JPH0522301B2 - - Google Patents

Info

Publication number
JPH0522301B2
JPH0522301B2 JP62070279A JP7027987A JPH0522301B2 JP H0522301 B2 JPH0522301 B2 JP H0522301B2 JP 62070279 A JP62070279 A JP 62070279A JP 7027987 A JP7027987 A JP 7027987A JP H0522301 B2 JPH0522301 B2 JP H0522301B2
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
magnetization
coercive force
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62070279A
Other languages
Japanese (ja)
Other versions
JPS63237238A (en
Inventor
Yoichi Oosato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62070279A priority Critical patent/JPS63237238A/en
Priority to CA 541367 priority patent/CA1340058C/en
Priority to AU75306/87A priority patent/AU593364C/en
Priority to EP87306038A priority patent/EP0258978B1/en
Priority to KR1019870007322A priority patent/KR960003420B1/en
Priority to AT87306038T priority patent/ATE172047T1/en
Priority to DE3752222T priority patent/DE3752222T2/en
Priority to EP98200007A priority patent/EP0838815B1/en
Priority to AT98200007T priority patent/ATE216528T1/en
Priority to EP98200006A priority patent/EP0838814B1/en
Publication of JPS63237238A publication Critical patent/JPS63237238A/en
Priority to US07/475,941 priority patent/US5132945A/en
Publication of JPH0522301B2 publication Critical patent/JPH0522301B2/ja
Priority to US08/296,163 priority patent/US5525378A/en
Priority to US08/312,930 priority patent/US5481410A/en
Priority to US08/613,431 priority patent/US5783300A/en
Priority to US09/080,215 priority patent/US6028824A/en
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、磁気カー効果を利用して読出しする
ことのできるキユリー点書込みタイプの光磁気記
録媒体を使用した、重ね書き可能な光磁気記録方
法に関する。 〔従来の技術〕 消去可能な光デイスクメモリとして光磁気デイ
スクが知られている。光磁気デイスクは、従来の
磁気ヘツドを使つた磁気記録媒体と比べて高密度
記録、非接触での記録再生などが可能であるとい
う長所がある反面、記録前に一度記録部分を消去
しなければならない(一方向に着磁しなければな
らない)という欠点があつた。この欠点を補う為
に、記録再生用ヘツドと消去用ヘツドを別々に設
ける方式、あるいは、レーザーの連続ビーを照射
しながら、同時に印加する磁場を変調しながら記
録する方式などか提案されている。 〔発明が解決しようとする問題点〕 しかし、これらの方法は、装置が大がかりとな
り、コスト高になる欠点あるいは高速の変調が出
来ないなどの欠点を有する。 本発明は上述従来例の欠点を除去し、従来の装
置構成に簡易な構造の磁界発生手段を付設するだ
けで、磁気記録媒体と同様な重ね書き(オーバー
ライト)を可能とした、光磁気記録媒体とその記
録方法を提供することを目的とする。 〔問題点を解決するための手段〕 上記目的達成可能な本発明は、 キユリー点T1、保磁力H1、厚さh1及び飽和磁
化Ms1を有する第1磁性層と、キユリー点T2
保磁力H2、厚さh2及び飽和磁化Ms2を有する第
2磁性層と、キユリー点T3、保磁力H3、厚さh3
及び飽和磁化Ms3を有する第3磁性層と、キユリ
ー点T4、保磁力H4、厚さh4及び飽和磁化Ms4
有する第4磁性層とから成る交換結合している四
層構造の垂直磁化膜を少なくとも基板上に有して
成る光磁気記録媒体であつて、 第1と第2磁性層の磁壁エネルギー、第2と第
3磁性層の磁壁エネルギー、第3と第4磁性層の
磁壁エネルギーを順にσw12、σw23、σw34とする
と、上記4つの磁性層が次の〜の条件、即
ち、 各磁性層のキユリー点の関係に関しては T1、T4>T2、T3 各磁性層の保磁力の関係に関しては H2>H4>H1、H3 各磁性層の膜厚の関係に関しては h1+h2≧250Å h1+h2+h3+h4≧600Å 各磁性層の飽和磁化、膜厚、保磁力、磁壁エ
ネエルギーそれぞれの関係に関しては σw12/2Ms1h1>H1、 H2>σw12/2Ms2h2,σw23/2Ms2h2、 H3<σw23/2Ms3h3,σw34/2Ms3h3、 H4>σw34/2Ms4h4 を満たしている光磁気記録媒体と、これを使用し
て、次の二値の記録を行なうことを特徴とする記
録方法である。 (a) 該媒体に対して、記録用ヘツドと異なる場所
で、保磁力H4の第4磁性層を一方向に磁化さ
せるのに充分で保磁力H2の第2磁性層の磁化
の向きを反転させることのない大きさの磁界B
を加え、 (b) 次に、記録ヘツドにより、バイアス磁界を印
加すると同時に第2磁性層のキユリー点T2
近(T2に近い温度で、第1、第2磁性層の磁
化の向きを均一に第4磁性層の磁化に対して安
定な方向に配列可能な温度)まで該媒体が昇温
するだけのレーザーパワーを照射することによ
り、第4磁性層の磁化の向きを変えないまま第
1、第2磁性層の磁化の向きを第3磁性層を介
して第4磁性層に対して安定な向きにそろえる
第1種の予備記録か、バイアス磁界を印加する
と同時に第4磁性層のキユリー点T4付近(T4
に近い温度で、第4磁性層の磁化の向きを均一
に反転可能な温度)まで該媒体が昇温するだけ
のレーザーパワーを照射することにより、第4
磁性層の磁化の向きを反転させて同時に第1か
ら第3磁性層を共に第4磁性層に対して安定な
向きに磁化する第2種の予備記録かを、信号に
応じて実施し、 (c) 次に、該媒体を運動させて、予備記録された
ビツトを前記磁界Bを通過させることにより、
第1種の予備記録により形成されたビツトにつ
いては第1から第4磁性層全て磁化の向きをそ
のまま変化させず、 第2種の予備記録により形成されたビツトにつ
いては、第4磁性層の磁化の向きを前記磁界Bと
同方向に反転させ、第1、第2磁性層の磁化の向
きはそのまま変化させないとする、二値の記録。 ここで、第3磁性層の磁化の向きについては、
詳しくふれなかつたが、次のどちらかのように配
列している。 σw23/2Ms3h3<σw34/2Ms3h3の場合は、第3
磁性層の磁化はいつも第4磁性層の磁化の向きに
対して安定な方向に配列する。 また、σw23/2Ms3h3>σw34/2Ms3h3の場合は
第3磁性層の磁化はいつも第2磁性層の磁化の向
きに対して安定な方向に配列する。 [実施態様] 以下、図面を参照して本発明を詳細に説明す
る。 第1図a,bは各々本発明の光磁気記録媒体の
一実施例を示す模式断面図である。第1図aの光
磁気記録媒体は、プリグルーブが設けられた透光
性の基板B上に、第1の磁性層1、第2の磁性層
2、第3の磁性層3及び第4の磁性層4が積層さ
れたものである。第1磁性層1、第2磁性層2、
第3磁性層3、第4磁性層4それぞれのキユリー
点は順にT1、T2、T3、T4、保磁力は順にH1
H2、H3、H4、膜厚は順にh1、h2、h3、h4、飽和
磁化は順にMs1、Ms2、Ms3、Ms4である。 第1磁性層と、第2磁性層の磁壁エネルギー、
第2磁性層と第3磁性層の磁壁エネルギー、第3
磁性層と第4磁性層の磁壁エネルギーを順に
σw12、σw23、σw34とすると、上記4つの磁性層
は次の〜の条件を満たし、交換結合してい
る。 各磁性層のキユリー点については、 T1、T4>T2、T3という関係 各磁性層の保磁力については、 H2>H4>H1、H3という関係 各磁性層の膜厚については、 h1+h2≧250Å、h1+h2+h3+h4≧600Åという
関係 各磁性層の飽和磁化、膜厚、保磁力、磁壁エ
ネルギーそれぞれについては、次の関係 σw12/2Ms1h1>H1、 H2>σw12/2Ms2h2,σw23/2Ms2h2、 H3<σw23/2Ms3h3,σw34/2Ms3h3、 H4>σw34/2Ms4h4 ただし、通常は第1磁性層1のT1は150〜400
℃、H1は、0.1〜1KOe、膜厚h1は50〜300Å、第
2磁性層2のT2は70〜200℃、H2は2〜12KOe、
膜厚h2は50〜300Å、第3磁性層3のT3は0〜
200℃、H3は、0.1〜1KOe、膜厚h3は50〜300Å、
第4磁性層4のT4は100〜300℃、H1は、0.5〜
