. As a result of further research, the present inventors obtained several results. The present invention has been completed in this way, and its purpose is not only to provide an overwritable recording method, but also to provide a magneto-optical recording medium that is more suitable for the overwritable recording method. [Means for Solving the Problems] The present invention capable of achieving the above-mentioned objects comprises: a first magnetic layer having a low Kyrie point T1 and a high coercive force H1 ; and a relatively high Kyrie point compared to this magnetic layer. The second with T 2 and low coercive force H 2
A magneto-optical recording medium comprising, on a substrate, two exchange-coupled perpendicular magnetization films composed of magnetic layers and an intermediate layer provided between the two magnetic layers, the following: Conditions (A) and (B), that is, (A) saturation magnetization of the first magnetic layer is Ms 1 , film thickness is h 1 , saturation magnetization of the second magnetic layer is Ms 2 , film thickness is h 2 , intermediate If the apparent domain wall energy between two magnetic layers appearing through the layer is σw 12 , then σw 12 /2Ms 1 h 1 <H 1 , σw 12 /2Ms 2 h 2 <H 2 (B) Material forming the intermediate layer is an inorganic non-magnetic material, or is made of a magnetic material with a composition such that in a single intermediate layer with respect to the substrate surface at room temperature, the in-plane magnetization component is larger than the magnetization component perpendicular to the substrate surface. These are a magneto-optical recording medium and a recording method using the same, representative embodiments of which will be shown later. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIGS. 1a and 1b are schematic cross-sectional views each showing an embodiment of the magneto-optical recording medium of the present invention. The magneto-optical recording medium shown in FIG. 1a has a first magnetic layer 1, an intermediate layer 3, a second magnetic layer 2, and a magnetic layer 3 laminated on a transparent substrate B provided with a pregroove. It is something.
The first magnetic layer 1 has a low Curie point T 1 and a high coercive force
H 1 and the second magnetic layer 2 has a high Curie point T 2
and has a low coercive force H2 . Here, "high" and "low" represent a relative relationship when comparing both magnetic layers (coercive force is compared at room temperature). however,
Usually, T 1 of the first magnetic layer 1 is 70 to 200°C, H 1 is 2
~10KOe, T2 of second magnetic layer 2 is 100~400℃, H2
is preferably within the range of about 0.1 to 4 KOe. The main component of each magnetic layer can be one that exhibits perpendicular magnetic anisotropy and exhibits a magneto-optic effect.
Amorphous magnetic alloys of rare earth elements and transition metal elements are available. Examples include GdCo, GdFe, TbFe,
DyFe, GdTbFe, TbDyFe, GdTbFeCo,
Examples include TbFeCo, GdTbCo, and the like. The first magnetic layer 1 and the second magnetic layer of the magneto-optical recording medium of the present invention
Exchange coupling with the magnetic layer 2 is relatively weak via the intermediate layer 3. Then, the saturation magnetization of the first magnetic layer 1
MS 1 , its film thickness h 1 , and saturation magnetization of the second magnetic layer 2
The following relationship is required between MS 2 , its film thickness h 2 , and the apparent domain wall energy σw 12 between the two magnetic layers. σw 12 /2Ms 1 h 1 <H 1 σw 12 /2Ms 2 h 2 <H 2 This means that the magnetization state of the bit (shown in Figure 2 f) that is finally completed by recording exists stably. (The detailed reason will be explained later). Therefore, in order for the two magnetic layers 1 and 2 (perpendicular magnetization films) to satisfy the above relational expression, the film thickness, coercive force, magnitude of saturation magnetization, domain wall energy, etc. of each magnetic layer should be set. Bye. However, since this may not always be appropriate, the intermediate layer 3 is provided. (The detailed reason for providing the intermediate layer 3 will be described later). The intermediate layer 3 is made of a non-magnetic material (for example, Si 3 , N 4 , SiC,
ZnS, Si, Cr, etc.) or magnetic materials whose magnetization component is larger in the plane than perpendicular to the substrate surface at room temperature (e.g. Fe 90 Dy 10 , Fe 60 Gd 20 Tb 20 , etc.)
