JPS63237242A - Magneto-optical recording system - Google Patents

Magneto-optical recording system

Info

Publication number
JPS63237242A
JPS63237242A JP62070278A JP7027887A JPS63237242A JP S63237242 A JPS63237242 A JP S63237242A JP 62070278 A JP62070278 A JP 62070278A JP 7027887 A JP7027887 A JP 7027887A JP S63237242 A JPS63237242 A JP S63237242A
Authority
JP
Japan
Prior art keywords
magnetic layer
temperature
recording
coercive force
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62070278A
Other languages
Japanese (ja)
Inventor
Tadashi Kobayashi
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62070278A priority Critical patent/JPS63237242A/en
Priority to CA 541367 priority patent/CA1340058C/en
Priority to AU75306/87A priority patent/AU593364C/en
Priority to EP98200006A priority patent/EP0838814B1/en
Priority to DE3752222T priority patent/DE3752222T2/en
Priority to KR1019870007322A priority patent/KR960003420B1/en
Priority to AT98200007T priority patent/ATE216528T1/en
Priority to EP87306038A priority patent/EP0258978B1/en
Priority to AT87306038T priority patent/ATE172047T1/en
Priority to EP98200007A priority patent/EP0838815B1/en
Publication of JPS63237242A publication Critical patent/JPS63237242A/en
Priority to US07/475,941 priority patent/US5132945A/en
Priority to US08/296,163 priority patent/US5525378A/en
Priority to US08/312,930 priority patent/US5481410A/en
Priority to US08/613,431 priority patent/US5783300A/en
Priority to US09/080,215 priority patent/US6028824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To attain overwriting by using a medium with the vertical magnetizing film of a two-layer structure consisting of two magnetic layers which fulfil prescribed conditions on a substrate, providing a magnetic field generation part in a place different from a recording head at the time of recording, and recording with binary laser power. CONSTITUTION:A first magnetic layer 1 has a low Curie temperature TL and a high coercive force HH, and a second magnetic layer 2 has the high Curie temperature TH and the low coercive force HL. A compensation temperature TCOMP is provided between room temperature and the Curie temperature. When a temperature is raised from an unstable state (a) in which interface magnetic domain walls exist, the coercive force of the magnetic layer 1 is reduced the coercive force of the magnetic layer 2 is increased, and the magnetizing of the magnetic layer 1 is inverted for setting both layers to parallel, whereby it comes to a state (b). When the temperature is raised furthermore, it exceeds the compensation temperature TCOMP of the magnetic layer 2 and it comes to a state (c), whereby the magnetizing of the magnetic layer 2 is made reversible. If the temperature is raised furthermore, the coercive force of the magnetic layer 2 becomes small and is reversed due to a bias magnetic field HB as a state (d). Here, the magnetic layer 1 improves and recording is executed with the binary laser power in the magnetic field generation part 2, whereby overwriting is attained.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、磁気カー効果を利用して読み出しすることの
できるキュリー点及び補償点記録タイプの光磁気記録媒
体を使用した、重ね古き可能な光磁気記録方式に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a multi-layer recording medium using a Curie point and compensation point recording type magneto-optical recording medium that can be read using the magnetic Kerr effect. Concerning magneto-optical recording methods.

(従来の技術) 消去可能な尤メモリとして光磁気メモリが知られている
。光磁気メモリは、従来の磁気ヘッドを使った磁気記録
媒体と比べて高密度記録、非接触での記録再生などが可
能であるという長所がある反面、記録面に一度記録部分
を消去しなければならない(一方向に着磁しなければな
らない)という欠点があった。この欠点を補う為に、記
録再生用ヘッドと消去用ヘッドを別々に設ける方式、あ
るいは、レーザーの連続ビームを照射すると同時に磁場
を変調しながら印加して記録する方式などが提案されて
いる。
(Prior Art) Magneto-optical memory is known as an erasable memory. Magneto-optical memory has the advantage of being capable of high-density recording and non-contact recording and playback compared to magnetic recording media using conventional magnetic heads. It had the disadvantage that it cannot be magnetized in one direction (it must be magnetized in one direction). In order to compensate for this drawback, proposals have been made such as a method in which a recording/reproducing head and an erasing head are provided separately, or a method in which recording is performed by applying a modulated magnetic field at the same time as a continuous laser beam is irradiated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの方法は、装置が大がかりとなり、コス
ト高になる欠点あるいは高速の変調が出来ないなどの欠
点を有する。
However, these methods have disadvantages such as a large-scale apparatus, high cost, or inability to perform high-speed modulation.