4KOe、膜厚h4は50〜600Å程度の範囲内にする
とよい。 各磁性層の主成分には、垂直磁気異方性を示し
且つ磁気光学効果を呈するものが使用できるが、
希土類元素と遷移金属元素との非晶質磁性合金が
好ましい。例として、GdCo,GdFe,TbFe,
DyFe,GdTbFe,TbDyFe,GdTbFeCo,
TbFeCo,GdTbCo等が挙げられる。 本発明の光磁気記録媒体の隣接する磁性層は交
換力で結合しており、第1磁性層1と第2磁性層
2は相対的に強く結合しており、第2磁性層と第
3磁性層は相対的に弱く結合している。また、第
3磁性層と第4磁性層は相対的に弱く結合してい
る。これは強く結合している磁性層間の磁壁エネ
ルギーσwは大きく、弱く結合している磁性層間
の磁壁エネルギーσwは小さいということで、前
述の関係を満たすように、各磁性層のσw、
Ms、h、Hを調整する際に、σwの値を最適化し
ていることになる。 4つの磁性層1,2,3,4は上記の関係式を
満たすように[こうすることは、記録によつて最
終的に完成された2種の磁化状態(第2図e,
f)を安定することにむすびつく]、各層の膜厚、
保磁力、飽和磁化の大きさ、磁壁エネルギー等を
設定すればよい。 本発明の光磁気記録媒体の他の例である第1図
bにおいて、5,6は4つの磁性層1,2,3,
4の耐久性を向上させるためのあるいは光磁気効
果を向上させるための保護膜である。 7は、貼り合わせ用基板8を貼り合わすための
接着層である。貼り合わせ用基板8にも、1から
6までの層を積層し、これを接着すれば両面で記
録・再生が可能となる。 以下、第2図〜第4図を用いて本発明の記録の
過程を示す。記録前、磁性層1〜4の磁化の向き
は隣接する磁性層間で、平行(同方向)で安定状
態であつてもよいし、反平行(反対方向)で安定
状態であつてもよい。 ただし、平行で隣接する磁性層は相対的に強く
結合し、反平行で隣接する磁性層は相対的に弱く
結合するので、本発明の光磁気記録媒体の磁化
は、次のような状態であることが好ましい。第
1,第2磁性層の磁化に関しては平行で安定状態
となつており、第2磁性層と第4磁性層の磁化に
関しては反平行で安定状態となつていることであ
る。 第3図の35は、上述したような構成を有する
光磁気デイスクである。例えば、この磁性層のあ
る一部の磁化状態が初め第2図aのようになつて
いたとする。 第3磁性層の磁化は第4磁性層の磁化と平行で
安定状態であるとする。 光磁気デイスク35はスピンドルモータにより
回転して、磁界発生部34を通過する。このと
き、磁界発生部34の磁界の大きさを第2磁性層
2と第4磁性層4の保磁力の間の値に設定すると
(磁界の向きは本実施例では上向き)、第2図bに
示す様に第4磁性層4は一様な方向に磁化され、
第4磁性層と強く結合している第3磁性層3も、
第4磁性層の磁化と平行に磁化される。一方、第
2磁性層2の磁化は初めのままである。また、第
2磁性層2と強く結合している第1磁性層1の磁
化も始めのままである。 次に光磁気デイスク35が回転して記録・再生
ヘツド31を通過するときに、2種類(第1種と
第2種)のレーザーパワー値を持つレーザービー
ムを、記録信号発生器32からの信号に従つて、
そのどちらかのパワーでもつて、デイスク面に照
射する。第1種のレーザーパワーは該デイスクを
第2磁性層2のキユリー点付近まで昇温するだけ
のパワーであり、第2種のレーザーパワーは該デ
イスクを第4磁性層4のキユリー点付近まで昇温
可能なパワーである。即ち、両磁性層2,4の保
磁力と温度との関係の概略を示した第4図におい
て、第1種のレーザーパワーはT2付近、第2種
のレーザーパワーはT4付近までデイスクの温度
を上昇できる。 第1種のレーザーパワーにより第2磁性層2と
第4磁性層4とは、第2磁性層のキユリー点付近
まで昇温するが、第4磁性層4はこの温度でビツ
トが安定に存在する保磁力を有しているので記録
時のバイアス磁界を適正に設定しておくことによ
り、記録ビツト部が降温していく過程で、それぞ
れの磁性層の磁化の方向は第4磁性層の磁化に対
して安定な方向ヘ配列する。 つまり、第2図bのいづれからも第2図cのよ
うなビツトが形成される(第1種の予備記録)。 ここでバイアス磁界を適正に設定するとは、次
のような意味である。即ち、第1種の予備記録で
は、第4磁性層4の磁化の向きに対して安定な向
きに、第1〜3磁性層それぞれの磁化が配列する
力(交換力)を受けるので、本来なバイアス磁界
は必要でない。しかし、バイアス磁界は後述する
第2種のレーザーパワーを用いた予備記録では第
4磁性層4の磁化反転を補助する向きに設定され
る。また、このバイアス磁界は、第1種,第2種
どちらのレーザーパワーの予備記録でも、大き
さ、方向を同じ状態に設定しておくことが便宜上
好ましい。 かかる観点からバイアス磁界の設定は次記に示
す原理による第2種のレーザーパワーの予備記録
に必要最小限の大きさに設定しておくことが好ま
しく、これを考慮した設定が前でいう適正な設定
である。 一方、第2種のレーザーパワーにより、第4磁
性層4のキユリー点近くまで昇温させる(第2種
の予備記録)と、上述のように設定されたバイア
ス磁界により第4磁性層4の磁化の向きが反転す
る。続いて第1〜3磁性層の磁化も第4磁性層4
に対して安定な向きに配列する。即ち、第2図b
のいづれからも第2図dのようなビツトが形成さ
れる。 このように、バイアス磁界と、信号に応じて変
わる第1種及び第2種のレーザーパワーとによつ
て、光磁気デイスクの各箇所は第2図cかdの状
態に予備記録されることになる。 次に光磁気デイスク35を回転させ、予備記録
のビツトc,dが磁界発生部34を再び通過する
と、磁界発生部34の磁界の大きさは前述したよ
うに磁性層2と4の保磁力間に設定されているの
で、記録ビツトcは、変化が起こらずにeの状態
である(最終的な記録状態)。一方、記録ビツト
dは第3,4磁性層3,4が磁化反転を起こして
fの状態になる(もう一つの最終的な記録状態)。 fの記録ビツトの状態が安定に存在する為に
は、前述したように次の様な関係が必要である。 (イ) H2>σw12/2Ms2h2,σw23/2Ms2h2 H4>σw34/2Ms4h4 (ロ) σw12/2Ms1h1>H1 (ハ) H3<σw23/2Ms3h3,σw34/2Ms3h3、 (ニ) h1+h2≧250Å、 h1+h2+h3+h4≧600Å (イ)が必要なのは、第2磁性層と第4磁性層が非
安定な状態をとるようにするためである。 (ロ)が必要なのは、第1,第2磁性層を強く結合
させ、第1磁性層の磁化の向きを常に第2磁性層
の磁化に対して安定な向きに配列させるためであ
る。 (ハ)が必要なのは、第3磁性層の磁化を第2また
は第4磁性層のどちらかの磁化の向きに対して常
に安定にするためである。 (ニ)が必要なのは、後の実施例で明らかにする
が、記録感度や再生C/N比を最適化することの
考慮からである。 記録ビツトの状態eとfは、記録時のレーザー
のパワーで制御され、記録前の状態には依存しな
いので、重ね書き(オーバーライト)が可能であ
る。記録ビツトeとfは、再生用のレーザービー
ムを照射し、再生光を記録信号再生器33で処理
することにより、再生できる。 再生信号の大きさ(変調度)は前述のように主
として第1,第2磁性層の光磁気効果に依存す
る。本発明において、再生光が入射する第1磁性
層1には、キユリー温度が高い材料(光磁気効果
の高い材料)が使用できることから、本発明では
再生信号の大きい記録が可能となる。 〔実施例〕 実施例 1 5元のターゲツト源を備えたスパツタ装置内
に、プリグルーブ、プリフオーマツト信号の刻ま
れたポリカーボネート製のデイスク状基板を、タ
ーゲツトとの間の距離10cmの間隔にセツトし、回
転させた。 アルゴン中で、第1のターゲツトより、スパツ
タ速度100Å/min、スパツタ圧5×10-3Torrで
ZnSを保護層として900Åの厚さに設けた。 次にアルゴン中で、第2のターゲツトよりスパ
ツタ速度100Å/min、スパツタ圧5×10-3Torr
でGdFeCoTi合金をスパツタし、膜厚200Å、T1
=約350℃のGd18Fe55Co24Ti3の第1磁性層を形
成した。この第1磁性層自身のH1は約300Oe以
下であり、副格子磁化は遷移金属の方が大きかつ
た。 次に、同様な条件で、第3のターゲツトによ
り、TbFe合金をスパツタし、膜厚150Å、T2
約140℃、Tb18Fee82の第2磁性層を形成した。
この第2磁性層自身のH2は10KOeであり、副格
子磁化は遷移金属の方が大きかつた。 次に、同様な条件で、第4のターゲツトより、
GdTbFe合金をスパツタし、膜厚100Å、T3=約
160℃、Gd12Tb12Fe76の第3磁性層を形成した。
この第3磁性層自身のH3は100〜300Oeであり、
副格子磁化は希土類の方が大きかつた。 次に、同様な条件で、第5のターゲツトより、
TbFeCo合金をスパツタし、膜厚200Å、T4=約
210℃、Tb23Fe72Co5の第4磁性層を形成した。
この第4磁性層自身のH4は500〜1500Oeであり、
副格子磁化は希土類の方が大きかつた。 次に、同条件で第1のターゲツトよりZnSをス
パツタし、保護層として2000Åの厚さのZnS層を
設けた。 次に膜形成を終えた上記の基板をホツトメルト
接着剤を用いて、ポリカーボネートの貼り合わせ
用基板と貼り合わせ光磁気デイスクを作製した。 この光磁気デイスクを記録再生装置にセツト
し、2KOeの磁界発生部を、線速度約7m/secで
通過させつつ、約1μに集光した830nmの波長のレ
ーザービームを50%のデユーテイで2MHzで変調
させながら、4mWと8mWの2値のレーザーパワ
ーで記録を行なつた。バイアス磁界は150Oeであ
つた。その後1mWのレーザービームを照射して
再生を行なつたところ、2値の信号の再生ができ
た。 次に上記と同様な実験を、全面記録された後の
光磁気デイスクについて行なつた。この結果前に
記録された信号成分が検出されず、オーバーライ