or materials whose main easy magnetization direction is directed toward the substrate surface of the magneto-optical recording medium (e.g., Fe, Co, Ni,
It is desirable to use Fe 95 Tb 5 , etc.). In FIG. 1b, 4, 5 are two magnetic layers 1,
This is a protective film for improving the durability of the intermediate layer 2 and the intermediate layer 3 or for improving the magneto-optical effect. 6 is an adhesive layer for bonding the bonding substrate 7 together. By laminating layers 1 to 5 on the bonding substrate 7 and gluing them together, recording and reproduction can be performed on both sides. The recording process of the present invention will be described below using FIGS. 2 to 4. 35 in FIG. 3 is a magneto-optical disk having the configuration described above. For example, the magnetization state of a certain part of this magnetic layer is initially as shown in FIG. 2a. That is, in FIG. 2, a case will be described in which stability is achieved when the magnetization directions of the first and second magnetic layers are parallel (same direction) before recording. The magneto-optical disk 35 is rotated by a spindle motor and passes through the magnetic field generating section 34 . At this time, the magnitude of the magnetic field of the magnetic field generating section 34 is adjusted to
When the coercive force is set to a value between and 2 (the direction of the magnetic field is upward in this example), the second magnetic layer 2 is magnetized in a uniform direction as shown in FIG.
The magnetization of the magnetic layer 1 remains as it was at the beginning. Next, when the magneto-optical disk 35 rotates and passes the recording/reproducing head 31, the recording signal generator 3
According to the signal from 2, 2 types (1st type and 2nd type)
A laser beam with a laser power value of either of these powers is irradiated onto the disk surface. The first type of laser power is enough to raise the temperature of the disk to around the Curie point of the first magnetic layer 1, and the second type of laser power is enough to raise the temperature of the disk to around the Curie point of the second magnetic layer 2. It is a power that can be heated. That is, both magnetic layers 1 and 2
In FIG. 4, which schematically shows the relationship between coercive force and temperature, the first type of laser power can raise the temperature of the disk to around T1 , and the second type of laser power can raise the temperature of the disk to around T2 . The first magnetic layer 1 is
The temperature rises to near the Curie point, but the second magnetic layer 2
has a coercive force that allows bits to exist stably at this temperature, so by setting the bias magnetic field appropriately during recording, bits like those in Figure 2 c can be obtained from any of Figure 2 b. Formed (preliminary record of the first type). Here, setting the bias magnetic field appropriately means the following. That is, in the first type of preliminary recording, the magnetization of the first magnetic layer 1 is subjected to a force (exchange force) that aligns it in a stable direction (here, in the same direction) as the direction of magnetization of the second magnetic layer 2. Therefore, a bias magnetic field is not originally required. However, the bias magnetic field is set in a direction that assists in reversing the magnetization of the second magnetic layer 2 (that is, in a direction that hinders the first type of preliminary recording) in preliminary recording using the second type of laser power, which will be described later. And this bias magnetic field is the first
For convenience, it is preferable to set the magnitude and direction to be the same in preliminary recording of both the seed and second type laser powers. From this point of view, it is preferable to set the bias magnetic field to the minimum size necessary for preliminary recording of the second type of laser power based on the principle shown below, and settings that take this into account are the appropriate setting as mentioned above. It is a setting. On the other hand, when the second type of laser power is used to raise the temperature of the second magnetic layer 2 to near the Curie point (second type of preliminary recording), the bias magnetic field set as described above magnetizes the second magnetic layer 2. The direction of is reversed. Subsequently, the magnetization of the first magnetic layer 1 is also aligned in a stable direction (here, in the same direction) with respect to the second magnetic layer 2. That is, a bit as shown in FIG. 2d is formed from any of the bits shown in FIG. 2b. In this way, each location on the magneto-optical disk is preliminarily recorded in the state shown in FIG. Become. Next, when the magneto-optical disk 35 is rotated and the preliminary recorded bits (c) and (d) pass through the magnetic field generating section 34 again, the magnitude of the magnetic field of the magnetic field generating section 34 changes between the magnetic layers 1 and 2 as described above. Since the coercive force is set between the two, the recorded bit (c) remains in the state of (e) without any change (final recorded state). On the other hand, the recording bit
In (d), the second magnetic layer 2 causes a magnetization reaction and becomes the state in (f) (another final recording state). In order for the recorded bit state (f) to exist stably, the following relationship is required as described above. σw 12 /2Ms 1 h 1 <H 1 σw 12 /2Ms 2 h 2 <H 2 where σw 12 /2Ms 1 h 1 indicates the strength of the exchange force acting on the first magnetic layer 1. In other words, a magnetic field with a magnitude of σw 12 /2Ms 1 h 1 changes the direction of magnetization of the first magnetic layer 1 and the direction of magnetization of the second magnetic layer 1.