本発明は上述従来例の欠点を除去し、従来の光磁気メモ
リの装置構成に簡易な構造の磁界発生手段を付設するだ
けで、磁気記録媒体と同様な重ね書き(オーバーライド
)を可能とした、光磁気記録方式を提供することを目的
とする。
The present invention eliminates the drawbacks of the above-mentioned conventional example, and makes it possible to perform overwriting similar to that of a magnetic recording medium by simply adding a magnetic field generating means of a simple structure to the device configuration of a conventional magneto-optical memory. The purpose is to provide a magneto-optical recording system.

(問題点を解決するための手段) F記目的達成可能な本発明は、 低いキュリー温度(”rt、 ’)と高い保磁力(Hu
)を有する第1磁性層と、この磁性層に比べて相対的に
高いキュリー温度(TH)と低い保磁力(HL)を<r
 L且つ室温とキュリー温度(To)の間に補償温度(
TCOMP)を有する第2磁性層とからなる、交換結合
をした二層構造の垂直磁化膜をJ!:板ヒに有して成る
光磁気記録媒体を使用して、第1磁性層から記録情報を
読み出すようにした、次の二値の記録を行なうこを特徴
とする記録方式である。
(Means for Solving the Problems) The present invention, which can achieve the objective F, has a low Curie temperature ("rt, ') and a high coercive force (Hu
) and a relatively high Curie temperature (TH) and low coercivity (HL) compared to this magnetic layer < r
L and the compensation temperature (To) between room temperature and Curie temperature (To)
J! J! : This is a recording method characterized by performing the following binary recording, in which recorded information is read from the first magnetic layer using a magneto-optical recording medium provided on a plate.

(a)該媒体に対して記録用ヘッドと異なる場所で、保
磁力HBの第2磁性層を一方向に磁化するのに充分で保
磁力H11の第1磁性層の磁化の向きを反転させること
のない大きさの外部磁界HEを加え、 (b)次に記録用ヘッドにより、バイアス磁界H8を印
加すると同時に低いキュリー温度(TL)付近まで且つ
補償温度(Tcovp)付近まで該媒体が昇温するだけ
のレーザーパワーを照射するとにより、第1磁性層の磁
化の向きを第2磁性層に対して安定な向きにそろえる第
1種の記録と、補償温度(TCOMP)以トに該媒体が
昇温するだけのレーザーパワーを照射することにより第
2磁性層の磁化の向きを反転させ、「1η記第1種の記
録と反対方向に第1磁性層の磁化の向きをそろえる第2
種の記録と、の二値の記録 [実施態様と作用] 本発明に用いる光磁気メモリ用媒体の基本的構成は、透
光性基板りに第1@性層と第2磁性層を順次61層した
ものである。第1@性層は低りキュリー温度(TL)と
高い保磁力(HH)を有し、第2磁性層は、高いキュリ
ー温度(TH)と低い保磁力(t’tt、 )を有しか
つ室温とキュリー温度との間に補償温度(TCQMP)
をイrする。ここで「高いJ、「低い」とは両磁性層を
比較した場合の相対的な関係を表わす(保磁力は室温に
おける比較)。ただし、通常は第1@性層のTLは70
〜180℃、)Inは、3〜20にOe 、第2磁性層
のT11は150〜400℃、Hl、は1〜3にOc、
TcoMPはT5.程度の範囲内にするとよい。 丼磁
性層の材料には、i]j直磁電磁気異方性し[つ比較的
大きな磁気光学効果を■するものが利用できるが、第1
磁性層にはTb−Fc 、 Tb−Dy−Fe、Dy−
Fe、Tb−Pe−Go、Tb−Dy−1’e−Go 
、 Dy−Fe−(:o等、第2磁性層には。
(a) Reversing the direction of magnetization of the first magnetic layer with coercive force H11 at a location different from the recording head on the medium, sufficient to magnetize the second magnetic layer with coercive force HB in one direction; (b) Next, a bias magnetic field H8 is applied by the recording head, and at the same time the temperature of the medium is raised to around the low Curie temperature (TL) and around the compensation temperature (Tcovp). Type 1 recording, in which the direction of magnetization of the first magnetic layer is aligned in a stable direction with respect to the second magnetic layer, and the temperature of the medium is raised above the compensation temperature (TCOMP) by irradiating laser power of The direction of magnetization of the second magnetic layer is reversed by irradiation with a laser power equal to
Recording of seeds and recording of binary values [Embodiment and operation] The basic structure of the magneto-optical memory medium used in the present invention is that the first @ magnetic layer and the second magnetic layer are sequentially formed on a transparent substrate at 61° C. It is layered. The first magnetic layer has a low Curie temperature (TL) and a high coercive force (HH), and the second magnetic layer has a high Curie temperature (TH) and a low coercive force (t'tt, ). Compensation temperature (TCQMP) between room temperature and Curie temperature
Input. Here, "high J" and "low" refer to the relative relationship when comparing both magnetic layers (coercive force is compared at room temperature). However, normally the TL of the first @sexual layer is 70
~180°C, ) In is Oe from 3 to 20, T11 of the second magnetic layer is 150 to 400°C, Hl is Oc from 1 to 3,
TcoMP is T5. It is best to keep it within a certain range. As the material for the bowl magnetic layer, materials that have i]j direct magnetoelectromagnetic anisotropy [and have a relatively large magneto-optical effect can be used, but the first
The magnetic layer contains Tb-Fc, Tb-Dy-Fe, Dy-
Fe, Tb-Pe-Go, Tb-Dy-1'e-Go
, Dy-Fe-(:o, etc., in the second magnetic layer.