トが可能であることが確認された。 実施例2と比較例 実施例1と同様な構成、材料にして、第1〜第
4磁性層の膜厚だけを変化させて、光磁気デイス
クのサンプルを作製した。各サンプルについて、
反射率とカー回転角を測定した。結果を以下の表
1に示す。なお、反射率については、それぞれ基
板表面の反射(約4%)を含めて23〜24%であつ
た。また、カー回転角はその値が大きい程、再生
信号のCN比が大きくなると考えられる。
[Industrial Application Field] The present invention relates to an overwritable magneto-optical recording method using a Curie point writing type magneto-optical recording medium that can be read using the magnetic Kerr effect. [Prior Art] Magneto-optical disks are known as erasable optical disk memories. Magneto-optical disks have advantages over conventional magnetic recording media using magnetic heads, such as high-density recording and non-contact recording and playback, but on the other hand, the recorded area must be erased before recording. It has the disadvantage that it cannot be magnetized in one direction (it must be magnetized in one direction). To compensate for this drawback, proposals have been made such as a method in which a recording/reproducing head and an erasing head are provided separately, or a method in which recording is performed while irradiating continuous laser beams while simultaneously modulating the applied magnetic field. [Problems to be Solved by the Invention] However, these methods have drawbacks such as the need for large-scale equipment and high cost, or the inability to perform high-speed modulation. The present invention eliminates the drawbacks of the above-mentioned conventional example, and provides magneto-optical recording that enables overwriting similar to magnetic recording media by simply adding a magnetic field generating means with a simple structure to the conventional device configuration. The purpose is to provide media and recording methods. [Means for Solving the Problems] The present invention capable of achieving the above object includes: a first magnetic layer having a Curie point T 1 , a coercive force H 1 , a thickness h 1 and a saturation magnetization Ms 1 ; ,
a second magnetic layer having a coercive force H 2 , a thickness h 2 and a saturation magnetization Ms 2 ; a Curie point T 3 , a coercive force H 3 and a thickness h 3 ;
and an exchange-coupled four-layer structure consisting of a third magnetic layer having a saturation magnetization Ms 3 and a fourth magnetic layer having a Curie point T 4 , a coercive force H 4 , a thickness h 4 and a saturation magnetization Ms 4 . A magneto-optical recording medium having a perpendicularly magnetized film on at least a substrate, the magnetic wall energy of the first and second magnetic layers, the domain wall energy of the second and third magnetic layers, and the magnetic wall energy of the third and fourth magnetic layers. Assuming that the domain wall energies are σw 12 , σw 23 , and σw 34 in order, the above four magnetic layers meet the following conditions: T 1 , T 4 > T 2 , T 3 regarding the relationship of the Curie points of each magnetic layer. Regarding the relationship of coercive force of each magnetic layer, H 2 > H 4 > H 1 , H 3 Regarding the relationship of film thickness of each magnetic layer, h 1 + h 2 ≧250 Å h 1 + h 2 + h 3 + h 4 ≧ 600 Å of each magnetic layer Regarding the relationship between saturation magnetization, film thickness, coercive force, and domain wall energy, σw 12 /2Ms 1 h 1 > H 1 , H 2 >σw 12 /2Ms 2 h 2 , σw 23 /2Ms 2 h 2 , H 3 < Using a magneto-optical recording medium that satisfies σw 23 /2Ms 3 h 3 , σw 34 /2Ms 3 h 3 , H 4 >σw 34 /2Ms 4 h 4 , perform the following binary recording. This recording method is characterized by the following. (a) At a location different from the recording head on the medium, change the direction of magnetization of the second magnetic layer with coercive force H 2 in a direction sufficient to magnetize the fourth magnetic layer with coercive force H 4 in one direction. Magnetic field B of a magnitude that does not cause reversal
(b) Next, a bias magnetic field is applied by the recording head, and at the same time the direction of magnetization of the first and second magnetic layers is made uniform near the Curie point T 2 of the second magnetic layer (at a temperature close to T 2 ). By irradiating the medium with laser power sufficient to raise the temperature of the medium to a temperature at which the medium can be aligned in a stable direction with respect to the magnetization of the fourth magnetic layer, the first magnetic layer can be aligned without changing the direction of magnetization of the fourth magnetic layer. , the first type of preliminary recording in which the direction of magnetization of the second magnetic layer is aligned in a stable direction with respect to the fourth magnetic layer via the third magnetic layer, or the Curie point of the fourth magnetic layer is simultaneously applied while applying a bias magnetic field. Around T 4 (T 4