The magnetization is attempted to be directed in a stable direction (in this case, in the same direction) with respect to the direction of magnetization of the magnetic layer 2. Therefore, in order to prevent the magnetization of the first magnetic layer 1 from being reversed against this magnetic field, it is sufficient that σw 12 /2Ms 1 h 1 <H 1 where the coercive force of the first magnetic layer 1 is H 1 . Similarly, an exchange force acts on the second magnetic layer 2 that aligns the magnetization of the first magnetic layer 1 in a stable direction with a magnitude of σw 12 /2Ms 1 h 1 from the interface domain wall, so (f) In order for the recorded bits to be stable, σw 12 /
It is sufficient if 2Ms 2 h 2 <H 2 . As described above, in order to satisfy the above conditions (that is, to reduce the exchange force), it is sufficient to adjust the film thickness and saturation magnetization of both magnetic layers, but such adjustment may not be appropriate. This is because recording sensitivity, coercive force, etc. have appropriate values and cannot be set arbitrarily. As a result of researching countermeasures, it was discovered that creating an intermediate layer would be effective. By providing the intermediate layer with a thickness of 10 to 50 Å, it is possible to suppress the exchange interaction acting at the interface between the first magnetic layer and the second magnetic layer, and to reduce the apparent size of σw 12 . In other words,
It becomes very easy to meet the above requirements and, after all, is suitable for good overwriting. The states (e) and (f) of the recorded bits are controlled by the laser power during recording and do not depend on the state before recording, so overwriting is possible. Recorded bits (e) and (f) can be reproduced by irradiating a reproduction laser beam and processing the reproduction light by a recording signal regenerator 33. In the explanation of FIG. 2, the first magnetic layer 1 and the second magnetic layer 2 are
We showed an example of stability when the direction of magnetization is the same, but
The same can be said of a magnetic layer that is stable when the direction of magnetization is antiparallel. [Examples] Example 1 A polycarbonate disk-shaped substrate with pregroove and preformat signals engraved thereon was set in a sputtering device equipped with a four-dimensional target source at a distance of 10 cm from the target. Rotated. In argon, from the first target at a sputtering speed of 70 Å/min and a sputtering pressure of 8×10 -3 Torr.
A protective layer of Si 3 N 4 was provided to a thickness of 650 Å. Next, in argon, a second target was sputtered at a sputtering speed of 50 Å/min and a sputtering pressure of 2×10 -3 Torr.
Sputter TbFeCo alloy, film thickness 200 Å, T 1 = approx.
A first magnetic layer of Tb 17 Fe 80 Co 3 was formed at 160°C.