Tb−Fe 、 Tb−Dy−Fe、 Dy−re %
Tb−Fe−Co、  Tb−Dy−Fe−(:o、 
 Dy−Fe−Go 、 Gd−Tb−Fe、 Gd−
Tb−Dy−Fe、Gd−Dy−Fe、 Gd−Tb−
Fe−Go 、Gd−Tb−Dy−Fe−Go、Gd−
DyFe−Go等の希土類元素と遷移金属元素との非晶
質磁性合金が好ましい。
Tb-Fe, Tb-Dy-Fe, Dy-re%
Tb-Fe-Co, Tb-Dy-Fe-(:o,
Dy-Fe-Go, Gd-Tb-Fe, Gd-
Tb-Dy-Fe, Gd-Dy-Fe, Gd-Tb-
Fe-Go, Gd-Tb-Dy-Fe-Go, Gd-
An amorphous magnetic alloy of a rare earth element and a transition metal element such as DyFe-Go is preferred.

なお、透光性の基板と磁性層の間や、磁性層の、該基板
と反対側に、耐久性を向トさせるための、あるいは記録
消去感度と磁気光学効果を向トさせるための適当な誘電
体層、あるいは反射層を設けてもよい。
It should be noted that a suitable material may be added between the transparent substrate and the magnetic layer, or on the side of the magnetic layer opposite to the substrate, in order to improve durability, or to improve recording/erasing sensitivity and magneto-optic effect. A dielectric layer or a reflective layer may also be provided.

上述したような光磁気メモリ用媒体を用いることにより
実施できる本発明を以下、図面を参11qシて詳細に説
明する。
The present invention, which can be implemented using the magneto-optical memory medium as described above, will be described in detail below with reference to the drawings.

図1は本発明における記録過程を説明する図である。1
が第1磁性層、2が第2磁性層を示1−0(a)〜(g
)の丼々は、両磁性層の磁化の状態を示す。記録過程中
、記録用ヘッドと異なる場所で、保磁力HLの第2磁性
層を一方向に磁化するのに充分で保磁力H1,の第1磁
性層の磁化の向きを反転させることのない大きさの外部
磁界HBが下方に印加されていて、さらに、記録用ヘッ
ドの場所において第2@性層への記録を助けるバイアス
磁界Hnが下方に印加されている。
FIG. 1 is a diagram explaining the recording process in the present invention. 1
1-0(a) to (g) indicates the first magnetic layer and 2 indicates the second magnetic layer.
) indicates the state of magnetization of both magnetic layers. During the recording process, at a location different from the recording head, the magnitude is sufficient to magnetize the second magnetic layer with a coercive force HL in one direction and does not reverse the direction of magnetization of the first magnetic layer with a coercive force H1. An external magnetic field HB is applied downwardly, and a bias magnetic field Hn is further applied downwardly at the location of the recording head to assist in recording in the second @-type layer.