By irradiating the medium with enough laser power to raise the temperature of the medium to a temperature close to that at which the direction of magnetization of the fourth magnetic layer can be uniformly reversed,
Performing a second type of preliminary recording in which the direction of magnetization of the magnetic layer is reversed and simultaneously the first to third magnetic layers are magnetized in a stable direction with respect to the fourth magnetic layer, according to the signal, ( c) then by moving the medium to pass the pre-recorded bits through said magnetic field B;
For bits formed by the first type of preliminary recording, the magnetization direction of all the first to fourth magnetic layers remains unchanged, and for bits formed by the second type of preliminary recording, the magnetization direction of the fourth magnetic layer is Binary recording in which the direction of the magnetic field B is reversed to the same direction as the magnetic field B, and the directions of magnetization of the first and second magnetic layers remain unchanged. Here, regarding the direction of magnetization of the third magnetic layer,
I didn't go into details, but they are arranged like one of the following. If σw 23 /2Ms 3 h 3 <σw 34 /2Ms 3 h 3 , the third
The magnetization of the magnetic layer is always aligned in a stable direction with respect to the direction of magnetization of the fourth magnetic layer. Further, when σw 23 /2Ms 3 h 3 >σw 34 /2Ms 3 h 3 , the magnetization of the third magnetic layer is always aligned in a stable direction with respect to the direction of magnetization of the second magnetic layer. [Embodiments] The present invention will be described in detail below with reference to the drawings. FIGS. 1a and 1b are schematic cross-sectional views each showing an embodiment of the magneto-optical recording medium of the present invention. The magneto-optical recording medium shown in FIG. The magnetic layer 4 is laminated. a first magnetic layer 1, a second magnetic layer 2,
The Curie points of the third magnetic layer 3 and the fourth magnetic layer 4 are T 1 , T 2 , T 3 , T 4 in this order, and the coercive forces are H 1 ,
H 2 , H 3 , H 4 , film thicknesses are h 1 , h 2 , h 3 , h 4 in order, and saturation magnetizations are Ms 1 , Ms 2 , Ms 3 , Ms 4 in order. Domain wall energy of the first magnetic layer and the second magnetic layer,
The domain wall energy of the second magnetic layer and the third magnetic layer, the third
Assuming that the domain wall energies of the magnetic layer and the fourth magnetic layer are σw 12 , σw 23 , and σw 34 in this order, the above four magnetic layers satisfy the following conditions and are exchange-coupled. For the Curie point of each magnetic layer, the relationship is T 1 , T 4 > T 2 , T 3 For the coercive force of each magnetic layer, the relationship is H 2 > H 4 > H 1 , H 3 Thickness of each magnetic layer For the relationship, h 1 + h 2 ≧250 Å, h 1 + h 2 + h 3 + h 4 ≧ 600 Å. For the saturation magnetization, film thickness, coercive force, and domain wall energy of each magnetic layer, the following relationship σw 12 /2Ms 1 h 1 >H 1 , H 2 >σw 12 /2Ms 2 h 2 , σw 23 /2Ms 2 h 2 , H 3 <σw 23 /2Ms 3 h 3 , σw 34 /2Ms 3 h 3 , H 4 >σw 34 /2Ms 4 h 4 However, usually T 1 of the first magnetic layer 1 is 150 to 400
℃, H 1 is 0.1 to 1 KOe, film thickness h 1 is 50 to 300 Å, T 2 of the second magnetic layer 2 is 70 to 200 ℃, H 2 is 2 to 12 KOe,
The film thickness h 2 is 50 to 300 Å, and the T 3 of the third magnetic layer 3 is 0 to 300 Å.
200℃, H3 is 0.1~1KOe, film thickness h3 is 50~300Å,
T4 of the fourth magnetic layer 4 is 100 to 300°C, H1 is 0.5 to
4KOe and film thickness h 4 are preferably in the range of about 50 to 600 Å. The main component of each magnetic layer can be one that exhibits perpendicular magnetic anisotropy and exhibits a magneto-optical effect.