The H 1 of the first magnetic layer itself was about 12 KOe, and the sublattice magnetization was larger in the transition metal. The above operations were performed on each set of substrates, and Si 3 N 4 was added to each of the resulting substrates from the first target.
was sputtered under the same conditions as before to form an intermediate layer. The film thickness was varied in steps of 10 Å from zero (no Si 3 N 4 was provided at this time) to 70 Å. Next, TbFeCoTi alloy was sputtered onto each of them from a third target in argon at a sputtering speed of 50 Å/min and a sputtering pressure of 2×10 -3 Torr.
A second magnetic layer of Tb 23 Fe 51 Co 11 Ti 15 was formed with a film thickness of 400 Å and T 2 =approximately 190°C. This second magnetic layer itself
H 2 was 1.1KOe, and the sublattice magnetization was larger for rare earth elements. Next, each layer was sputtered from the first target under the same conditions as before to provide a 1200 Å thick Si 3 N 4 layer as a protective layer. Next, each of the substrates on which the film had been formed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to produce a plurality of samples of magneto-optical disks. The stability of bits (particularly in state (f)) was investigated for each of the prepared samples. This was done by applying an external magnetic field and measuring the magnetic field at which the magnetization of the magnetic layer was reversed using a vibrating sample magnetometer (VSM). In this example, since the magnetization of the second magnetic layer starts to be reversed by a smaller external magnetic field, we were able to measure the exchange force acting on the second magnetic layer σw 12 /2Ms 2 h 2
It is. Next, set each sample in the recording/playback device,
A binary laser beam of 4 mW and 8 mW is transmitted through the magnetic field generating part of 2KOe at a linear velocity of about 9 m/sec, while modulating a laser beam with a wavelength of 830 nm focused to about 1 μ at 2 MHz with a duty of 50%. Recorded with power. The bias magnetic field at the recording head was 120 Oe. After that, when I irradiated a laser beam of 1mW and performed reproduction, 2
I was able to play the value signal. This experiment was conducted for each sample after the entire surface had been recorded, to check that no signal component recorded before the present example was detected, that is, to check whether overwriting was possible. The above results are summarized in Table 1.

【表】 表1でオーバーライトの可否の判断で2値の信
号記録が可能なものに○印、そうでないものに×
印、不完全なものに△印を付けた。記録状態を評
価した結果と、表1の第2磁性層に働く交換力の
測定値とを対応させることができる。すなわち、
サンプル1−1と1−2とは交換力の大きさが第
2磁性層の保磁力H2に比して小さくない値で、
(f)の記録ビツト安定に存在しないためである。 サンプル1−6〜1−8は第2磁性層、第1磁
性層共に働く交換力が小さすぎて、第1種の記録
が完全に行なえず、第1磁性層の磁化を反転させ
ることができないためと考えられる。 実施例 2 実施例1と同様にして第4のターゲツトを用い
て中間層3の材料と膜厚を変化させたほかは、実
施例1と同じ構成、同じ材料を用いて光磁気デイ
スクのサンプルを作成した。 用いた中間層3の材料は次のとおりである。誘
電体材料としてはSiC、ZnS、金属、半金属材料
としてはSi、Cr、記録磁性層よりも大きいキユ
リー温度をもつ面内に磁気異方性大の磁性材料と
してはFe、Co、Ni、キユリー温度が、室温と記
録磁性層のキユリー温度の間にある面内に磁気異
邦性の大きな材料としてはDy15Fe85
Tb7Dy6Fe83Cr4である。それぞれの材料を第4の
ターゲツトからスパツタすることで、膜厚を変化
させて設けた。 作成したそれぞれのサンプルについて、実施例
1と同様な評価を行なつた。結果を表2に示す。
[Table] In Table 1, when determining whether overwriting is possible, mark ○ for those that can record binary signals, and mark × for those that cannot.
I marked the incomplete ones with a △ mark. The results of evaluating the recording state can be made to correspond to the measured values of the exchange force acting on the second magnetic layer in Table 1. That is,
In samples 1-1 and 1-2, the magnitude of the exchange force is not smaller than the coercive force H2 of the second magnetic layer.