記録過程をその過程に従って説明する何に、その理解の
助けとなるように、まず、(a)〜 (g)により表わ
される状態の概要及び各状態間の移行過程の様子等につ
いて説明しておく。
To help you understand the recording process, I will first explain the outline of the states represented by (a) to (g) and the transition process between each state. .

(a)と(g)は室温における2値の記録状態を示して
いて、レーザー光により加熱によって、(b)(c) 
(d)と温度が上昇する。(b)と (「)、(C)と
(e)はほぼ同じ温度での別の状態を示しいる。図中、
←は温度に対して可逆的な磁化過程を示し、→や←は非
可逆的な磁化過程を示す。また、(b)ト(c)、ある
いは(e)と (f)の間には、第2!fi性層の補償
温度が存在する。図1の例では、第1&fi性層が希土
類格子磁化優勢であって、第2磁性層も希り類格子磁化
優勢の場合を示している。この場合には、両層間の交換
相互作用によって両層の磁化か平行な(g)が安定状態
であり、反平行である(a)が不安定状態であって、こ
の不安定状態(a)では界面磁壁か存在する。ただし、
電界零でも不安定状態を保持することが可能であるよう
に、第2@性層の保磁力を調整する必要がある。室温状
態Ha) 、  (g) )では保磁力の小さい第2磁
性層の磁化は外部磁界H6によって常に図で下向きとな
っている。
(a) and (g) show the binary recording state at room temperature, and by heating with laser light, (b) and (c)
(d) and the temperature increases. (b) and (''), (C) and (e) show different states at approximately the same temperature.In the figure,
← indicates a magnetization process that is reversible with respect to temperature, and → and ← indicate an irreversible magnetization process. Also, between (b) and (c), or between (e) and (f), there is a second! There is a compensation temperature of the fi-sensitive layer. The example in FIG. 1 shows a case where the first &fi layer has dominant rare earth lattice magnetization, and the second magnetic layer also has dominant rare earth lattice magnetization. In this case, due to the exchange interaction between the two layers, the parallel magnetization (g) is a stable state, and the antiparallel magnetization (a) is an unstable state, and this unstable state (a) Then, an interfacial domain wall exists. however,
It is necessary to adjust the coercive force of the second @-type layer so that an unstable state can be maintained even when the electric field is zero. At room temperature (Ha), (g)), the magnetization of the second magnetic layer, which has a small coercive force, is always directed downward in the figure due to the external magnetic field H6.

次に記録過程をその過程に従って説明する(a)の状態
から温度を上げると、図3に示すように第1磁性層の保
磁力が低下し、第2磁性層の保磁力が大きくなる。する
と、交換相互作用により両層の磁化が平行になろうとす
るために、第1磁性層の磁化が反転し下を向く(b)。
Next, the recording process will be explained according to the process.When the temperature is increased from the state shown in (a), the coercive force of the first magnetic layer decreases and the coercive force of the second magnetic layer increases, as shown in FIG. Then, because the magnetizations of both layers tend to become parallel due to exchange interaction, the magnetization of the first magnetic layer is reversed and points downward (b).

この状態から温度を下げると、磁化状態が変化しないま
ま冷え、(g)の状態に移る。(g)の状態から温度を
トげ、(b)の状態になった後、温度を下げてもやはり
(g)の状態に移る。即ち、(b)の温度に相当するレ
ーザーパワーの印加によって、(a)の状態も(g)の
状態もすべて(g)の状態に移る。
When the temperature is lowered from this state, the magnetization state remains unchanged and the state changes to state (g). After the temperature is increased from state (g) to state (b), the state still changes to state (g) even if the temperature is lowered. That is, by applying a laser power corresponding to the temperature (b), both the state (a) and the state (g) are transferred to the state (g).