Amorphous magnetic alloys of rare earth elements and transition metal elements are preferred. Examples include GdCo, GdFe, TbFe,
DyFe,GdTbFe,TbDyFe,GdTbFeCo,
Examples include TbFeCo and GdTbCo. Adjacent magnetic layers of the magneto-optical recording medium of the present invention are coupled by exchange force, the first magnetic layer 1 and the second magnetic layer 2 are coupled relatively strongly, and the second magnetic layer and the third magnetic layer The layers are relatively weakly bonded. Further, the third magnetic layer and the fourth magnetic layer are coupled relatively weakly. This means that the domain wall energy σw between strongly coupled magnetic layers is large, and the domain wall energy σw between weakly coupled magnetic layers is small, so that the σw of each magnetic layer is
When adjusting Ms, h, and H, the value of σw is optimized. The four magnetic layers 1, 2, 3, and 4 are arranged so as to satisfy the above relational expression [this means that the two types of magnetization states finally completed by recording (Fig.
f)], the film thickness of each layer,
Coercive force, magnitude of saturation magnetization, domain wall energy, etc. may be set. In FIG. 1b, which is another example of the magneto-optical recording medium of the present invention, 5 and 6 are four magnetic layers 1, 2, 3,
This is a protective film for improving the durability of No. 4 or for improving the magneto-optical effect. 7 is an adhesive layer for bonding the bonding substrate 8 together. By laminating layers 1 to 6 on the bonding substrate 8 and gluing them together, recording and reproduction can be performed on both sides. The recording process of the present invention will be described below using FIGS. 2 to 4. Before recording, the magnetization directions of the magnetic layers 1 to 4 may be parallel (same direction) and stable, or antiparallel (opposite directions) and stable between adjacent magnetic layers. However, since parallel adjacent magnetic layers are relatively strongly coupled, and antiparallel adjacent magnetic layers are relatively weakly coupled, the magnetization of the magneto-optical recording medium of the present invention is in the following state. It is preferable. The magnetizations of the first and second magnetic layers are parallel and stable, and the magnetizations of the second and fourth magnetic layers are antiparallel and stable. 35 in FIG. 3 is a magneto-optical disk having the configuration described above. For example, suppose that the magnetization state of a certain part of this magnetic layer is initially as shown in FIG. 2a. It is assumed that the magnetization of the third magnetic layer is parallel to the magnetization of the fourth magnetic layer and is in a stable state. The magneto-optical disk 35 is rotated by a spindle motor and passes through the magnetic field generating section 34 . At this time, if the magnitude of the magnetic field of the magnetic field generator 34 is set to a value between the coercive forces of the second magnetic layer 2 and the fourth magnetic layer 4 (the direction of the magnetic field is upward in this embodiment), as shown in FIG. As shown in , the fourth magnetic layer 4 is magnetized in a uniform direction,
The third magnetic layer 3, which is strongly coupled to the fourth magnetic layer, also
It is magnetized parallel to the magnetization of the fourth magnetic layer. On the other hand, the magnetization of the second magnetic layer 2 remains unchanged. Furthermore, the magnetization of the first magnetic layer 1, which is strongly coupled to the second magnetic layer 2, remains as it was at the beginning. Next, when the magneto-optical disk 35 rotates and passes the recording/reproducing head 31, a laser beam having two types (first type and second type) of laser power values is emitted by a signal from the recording signal generator 32. According to
Either power is used to irradiate the disk surface. The first type of laser power is enough to raise the temperature of the disk to around the Curie point of the second magnetic layer 2, and the second type of laser power is enough to raise the temperature of the disk to around the Kyrie point of the fourth magnetic layer 4. It is a power that can be heated. That is, in FIG. 4, which shows an outline of the relationship between the coercive force and temperature of both magnetic layers 2 and 4, the first type of laser power reaches around T 2 and the second type laser power reaches around T 4 of the disk. Can increase temperature. The temperature of the second magnetic layer 2 and the fourth magnetic layer 4 is raised to near the Curie point of the second magnetic layer by the first type of laser power, but bits stably exist in the fourth magnetic layer 4 at this temperature. Since it has a coercive force, by appropriately setting the bias magnetic field during recording, the direction of magnetization of each magnetic layer will change to the magnetization of the fourth magnetic layer as the temperature of the recording bit area decreases. Arrange in a stable direction. In other words, bits as shown in FIG. 2c are formed from any of the bits shown in FIG. 2b (first type preliminary recording). Here, setting the bias magnetic field appropriately means the following. That is, in the first type of preliminary recording, the magnetization of each of the first to third magnetic layers is subjected to a force (exchange force) that aligns them in a stable direction with respect to the direction of magnetization of the fourth magnetic layer 4, so that the original No bias magnetic field is required. However, the bias magnetic field is set in a direction that assists magnetization reversal of the fourth magnetic layer 4 in preliminary recording using the second type of laser power, which will be described later. Further, it is preferable for convenience to set the bias magnetic field to have the same magnitude and direction in preliminary recording with either the first type or the second type of laser power. From this point of view, it is preferable to set the bias magnetic field to the minimum size necessary for preliminary recording of the second type of laser power based on the principle shown below, and settings that take this into account are the appropriate setting as mentioned above. It is a setting. On the other hand, when the temperature of the fourth magnetic layer 4 is raised to near the Curie point using the second type of laser power (second type of preliminary recording), the fourth magnetic layer 4 is magnetized by the bias magnetic field set as described above. The direction of is reversed. Subsequently, the magnetization of the first to third magnetic layers also changes to the fourth magnetic layer 4.
Arrange in a stable direction. That is, Fig. 2b
A bit as shown in FIG. 2d is formed from either of these. In this way, each location on the magneto-optical disk is preliminarily recorded in the state shown in FIG. Become. Next, when the magneto-optical disk 35 is rotated and the pre-recorded bits c and d pass through the magnetic field generating section 34 again, the magnitude of the magnetic field of the magnetic field generating section 34 will be between the coercive forces of the magnetic layers 2 and 4 as described above. Therefore, the recording bit c remains in the state e (final recording state) without any change. On the other hand, the recording bit d becomes the state f (another final recording state) due to magnetization reversal in the third and fourth magnetic layers 3 and 4. In order for the state of the recorded bits of f to exist stably, the following relationship is required as described above. (B) H 2 >σw 12 /2Ms 2 h 2 ,σw 23 /2Ms 2 h 2 H 4 >σw 34 /2Ms 4 h 4 (B) σw 12 /2Ms 1 h 1 >H 1 (C) H 3 < σw 23 /2Ms 3 h 3 , σw 34 /2Ms 3 h 3 , (d) h 1 +h 2 ≧250Å, h 1 +h 2 +h 3 +h 4 ≧600Å (a) is necessary for the second magnetic layer and the fourth This is to ensure that the magnetic layer is in an unstable state. The reason for (b) is that the first and second magnetic layers are strongly coupled and the magnetization direction of the first magnetic layer is always aligned in a stable direction with respect to the magnetization of the second magnetic layer. (C) is necessary in order to always make the magnetization of the third magnetic layer stable with respect to the direction of magnetization of either the second or fourth magnetic layer. (D) is necessary because, as will be made clear in later examples, consideration is given to optimizing recording sensitivity and reproduction C/N ratio. The states e and f of the recorded bits are controlled by the laser power during recording and do not depend on the state before recording, so overwriting is possible. Recorded bits e and f can be reproduced by irradiating a reproduction laser beam and processing the reproduction light by a recording signal regenerator 33. As mentioned above, the magnitude (modulation degree) of the reproduced signal mainly depends on the magneto-optical effect of the first and second magnetic layers. In the present invention, since a material with a high Curie temperature (a material with a high magneto-optical effect) can be used for the first magnetic layer 1 on which the reproduction light is incident, recording with a large reproduction signal is possible in the present invention. [Examples] Example 1 A polycarbonate disc-shaped substrate with pregroove and preformat signals engraved thereon was set at a distance of 10 cm from the target in a sputtering device equipped with a 5-dimensional target source. Rotated. In argon, from the first target at a sputtering speed of 100 Å/min and a sputtering pressure of 5×10 -3 Torr.