This is because the recording bit in (f) is not stable. In Samples 1-6 to 1-8, the exchange force acting on both the second magnetic layer and the first magnetic layer is too small to allow complete type 1 recording, and the magnetization of the first magnetic layer cannot be reversed. It is thought that this is because of this. Example 2 A magneto-optical disk sample was prepared using the same configuration and materials as in Example 1, except that a fourth target was used and the material and film thickness of the intermediate layer 3 were changed in the same manner as in Example 1. Created. The materials used for the intermediate layer 3 are as follows. Dielectric materials include SiC and ZnS; metal and semimetal materials include Si and Cr; magnetic materials with large in-plane magnetic anisotropy and a higher Curie temperature than the recording magnetic layer include Fe, Co, Ni, and Currie. Materials with large in-plane magnetic anisotropy whose temperature is between room temperature and the Curie temperature of the recording magnetic layer include Dy 15 Fe 85 .
Tb 7 Dy 6 Fe 83 Cr 4 . Each material was sputtered from a fourth target to provide different film thicknesses. The same evaluation as in Example 1 was performed for each of the prepared samples. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、光磁気記録媒体と
して、低いキユリー点T1と高い保磁力H1を有す
る第1の磁性層と、相対的に高いキユリー点T2
と低い保磁力H2を有する第2の磁性層と、中間
層とを有し、且つ他の所定の要件を満たしている
ものを用い、記録時に、記録ヘツドと別位置に磁
界発生部を設け、2値レーザーパワーで記録する
ことによつて、良好な重ね書き(オーバーライ
ト)が可能になつた。
As explained in detail above, as a magneto-optical recording medium, the first magnetic layer has a low Curie point T1 and a high coercive force H1 , and a relatively high Curie point T2.
and a second magnetic layer having a low coercive force H2 , and an intermediate layer, and which also satisfies other predetermined requirements, and a magnetic field generating section is provided at a location separate from the recording head during recording. By recording with binary laser power, good overwriting became possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは各々本発明で使用する光磁気媒
体の構成例を示す図、第2図は、本発明の記録法
を実施中の、磁性層1,2の磁化の向きを示す
図、第3図は、記録・再生装置の概念図、第4図
は両磁性層1と2の保磁力と温度との関係を示す
概略図、第5図は実施例の各サンプルの中間層の
厚さと第1、第2磁性層の交換力の関係を示す図
である。 B:プリグルーブ付の透光性基板、1,2:磁
性層、3:中間層、4,5:保護層、6:接着
層、7:貼り合わせ用基板、31:記録・再生用
ヘツド、32:記録信号発生器、33:記録信号
再生器、34:磁界発生部、35:光磁気デイス
ク。
FIGS. 1a and 1b are diagrams each showing a configuration example of a magneto-optical medium used in the present invention, and FIG. 2 is a diagram showing the magnetization directions of magnetic layers 1 and 2 during implementation of the recording method of the present invention. , FIG. 3 is a conceptual diagram of the recording/reproducing device, FIG. 4 is a schematic diagram showing the relationship between the coercive force and temperature of both magnetic layers 1 and 2, and FIG. 5 is a diagram of the intermediate layer of each sample in the example. FIG. 3 is a diagram showing the relationship between the thickness and the exchange force of the first and second magnetic layers. B: Transparent substrate with pregroove, 1, 2: Magnetic layer, 3: Intermediate layer, 4, 5: Protective layer, 6: Adhesive layer, 7: Bonding substrate, 31: Recording/reproducing head, 32: Recording signal generator, 33: Recording signal regenerator, 34: Magnetic field generator, 35: Magneto-optical disk.