次に、(b)の状態からさらに温度をトげ、第2磁性層
の補償温度TCOM+−を越して(C)の状態になると
、第2磁性層の磁化が可逆的に反転する。さらに温度を
Lげると第2磁、竹屑の保磁力が小さくなり、バイアス
磁界H8により反転する(d)。この状態から温度を下
げると磁化状態が変化しないまま冷えTCOMPを越す
と第2磁性層の磁化が可逆的に反転する。その前後で、
交換相互作用により第1磁性層の磁化が−F向きに生じ
、そのまま室温にまで冷え、第2磁性層が再び小さな保
磁力となり、外部磁界HEにより反転する。ただし、こ
の際には第1磁性層の保磁力は大きいので、外部磁界H
Eによっては反転せず、記録状態を保持している。即ち
、(d)の温度に相当するレーザーパワーの印加によっ
て(a)の状態も(g)の状態もすべて(a)の状態に
移る。
Next, when the temperature is further increased from the state (b), exceeding the compensation temperature TCOM+- of the second magnetic layer and reaching the state (C), the magnetization of the second magnetic layer is reversibly reversed. When the temperature is further increased by L, the coercive force of the second magnet and bamboo chips becomes smaller and is reversed by the bias magnetic field H8 (d). When the temperature is lowered from this state, the magnetization state remains unchanged, and when TCOMP is exceeded, the magnetization of the second magnetic layer is reversibly reversed. Before and after that,
Due to the exchange interaction, the magnetization of the first magnetic layer is generated in the −F direction, which is then cooled down to room temperature, and the second magnetic layer again has a small coercive force and is reversed by the external magnetic field HE. However, in this case, since the coercive force of the first magnetic layer is large, the external magnetic field H
Depending on E, the recording state is maintained without being reversed. That is, by applying laser power corresponding to the temperature (d), both the state (a) and the state (g) are transferred to the state (a).

従って、異なるレーザーパワーの印加によって異なる磁
化状態を取ることができ、即ちこれはIllね古き(オ
ーバーライド)が実現したことになる。
Therefore, different magnetization states can be obtained by applying different laser powers, that is, override has been achieved.

図2の例では第1磁性層が遷移金属副格子磁化優勢で、
第2磁性層が希土類副格子磁化優勢の場合を示している
。この場合には、両層間の交換相互作用によって、両層
の磁化が反平行な(a)が安定状態であり、平行である
(g)が不安定状態であって、この不安定状態(g)で
は界面壁が存在する。図1の場合と同様、(b)の温度
に相当するレーザーパワーの印加によって、(a)の状
態も(g)の状態もすべて(a)の状態に移り、(d)
の温度に相当するレーザーパワーの印加によって、(a
)の状態も(g)の状態もすべて(g)の状態に移る。
In the example of FIG. 2, the first magnetic layer has dominant transition metal sublattice magnetization,
A case is shown in which the second magnetic layer has dominant rare earth sublattice magnetization. In this case, due to the exchange interaction between the two layers, (a) where the magnetizations of both layers are antiparallel is a stable state, and (g) where they are parallel is an unstable state, and this unstable state (g ), there is an interfacial wall. As in the case of Fig. 1, by applying laser power corresponding to the temperature of (b), both the state of (a) and the state of (g) shift to the state of (a), and the state of (d)
By applying a laser power corresponding to the temperature of (a
) and state (g) all shift to state (g).

従って、やはり異なるレーザーパワーの印加によって異
なる磁化状態を取ることができる。即ち、これは重ね書
き(オーバーライド)が実現したことになる。
Therefore, different magnetization states can be obtained by applying different laser powers. In other words, this means that overwriting has been achieved.

なお、HBの大きさはHl:の大きさよりも小さい。H
Bの方がHEよりも大きければH6は必要ないが、媒体
の組成や膜厚の制御がむずかしくなかなり大きくなり、
そのような磁界の下で、図1の(f)や図2の(b)の
状態を磁界に逆って交換力によって実現するのはかなり
難しい。また、第2磁性層が補償温度を有することによ
って、図1の(f)や図2の(f)の状態の第2ffl
性層の磁化の向きが、HHに対して安定である効果があ
る。
Note that the size of HB is smaller than the size of Hl:. H
If B is larger than HE, H6 is not necessary, but it is difficult to control the medium composition and film thickness, and it becomes quite large.
Under such a magnetic field, it is quite difficult to realize the states of FIG. 1(f) and FIG. 2(b) by exchange force against the magnetic field. Furthermore, since the second magnetic layer has a compensation temperature, the second ffl in the state shown in FIG. 1(f) or FIG. 2(f) is
This has the effect that the direction of magnetization of the magnetic layer is stable against HH.