ZnS was provided as a protective layer with a thickness of 900 Å. Next, in argon, a second target was sputtered at a sputtering speed of 100 Å/min and a sputtering pressure of 5×10 -3 Torr.
GdFeCoTi alloy was sputtered with a film thickness of 200 Å, T 1
A first magnetic layer of Gd 18 Fe 55 Co 24 Ti 3 was formed at a temperature of approximately 350°C. H 1 of the first magnetic layer itself was about 300 Oe or less, and the sublattice magnetization was larger in the transition metal. Next, under similar conditions, TbFe alloy was sputtered using a third target, with a film thickness of 150 Å and T 2 =
A second magnetic layer of Tb 18 Fee 82 was formed at about 140°C.
The H 2 of this second magnetic layer itself was 10 KOe, and the sublattice magnetization was larger in the transition metal. Next, under similar conditions, from the fourth target,
Sputter GdTbFe alloy, film thickness 100 Å, T 3 = approx.
A third magnetic layer of Gd 12 Tb 12 Fe 76 was formed at 160°C.
The H 3 of this third magnetic layer itself is 100 to 300 Oe,
Sublattice magnetization was larger for rare earths. Next, under similar conditions, from the fifth target,
Sputter TbFeCo alloy, film thickness 200 Å, T 4 = approx.
A fourth magnetic layer of Tb 23 Fe 72 Co 5 was formed at 210°C.
The H 4 of this fourth magnetic layer itself is 500 to 1500 Oe,
Sublattice magnetization was larger for rare earths. Next, ZnS was sputtered from the first target under the same conditions to form a 2000 Å thick ZnS layer as a protective layer. Next, the above substrate on which the film had been formed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to produce a magneto-optical disk. This magneto-optical disk was set in a recording/reproducing device, and a laser beam with a wavelength of 830 nm focused to approximately 1 μ was transmitted at 2 MHz at a duty rate of 50% while passing through the magnetic field generator of 2KOe at a linear velocity of approximately 7 m/sec. Recording was performed using binary laser powers of 4 mW and 8 mW while modulating the laser power. The bias magnetic field was 150 Oe. After that, a 1mW laser beam was irradiated to reproduce the signal, and a binary signal could be reproduced. Next, an experiment similar to that described above was conducted on a magneto-optical disk that had been completely recorded. As a result, previously recorded signal components were not detected, confirming that overwriting is possible. Example 2 and Comparative Example Magneto-optical disk samples were fabricated using the same configuration and materials as in Example 1, with only the film thicknesses of the first to fourth magnetic layers being changed. For each sample,
The reflectance and Kerr rotation angle were measured. The results are shown in Table 1 below. Note that the reflectance was 23 to 24%, including reflection from the substrate surface (approximately 4%). Further, it is considered that the larger the value of the Kerr rotation angle, the larger the CN ratio of the reproduced signal.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、光磁気記録媒体と
して、前記所定の要件を満たす4つの磁性層を有
するものをを用い、記録時に、記録ヘツドと別位
置に磁界発生部を設け、2値レーザーパワーで記
録することによつて、重ね書き(オーバーライ
ト)が可能になつた。 また、本発明の記録法に用いる記録媒体の、主
に再生に利用される磁性層は、キユリー点の高
い、つまり光磁気効果の大きい材料から選び得る
ので、本発明によれば結果的に、再生信号が大き
いビツトが得られる。
As explained in detail above, a magneto-optical recording medium having four magnetic layers that satisfies the above-mentioned requirements is used, and during recording, a magnetic field generating section is provided at a separate position from the recording head, and a binary laser power is By recording with , overwriting became possible. Further, since the magnetic layer of the recording medium used in the recording method of the present invention, which is mainly used for reproduction, can be selected from materials with a high Kyrie point, that is, a material with a large magneto-optical effect, according to the present invention, as a result, Bits with a large reproduced signal can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは各々本発明で使用する光磁気媒
体の構成例を示す図、第2図は、本発明の記録法
を実施中の、磁性層1,2,3,4の磁化の向き
を示す図、第3図は、記録・再生装置の概念図、
第4図は第2磁性層2と第4磁性層4の保磁力と
温度との関係を示す概略図である。 B……プリグルーブ付の透光性基板、1,2,
3,4……磁性層、5,6……保護層、7……接
着層、8……貼り合わせ用基板、31……記録・
再生用ヘツド、32……記録信号発生器、33…
…記録信号再生器、34……磁界発生部、35…
…光磁気デイスク。
FIGS. 1a and 1b are diagrams each showing an example of the structure of a magneto-optical medium used in the present invention, and FIG. 2 shows the magnetization of magnetic layers 1, 2, 3, and 4 during the recording method of the present invention. A diagram showing the orientation, FIG. 3 is a conceptual diagram of the recording/reproducing device,
FIG. 4 is a schematic diagram showing the relationship between coercive force and temperature of the second magnetic layer 2 and the fourth magnetic layer 4. B...Transparent substrate with pregroove, 1, 2,
3, 4... Magnetic layer, 5, 6... Protective layer, 7... Adhesive layer, 8... Bonding substrate, 31... Recording/
Reproducing head, 32... Recording signal generator, 33...
...Recording signal regenerator, 34...Magnetic field generator, 35...
...Magneto-optical disk.