Claims (1)

【特許請求の範囲】 1 低いキユリー点T1と高い保磁力H1とを有す
る第1磁性層およびこの磁性層に比べて相対的に
高いキユリー点T2と低い保磁力H2とを有する第
2磁性層から構成される交換結合している二層の
垂直磁化膜と、該両磁性層の間に設けられた中間
層とを、基板上に有して成る光磁気記録媒体であ
つて、次の条件(A)、(B)を満たしていることを特徴
とする光磁気記録媒体。 (A) 第1磁性層の飽和磁化をMs1、膜厚をh1、第
2磁性層の飽和磁化をMs2、膜厚をh2、中間層
を介して現れる二つの磁性層間の見かけの磁壁
エネルギーをσw12とすると、 σw12/2Ms1h1<H1、σw12/2Ms2h2<H2 (B) 中間層を形成する材料が無機の非磁性物質
か、あるいは室温において基板面に対して中間
層単層では、磁化成分が垂直よりも面内成分の
方が大きいような、組成である磁性材料から成
ること。 2 前記中間層が遷移金属あるいは希土類−遷移
金属合金を主体としたものであり、そのキユリー
温度が室温以上で第1磁性層のキユリー点T1
下である特許請求の範囲第1項記載の光磁気記録
媒体。 3 前記中間層の厚さが10〜50Åである特許請求
の範囲第1項記載の光磁気記録媒体。 4 低いキユリー点T1と高い保磁力H1とを有す
る第1磁性層およびこの磁性層に比べて相対的に
高いキユリー点T2と低い保磁力H2とを有する第
2磁性層から構成される交換結合している二層の
垂直磁化膜と、該両磁性層の間に設けられた中間
層とを、基板上に有して成る光磁気記録媒体であ
つて、次の(A)、(B)の条件、すなわち、 (A) 第1磁性層の飽和磁化をMs1、膜厚をh1、第
2磁性層の飽和磁化をMs2、膜厚をh2、中間層
を介して現れる二つの磁性層間の見かけの磁壁
エネルギーをσw12とすると、 σw12/2Ms1h1<H1、σw12/2Ms2h2<H2 (B) 中間層を形成する材料が無機の非磁性物質
か、あるいは室温において基板面に対して中間
層単層では、磁化成分が垂直よりも面内成分の
方が大きいような、組成である磁性材料から成
ること を満たしている光磁気記録媒体を使用して、次の
二値の記録を行なうことを特徴とする記録方法。 (a) 該媒体に対して、記録用ヘツドと異なる場所
で、保磁力H2の第2磁性層を一方向に磁化さ
せるのに充分で保磁力H1の第1磁性層の磁化
の向きを反転させることのない大きさの磁界B
を加え、 (b) 次に、記録ヘツドにより、バイアス磁界を印
加すると同時に低いキユリー点T1付近まで該
媒体が昇温するだけのレーザーパワーを照射す
ることにより、第2磁性層の磁化の向きを変え
ないまま第1磁性層の磁化の向きを第2磁性層
に対して安定な向きにそろえる第1種の予備記
録か、バイアス磁界を印加すると同時に高いキ
ユリー点T2付近まで該媒体が昇温するだけの
レーザーパワーを照射することにより、第2磁
性層の磁化の向きを反転させて同時に第1磁性
層を第2磁性層に対して安定な向きに磁化する
第2種の予備記録かを、信号に応じて実施し、 (c) 次に、該媒体を運動させて、予備記録された
ビツトを前記磁界Bを通過させることにより、
第1種の予備記録により形成されたビツトにつ
いては第1磁性層、第2磁性層とも磁化の向き
をそのまま変化させず、 第2種の予備記録により形成されたビツトにつ
いては、第2磁性層の磁化の向きを前記磁界Bと
同方向に反転させ、第1磁性層については磁化の
向きをそのまま変化させないとする、二値の記
録。
[Claims] 1. A first magnetic layer having a low Kyrie point T 1 and a high coercive force H 1 and a second magnetic layer having a relatively high Kyrie point T 2 and a low coercive force H 2 compared to this magnetic layer. A magneto-optical recording medium comprising, on a substrate, an exchange-coupled two-layer perpendicular magnetization film composed of two magnetic layers and an intermediate layer provided between the two magnetic layers, A magneto-optical recording medium characterized by satisfying the following conditions (A) and (B). (A) The saturation magnetization of the first magnetic layer is Ms 1 , the film thickness is h 1 , the saturation magnetization of the second magnetic layer is Ms 2 , the film thickness is h 2 , and the apparent difference between the two magnetic layers appearing through the intermediate layer When the domain wall energy is σw 12 , σw 12 /2Ms 1 h 1 <H 1 , σw 12 /2Ms 2 h 2 <H 2 (B) The material forming the intermediate layer is an inorganic non-magnetic material, or the substrate at room temperature Consists of a magnetic material whose composition is such that in a single intermediate layer, the in-plane magnetization component is larger than the magnetization component perpendicular to the plane. 2. The light according to claim 1, wherein the intermediate layer is mainly made of a transition metal or a rare earth-transition metal alloy, and its Curie temperature is higher than room temperature and lower than the Curie point T1 of the first magnetic layer. magnetic recording medium. 