(実施例) 実施例1 3元のターゲット源を備えたスパッタ装置内に、プリグ
ループ、プリフォーマット13号の刻まれたポリカーボ
ネート製のディスク状基板を、ターゲットとの間の距1
10cmの間隔にセットし、回転させた。
(Example) Example 1 A polycarbonate disc-shaped substrate with pregroup and preformat No. 13 engraved thereon was placed in a sputtering apparatus equipped with three target sources at a distance of 1 from the target.
They were set at 10 cm intervals and rotated.

アルゴン中で、第1のターゲットより、スパッタ速度 
100人/min、スパッタ圧5X 10’ Torr
でSi3N、を保護層として700人の厚さに設けた。
Sputtering speed from the first target in argon
100 people/min, sputtering pressure 5X 10' Torr
A protective layer of Si3N was applied to a thickness of 700 mm.

次にアルゴン中で、第2のターゲットよりスパッタ速度
100人/min、スパッタ圧5×lO°3Torrで
TbFe合金をスパッタし、膜厚500人、TL=約1
30℃、H71=約5 KOeのTb副格−f磁化優勢
の第111Ii性層を形成した。
Next, in argon, TbFe alloy was sputtered from a second target at a sputtering rate of 100 mm/min and a sputtering pressure of 5×10°3 Torr, with a film thickness of 500 mm and TL=approximately 1.
A 111Ii layer with dominant Tb sub-f magnetization was formed at 30° C. and H71=approximately 5 KOe.

次に、アルゴン中で、第3のターゲットよりスパッタ速
度100人/min、スパッタ圧5x IQ−’ To
rrでGd−Tb−Fe−Go金合金スパッタし、膜厚
800人。
Next, in argon, sputtering was performed from a third target at a sputtering rate of 100 people/min and a sputtering pressure of 5x IQ-' To
Gd-Tb-Fe-Go gold alloy sputtered with RR, film thickness 800mm.

T、、=約220℃、HB、=約1.5にOe 、TC
OMP=約140℃のGdTb副格子磁化優勢の第2磁
性層を形成した。
T, = about 220℃, HB, = about 1.5 Oe, TC
A second magnetic layer with dominant GdTb sublattice magnetization was formed at an OMP of about 140°C.

次にアルゴン中で第1のターゲットよりスパッタ速度 
!00人/min、スパッタ圧5X 1O−3Torr
で、Si3N、を保護層として700人の厚さに設けた
Next, the sputtering speed is increased from the first target in argon.
! 00 people/min, sputtering pressure 5X 1O-3Torr
A protective layer of Si3N was formed to a thickness of 700 mm.

次に、上記の膜形成を終えた基板を、ホットメルト接着
剤を用いて、ポリカーボネートの貼り合わせ用基板と貼
り合わせ光磁気ディスクを作製した。この光磁気ディス
クを記録再生装置にセットし、2000eのバイアス磁
界と2にOeの外部磁界を印加しつつ、線速度約8m/
sec、約1.5μmに集光した830nmの波長のレ
ーザービームを50%のデユーティで2MI+7.で変
調させながら、2.7mWと5゜5m1fの2値のレー
ザーパワーで記録を行なった。
Next, the substrate on which the film had been formed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to produce a magneto-optical disk. This magneto-optical disk was set in a recording/reproducing device, and while applying a bias magnetic field of 2000e and an external magnetic field of 2 Oe, a linear velocity of about 8m/
sec, a laser beam with a wavelength of 830 nm focused to about 1.5 μm was applied at a duty of 50% for 2MI+7. Recording was performed using a binary laser power of 2.7 mW and 5°5 m1f while modulating the laser power.

その後1mWのレーザービームを照射して再生を行なっ
たところ、2値の18号の再生ができた。
Thereafter, a 1 mW laser beam was irradiated to perform reproduction, and binary No. 18 was successfully reproduced.

次に、上記お実験を行なった後、同一トラックヒに3M
1lz、同一、パワーで記録を行なった。この結果、餌
に記録された13号は検出されず、オーバーライドがn
1能であることが確認された。
Next, after performing the above experiment, 3M
Recordings were made at 1lz, the same power. As a result, No. 13 recorded in the bait was not detected and the override was n.
It was confirmed that he was fully functional.