Claims (1)

【特許請求の範囲】 1 キユリー点T1、保磁力H1、厚さh1及び飽和
磁化Ms1を有する第1磁性層と、キユリー点T2
保磁力H2、厚さh2及び飽和磁化Ms2を有する第
2磁性層と、キユリー点T3、保磁力H3、厚さh3
及び飽和磁化Ms3を有する第3磁性層と、キユリ
ー点T4、保磁力H4、厚さh4及び飽和磁化Ms4
有する第4磁性層とから成る交換結合している四
層構造の垂直磁化膜を少なくとも基板上に有して
成る光磁気記録媒体であつて、 第1と第2磁性層の磁壁エネルギー、第2と第
3磁性層の磁壁エネルギー、第3と第4磁性層の
磁壁エネルギーを順にσw12、σw23、σw34とする
と、上記4つの磁性層が次の〜の条件を満た
すように結合していることを特徴とする光磁気記
録媒体。 各磁性層のキユリー点の関係に関しては T1、T4>T2、T3 各磁性層の保磁力の関係に関しては H2>H4>H1、H3 各磁性層の膜厚の関係に関しては h1+h2≧250Å h1+h2+h3+h4≧600Å 各磁性層の飽和磁化、膜厚、保磁力、磁壁エ
ネルギーそれぞれの関係に関しては σw12/2Ms1h1>H1、 H2>σw12/2Ms2h2,σw23/2Ms2h2、 H3<σw23/2Ms3h3,σw34/2Ms3h3、 H4>σw34/2Ms4h4 2 キユリー点T1、保磁力H1、厚さh1及び飽和
磁化Ms1を有する第1磁性層と、キユリー点T2
保磁力H2、厚さh2及び飽和磁化Ms2を有する第
2磁性層と、キユリー点T3、保磁力H3、厚さh3
及び飽和磁化Ms3を有する第3磁性層と、キユリ
ー点T4、保磁力H4、厚さh4及び飽和磁化Ms4
有する第4磁性層とから成る交換結合している四
層構造の垂直磁化膜を少なくとも基板上に有して
成る光磁気記録媒体であつて、 第1と第2磁性層の磁壁エネルギー、第2と第
3磁性層の磁壁エネルギー、第3と第4磁性層の
磁壁エネルギーを順にσw12、σw23、σw34とする
と、上記4つの磁性層が次の〜の条件、即
ち、 各磁性層のキユリー点の関係に関しては T1、T4>T2、T3 各磁性層の保磁力の関係に関しては H2>H4>H1、H3 各磁性層の膜厚の関係に関しては h1+h2≧250Å h1+h2+h3+h4≧600Å 各磁性層の飽和磁化、膜厚、保磁力、磁壁エ
ネルギーそれぞれの関係に関しては σw12/2Ms1h1>H1、 H2>σw12/2Ms2h2,σw23/2Ms2h2、 H3<σw23/2Ms3h3,σw34/2Ms3h3、 H4>σw34/2Ms4h4 を満たしている光磁気記録媒体を使用して、次の
二値の記録を行なうことを特徴とする記録方法。 (a) 該媒体に対して、記録用ヘツドと異なる場所
で、保磁力H4の第4磁性層を一方向に磁化さ
せるのに充分で保磁力H2の第2磁性層の磁化
の向きを反転させることのない大きさの磁界B
を加え、 (b) 次に、記録ヘツドにより、バイアス磁界を印
加すると同時に第2磁性層のキユリー点T2
近まで該媒体が昇温するだけのレーザーパワー
を照射することにより、第4磁性層の磁化の向
きを変えないまま第1、第2磁性層の磁化の向
きを第3磁性層を介して第4磁性層に対して安
定な向きにそろえる第1種の予備記録か、バイ
アス磁界を印加すると同時に第4磁性層のキユ
リー点T4付近まで該媒体が昇温するだけのレ
ーザーパワーを照射することにより、第4磁性
層の磁化の向きを反転させて同時に第1から3
磁性層を共に第4磁性層に対して安定な向きに
磁化する第2種の予備記録かを、信号に応じて
実施し、 (c) 次に、該媒体を運動させて、予備記録された
ビツトを前記磁界Bを通過させることにより、
第1種の予備記録により形成されたビツトにつ
いては第1から第4磁性層全て磁化の向きをそ
のまま変化させず、 第2種の予備記録により形成されたビツトにつ
いては、第4磁性層の磁化の向きを前記磁界Bと
同方向に反転させ、第1、第2磁性層の磁化の向
きはそのまま変化させないとする、二値の記録。
[Claims] 1. A first magnetic layer having a Kyrie point T 1 , a coercive force H 1 , a thickness h 1 and a saturation magnetization Ms 1 , a Kyrie point T 2 ,
a second magnetic layer having a coercive force H 2 , a thickness h 2 and a saturation magnetization Ms 2 ; a Curie point T 3 , a coercive force H 3 and a thickness h 3 ;
and an exchange-coupled four-layer structure consisting of a third magnetic layer having a saturation magnetization Ms 3 and a fourth magnetic layer having a Curie point T 4 , a coercive force H 4 , a thickness h 4 and a saturation magnetization Ms 4 . A magneto-optical recording medium having a perpendicularly magnetized film on at least a substrate, the magnetic wall energy of the first and second magnetic layers, the domain wall energy of the second and third magnetic layers, and the magnetic wall energy of the third and fourth magnetic layers. A magneto-optical recording medium characterized in that the four magnetic layers are coupled so as to satisfy the following conditions, where the domain wall energies are σw 12 , σw 23 , and σw 34 in order. The relationship between the Curie points of each magnetic layer is T 1 , T 4 > T 2 , T 3 The relationship between the coercive force of each magnetic layer is H 2 > H 4 > H 1 , H 3 The relationship between the thickness of each magnetic layer For h 1 + h 2 ≧250Å h 1 +h 2 +h 3 +h 4 ≧600Å For the relationship among the saturation magnetization, film thickness, coercive force, and domain wall energy of each magnetic layer, σw 12 /2Ms 1 h 1 >H 1 , H 2 >σw 12 /2Ms 2 h 2 , σw 23 /2Ms 2 h 2 , H 3 <σw 23 /2Ms 3 h 3 , σw 34 /2Ms 3 h 3 , H 4 >σw 34 /2Ms 4 h 4 2 Curie point T 1 , a coercive force H 1 , a thickness h 1 and a saturation magnetization Ms 1 of the first magnetic layer, and a Curie point T 2 ,
a second magnetic layer having a coercive force H 2 , a thickness h 2 and a saturation magnetization Ms 2 ; a Curie point T 3 , a coercive force H 3 and a thickness h 3 ;
and an exchange-coupled four-layer structure consisting of a third magnetic layer having a saturation magnetization Ms 3 and a fourth magnetic layer having a Curie point T 4 , a coercive force H 4 , a thickness h 4 and a saturation magnetization Ms 4 . A magneto-optical recording medium having a perpendicularly magnetized film on at least a substrate, the magnetic wall energy of the first and second magnetic layers, the domain wall energy of the second and third magnetic layers, and the magnetic wall energy of the third and fourth magnetic layers. Assuming that the domain wall energies are σw 12 , σw 23 , and σw 34 in order, the above four magnetic layers meet the following conditions: T 1 , T 4 > T 2 , T 3 regarding the relationship of the Curie points of each magnetic layer. Regarding the relationship of coercive force of each magnetic layer, H 2 > H 4 > H 1 , H 3 Regarding the relationship of film thickness of each magnetic layer, h 1 + h 2 ≧250 Å h 1 + h 2 + h 3 + h 4 ≧ 600 Å of each magnetic layer Regarding the relationship between saturation magnetization, film thickness, coercive force, and domain wall energy, σw 12 /2Ms 1 h 1 > H 1 , H 2 >σw 12 /2Ms 2 h 2 , σw 23 /2Ms 2 h 2 , H 3 < It is characterized by recording the following binary values using a magneto-optical recording medium that satisfies σw 23 /2Ms 3 h 3 , σw 34 /2Ms 3 h 3 , H 4 > σw 34 /2Ms 4 h 4 recording method. (a) At a location different from the recording head on the medium, change the direction of magnetization of the second magnetic layer with coercive force H 2 in a direction sufficient to magnetize the fourth magnetic layer with coercive force H 4 in one direction. Magnetic field B of a magnitude that does not cause reversal
(b) Next, the recording head applies a bias magnetic field and at the same time irradiates the fourth magnetic layer with enough laser power to raise the temperature of the medium to near the Curie point T 2 of the second magnetic layer. The first type of preliminary recording, in which the direction of magnetization of the first and second magnetic layers is aligned in a stable direction with respect to the fourth magnetic layer via the third magnetic layer, without changing the direction of magnetization, or the bias magnetic field is applied. By irradiating the medium with enough laser power to raise the temperature of the medium to near the Curie point T 4 of the fourth magnetic layer, the direction of magnetization of the fourth magnetic layer is reversed and the magnetization of the first to third magnetic layers is simultaneously applied.