3. The magneto-optical recording medium according to claim 1, wherein the intermediate layer has a thickness of 10 to 50 Å. 4 Consisting of a first magnetic layer having a low Kyrie point T 1 and a high coercive force H 1 and a second magnetic layer having a relatively high Kyrie point T 2 and a low coercive force H 2 compared to this magnetic layer. A magneto-optical recording medium comprising, on a substrate, two exchange-coupled perpendicularly magnetized films and an intermediate layer provided between the two magnetic layers, which comprises the following (A): The conditions of (B) are as follows: (A) The saturation magnetization of the first magnetic layer is Ms 1 , the film thickness is h 1 , the saturation magnetization of the second magnetic layer is Ms 2 , the film thickness is h 2 , through the intermediate layer If the apparent domain wall energy between the two magnetic layers is σw 12 , then σw 12 /2Ms 1 h 1 <H 1 , σw 12 /2Ms 2 h 2 <H 2 (B) If the material forming the intermediate layer is an inorganic non- A magneto-optical recording medium that satisfies the requirement that it is made of a magnetic material or a magnetic material whose composition is such that in a single intermediate layer at room temperature, the in-plane magnetization component is larger than the perpendicular magnetization component with respect to the substrate surface. A recording method characterized by recording the following binary values using . (a) With respect to the medium, at a location different from the recording head, change the direction of magnetization of the first magnetic layer with coercive force H 1 enough to magnetize the second magnetic layer with coercive force H 2 in one direction. Magnetic field B of a magnitude that does not cause reversal
(b) Next, the recording head applies a bias magnetic field and at the same time irradiates laser power sufficient to raise the temperature of the medium to near the low Curie point T1 , thereby changing the direction of magnetization of the second magnetic layer. Either the first type of preliminary recording, in which the direction of magnetization of the first magnetic layer is aligned in a stable direction with respect to the second magnetic layer without changing the magnetic field, or the medium is raised to near the high Curie point T 2 while applying a bias magnetic field. A second type of preliminary recording that reverses the direction of magnetization of the second magnetic layer by irradiating it with enough laser power to heat the layer, and simultaneously magnetizes the first magnetic layer in a stable direction relative to the second magnetic layer. (c) then moving the medium to cause the prerecorded bits to pass through the magnetic field B;
For the bits formed by the first type of preliminary recording, the direction of magnetization of both the first magnetic layer and the second magnetic layer remains unchanged, and for the bits formed by the second type of preliminary recording, the direction of magnetization is unchanged in the second magnetic layer. Binary recording in which the direction of magnetization of the first magnetic layer is reversed in the same direction as the magnetic field B, and the direction of magnetization of the first magnetic layer is left unchanged.