実施例2 第1磁性層として、第2のターゲットよりスパッタ速度
100人/min、スパッタ圧5x 1O−3Torr
でTb−Fe合金をスパッタし、nq膜厚500人TL
=約125℃、Hl、=約4にOCのFe副格子磁化優
勢の磁性層を形成した以外は実施例1と同様な光磁気デ
ィスクを作製し、同様の実験を行な、つた。
Example 2 The first magnetic layer was sputtered from a second target at a sputtering rate of 100 people/min and a sputtering pressure of 5x 1O-3 Torr.
sputtered Tb-Fe alloy with nq film thickness of 500 TL
A magneto-optical disk was prepared in the same manner as in Example 1 except that a magnetic layer in which the Fe sublattice magnetization of OC was dominant was formed at a temperature of about 125° C., a Hl of about 4, and a similar experiment was carried out.

その結果、やはりオーバーライドが可能であることが確
認された。
As a result, it was confirmed that override is still possible.

〔発明の効果〕〔Effect of the invention〕

以ト詳細に説明したように、光磁気メモリ用媒体として
、低いキュリー温度(TL)と高い保磁力(HH)を有
する第1磁性層と、この磁性層に比べて相対的に高いキ
ュリー温度(T11)と低い保磁力(HL)を存し且つ
室温とキュリー温度(T、、)の間に補償温度を有する
第2磁性層とからなる。交換結合をした二層構造の電電
磁化膜を基板トに有して成る媒体を用い、記録時に、記
録用ヘッドと異なる場所に磁界発生部を設け、2値のレ
ーザーパワーで記録することにより、重ね計さくオーバ
ーライド)が可能になった。
As explained in detail above, as a magneto-optical memory medium, a first magnetic layer having a low Curie temperature (TL) and a high coercive force (HH), and a first magnetic layer having a relatively high Curie temperature (HH) compared to this magnetic layer are used. T11) and a second magnetic layer having a low coercive force (HL) and a compensation temperature between room temperature and the Curie temperature (T, , ). By using a medium having a two-layer exchange-coupled electromagnetic film on the substrate, and during recording, a magnetic field generating section is provided at a location different from the recording head, and recording is performed using binary laser power. Override) is now possible.

【図面の簡単な説明】 図19図2は本発明の記録過程を説明するための図、図
3は第1磁性層と第2磁性層の保磁力と温度との関係を
示す概略図である。 1.3=第1磁性層 2.4:第2磁性層
[Brief Description of the Drawings] Fig. 19 Fig. 2 is a diagram for explaining the recording process of the present invention, and Fig. 3 is a schematic diagram showing the relationship between coercive force and temperature of the first magnetic layer and the second magnetic layer. . 1.3=first magnetic layer 2.4: second magnetic layer

Claims (1)