A second type of preliminary recording is performed in response to the signal, in which both the magnetic layers are magnetized in a stable direction with respect to the fourth magnetic layer, and (c) the medium is then moved to record the preliminary recorded information. By passing the bit through the magnetic field B,
For bits formed by the first type of preliminary recording, the magnetization direction of all the first to fourth magnetic layers remains unchanged, and for bits formed by the second type of preliminary recording, the magnetization direction of the fourth magnetic layer is Binary recording in which the direction of the magnetic field B is reversed to the same direction as the magnetic field B, and the directions of magnetization of the first and second magnetic layers remain unchanged.
JP62070279A 1986-06-18 1987-03-26 Magneto-optical recording medium and magneto-optical recording method Granted JPS63237238A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP62070279A JPS63237238A (en) 1987-03-26 1987-03-26 Magneto-optical recording medium and magneto-optical recording method
CA 541367 CA1340058C (en) 1986-07-08 1987-07-06 Magnetooptical recording medium allowing overwriting with tow or more magnetic layers and recording method utilizing the same
AU75306/87A AU593364C (en) 1986-07-08 1987-07-07 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
DE3752222T DE3752222T2 (en) 1986-07-08 1987-07-08 Magnetic optical recording medium with the possibility of overwriting with two or more magnetic layers and recording method using this medium
EP98200006A EP0838814B1 (en) 1986-07-08 1987-07-08 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
KR1019870007322A KR960003420B1 (en) 1986-07-08 1987-07-08 Magneto optical recording medium
AT87306038T ATE172047T1 (en) 1986-07-08 1987-07-08 MAGNETOPTICAL RECORDING MEDIUM WITH THE POSSIBILITY OF OVERWRITING WITH TWO OR MORE MAGNETIC LAYERS AND RECORDING METHOD USING SUCH MEDIUM
EP87306038A EP0258978B1 (en) 1986-07-08 1987-07-08 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
EP98200007A EP0838815B1 (en) 1986-07-08 1987-07-08 Apparatus and system for recording on a magnetooptical recording medium
AT98200007T ATE216528T1 (en) 1986-07-08 1987-07-08 APPARATUS AND SYSTEM FOR RECORDING ON A MAGNETOPTICAL RECORDING MEDIUM
US07/475,941 US5132945A (en) 1986-07-08 1990-01-30 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US08/296,163 US5525378A (en) 1986-07-08 1994-08-26 Method for producing a magnetooptical recording medium
US08/312,930 US5481410A (en) 1986-07-08 1994-09-30 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US08/613,431 US5783300A (en) 1986-06-18 1996-02-29 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US09/080,215 US6028824A (en) 1986-07-08 1998-05-18 Magnetooptical recording medium allowing overwriting with two or more magnetic layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070279A JPS63237238A (en) 1987-03-26 1987-03-26 Magneto-optical recording medium and magneto-optical recording method

Publications (2)

Publication Number Publication Date
JPS63237238A JPS63237238A (en) 1988-10-03
JPH0522301B2 true JPH0522301B2 (en) 1993-03-29

Family

ID=13426898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070279A Granted JPS63237238A (en) 1986-06-18 1987-03-26 Magneto-optical recording medium and magneto-optical recording method

Country Status (1)

Country Link
JP (1) JPS63237238A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382859B1 (en) * 1988-08-24 1998-11-04 Mitsubishi Denki Kabushiki Kaisha Magnetooptical recording medium
US5512366A (en) * 1989-11-14 1996-04-30 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium and apparatus
DE4114234A1 (en) * 1990-05-16 1991-11-21 Mitsubishi Electric Corp Optical recording and storage disc system - uses information from designated data control tracks to determine type of light recording medium and data format used
DE69229776T2 (en) * 1991-11-22 2000-03-09 Seiko Epson Corp MAGNETOOPTIC RECORDING MEDIA
JPH06103622A (en) * 1992-09-18 1994-04-15 Nikon Corp Overwritable magneto-optical recording medium having r layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778652A (en) * 1980-11-01 1982-05-17 Daido Steel Co Ltd Thermal magnetic recording carrier and thermal magnetic recording system
JPS62175948A (en) * 1985-06-11 1987-08-01 Nippon Kogaku Kk <Nikon> Overwritable photomagnetic recording method and photomagnetic recording device and medium therefor
JPS6364651A (en) * 1986-09-04 1988-03-23 Nikon Corp Overwritable magneto-optical recording method, magneto-optical recording medium used by same and magneto-optical reproducing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778652A (en) * 1980-11-01 1982-05-17 Daido Steel Co Ltd Thermal magnetic recording carrier and thermal magnetic recording system
JPS62175948A (en) * 1985-06-11 1987-08-01 Nippon Kogaku Kk <Nikon> Overwritable photomagnetic recording method and photomagnetic recording device and medium therefor
JPS6364651A (en) * 1986-09-04 1988-03-23 Nikon Corp Overwritable magneto-optical recording method, magneto-optical recording medium used by same and magneto-optical reproducing method

Also Published As

Publication number Publication date
JPS63237238A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
JPH0535499B2 (en)
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPH0535494B2 (en)
JPH0542062B2 (en)
JPH0522301B2 (en)
JPH0395745A (en) Magneto-optical recording method and recording device
JPH0535498B2 (en)
JPS63153752A (en) Magneto-optical recording medium and its recording method
JPS63133338A (en) Magneto-optical recording method
JP2555272B2 (en) Magneto-optical recording / reproducing method
JPH0535493B2 (en)
JPH0522302B2 (en)
JPH0535496B2 (en)
JP2674815B2 (en) Magneto-optical recording method
JP2589453B2 (en) Magneto-optical recording method
JPS63193351A (en) Magneto-optical recording medium and recording system
JPH0522300B2 (en)
JPH087884B2 (en) Magneto-optical recording method
JPH0535497B2 (en)
JPS63237242A (en) Magneto-optical recording system
JPH0535495B2 (en)
JPH01155539A (en) Recording method of magneto-optical recording medium
JPS63225944A (en) Magneto-optical recording medium and recording system
JPS63220440A (en) Magneto-optical recording method
JPH06236589A (en) Magneto-optical recording method and magneto-optical reproducing method and magneto-optical recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term