JP7172287A 1987-03-27 1987-03-27 Magneto-optical recording medium and recording method thereof Granted JPS63239637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7172287A JPS63239637A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and recording method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7172287A JPS63239637A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and recording method thereof

Publications (2)

Publication Number Publication Date
JPS63239637A JPS63239637A (en) 1988-10-05
JPH0535499B2 true JPH0535499B2 (en) 1993-05-26

Family

ID=13468698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7172287A Granted JPS63239637A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and recording method thereof

Country Status (1)

Country Link
JP (1) JPS63239637A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700889B2 (en) * 1988-02-29 1998-01-21 京セラ株式会社 Magneto-optical recording element
JP2674815B2 (en) * 1988-12-13 1997-11-12 キヤノン 株式会社 Magneto-optical recording method
JP2714085B2 (en) * 1988-12-28 1998-02-16 キヤノン株式会社 Information recording method
JPH02230532A (en) * 1989-03-03 1990-09-12 Nec Corp Magneto-optical recording medium
DE69028092T2 (en) * 1989-11-10 1997-04-03 Mitsubishi Chem Corp MAGNETO-OPTICAL RECORDING MEDIUM
US5233575A (en) * 1989-11-10 1993-08-03 Mitsubishi Kasei Corporation Magneto-optical recording medium
JPH06103622A (en) * 1992-09-18 1994-04-15 Nikon Corp Overwritable magneto-optical recording medium having r layer
JPH06251443A (en) * 1993-02-25 1994-09-09 Sharp Corp Magneto-optical recording medium
JP3192281B2 (en) * 1993-06-21 2001-07-23 シャープ株式会社 Recording method for magneto-optical recording medium
JP2809991B2 (en) 1994-01-14 1998-10-15 富士通株式会社 Magneto-optical recording medium and method of reproducing information recorded on the medium
DE69604209T2 (en) * 1995-01-31 2000-03-23 Canon Kk Test method for a pit length modulation-based recording method and optical information recording / reproducing apparatus using this test method
JPH0969246A (en) * 1995-08-30 1997-03-11 Canon Inc Optical information recording/reproducing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3619618A1 (en) * 1985-06-11 1986-12-11 Nippon Kogaku K.K., Tokio/Tokyo Magneto-optic recording process with overwriting capability, magneto-optic recording apparatus and associated recording carrier
JPS6242348A (en) * 1985-08-19 1987-02-24 Nippon Telegr & Teleph Corp <Ntt> Photomagnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3619618A1 (en) * 1985-06-11 1986-12-11 Nippon Kogaku K.K., Tokio/Tokyo Magneto-optic recording process with overwriting capability, magneto-optic recording apparatus and associated recording carrier
JPS62175948A (en) * 1985-06-11 1987-08-01 Nippon Kogaku Kk <Nikon> Overwritable photomagnetic recording method and photomagnetic recording device and medium therefor
JPS6242348A (en) * 1985-08-19 1987-02-24 Nippon Telegr & Teleph Corp <Ntt> Photomagnetic recording medium

Also Published As

Publication number Publication date
JPS63239637A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JPH0535499B2 (en)
JPH0522303B2 (en)
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPH0395745A (en) Magneto-optical recording method and recording device
JPH0535494B2 (en)
JPH0542062B2 (en)
JPS63155449A (en) Magneto-optical recording method
JPH0522301B2 (en)
JPH0535498B2 (en)
JPS63153752A (en) Magneto-optical recording medium and its recording method
JPH0522302B2 (en)
JPH0535493B2 (en)
JP2555272B2 (en) Magneto-optical recording / reproducing method
JP2589453B2 (en) Magneto-optical recording method
JPH087885B2 (en) Magneto-optical recording method
JP2674815B2 (en) Magneto-optical recording method
JPH0535496B2 (en)
JP2589451B2 (en) Magneto-optical recording / reproducing device
JPS63193351A (en) Magneto-optical recording medium and recording system
JPS63237242A (en) Magneto-optical recording system
JPH0522300B2 (en)
JPH0535495B2 (en)
JPH087884B2 (en) Magneto-optical recording method
JPH0535497B2 (en)
JPH05182267A (en) Magneto-optical recording medium and recording method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term