【特許請求の範囲】 1)低いキュリー温度(T_L)と高い保磁力(H_H
)を有する第1磁性層と、この磁性層に比べて相対的に
高いキュリー温度(T_H)と低い保磁力(H_L)を
有し且つ室温とキュリー温度(T_H)の間に補償温度
(T_C_O_M_P)を有する第2磁性層とからなる
、交換結合をした二層構造の垂直磁化膜を基板上に有し
て成る光磁気記録媒体を使用して、第1磁性層から記録
情報を読み出すようにした、次の二値の記録を行なうこ
を特徴とする記録方式。 (a)該媒体に対して記録用ヘッドと異なる場所で、保
磁力H_Lの第2磁性層を一方向に磁化するのに充分で
保磁力H_Hの第1磁性層の磁化の向きを反転させるこ
とのない大きさの外部磁界H_εを加え、 (b)次に記録用ヘッドにより、バイアス磁界H_Bを
印加すると同時に低いキュリー温度(T_L)付近まで
且つ補償温度(T_C_O_M_P)付近まで、該媒体
が昇温するだけのレーザーパワーを照射するとにより、
第1磁性層の磁化の向きを第2磁性層に対して安定な向
きにそろえる第1種の記録と、補償温度(T_C_O_
M_P)以上に該媒体が昇温するだけのレーザーパワー
を照射することにより第2磁性層の磁化の向きを反転さ
せ、前記第1種の記録と反対方向に第1磁性層の磁化の
向きをそろえる第2種の記録と、の二値の記録
[Claims] 1) Low Curie temperature (T_L) and high coercive force (H_H)
), and a first magnetic layer having a relatively high Curie temperature (T_H) and low coercive force (H_L) compared to this magnetic layer, and a compensation temperature (T_C_O_M_P) between room temperature and the Curie temperature (T_H). Recorded information is read out from the first magnetic layer using a magneto-optical recording medium having a perpendicularly magnetized film with an exchange-coupled two-layer structure on a substrate. , a recording method characterized by recording the following binary values. (a) Reversing the direction of magnetization of the first magnetic layer with coercive force H_H at a location different from the recording head with respect to the medium, sufficient to magnetize the second magnetic layer with coercive force H_L in one direction; (b) Next, the recording head applies a bias magnetic field H_B and at the same time raises the temperature of the medium to around the low Curie temperature (T_L) and around the compensation temperature (T_C_O_M_P). By applying enough laser power to
The first type of recording, which aligns the magnetization direction of the first magnetic layer in a stable direction with respect to the second magnetic layer, and the compensation temperature (T_C_O_
M_P) The direction of magnetization of the second magnetic layer is reversed by irradiating the medium with a laser power sufficient to raise the temperature above that level, and the direction of magnetization of the first magnetic layer is reversed to the direction of the first type of recording. The second type of record that is aligned, and the binary record of
JP62070278A 1986-06-18 1987-03-26 Magneto-optical recording system Pending JPS63237242A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP62070278A JPS63237242A (en) 1987-03-26 1987-03-26 Magneto-optical recording system
CA 541367 CA1340058C (en) 1986-07-08 1987-07-06 Magnetooptical recording medium allowing overwriting with tow or more magnetic layers and recording method utilizing the same
AU75306/87A AU593364C (en) 1986-07-08 1987-07-07 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
AT98200007T ATE216528T1 (en) 1986-07-08 1987-07-08 APPARATUS AND SYSTEM FOR RECORDING ON A MAGNETOPTICAL RECORDING MEDIUM
EP98200007A EP0838815B1 (en) 1986-07-08 1987-07-08 Apparatus and system for recording on a magnetooptical recording medium
DE3752222T DE3752222T2 (en) 1986-07-08 1987-07-08 Magnetic optical recording medium with the possibility of overwriting with two or more magnetic layers and recording method using this medium
KR1019870007322A KR960003420B1 (en) 1986-07-08 1987-07-08 Magneto optical recording medium
EP98200006A EP0838814B1 (en) 1986-07-08 1987-07-08 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
EP87306038A EP0258978B1 (en) 1986-07-08 1987-07-08 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
AT87306038T ATE172047T1 (en) 1986-07-08 1987-07-08 MAGNETOPTICAL RECORDING MEDIUM WITH THE POSSIBILITY OF OVERWRITING WITH TWO OR MORE MAGNETIC LAYERS AND RECORDING METHOD USING SUCH MEDIUM
US07/475,941 US5132945A (en) 1986-07-08 1990-01-30 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US08/296,163 US5525378A (en) 1986-07-08 1994-08-26 Method for producing a magnetooptical recording medium
US08/312,930 US5481410A (en) 1986-07-08 1994-09-30 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US08/613,431 US5783300A (en) 1986-06-18 1996-02-29 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US09/080,215 US6028824A (en) 1986-07-08 1998-05-18 Magnetooptical recording medium allowing overwriting with two or more magnetic layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070278A JPS63237242A (en) 1987-03-26 1987-03-26 Magneto-optical recording system

Publications (1)

Publication Number Publication Date
JPS63237242A true JPS63237242A (en) 1988-10-03

Family

ID=13426874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070278A Pending JPS63237242A (en) 1986-06-18 1987-03-26 Magneto-optical recording system

Country Status (1)

Country Link
JP (1) JPS63237242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464152A (en) * 1987-05-20 1989-03-10 Nippon Telegraph & Telephone Magneto-optical recording system
US5599619A (en) * 1991-10-18 1997-02-04 International Business Machines Corporation Write once magneto-optic media and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464152A (en) * 1987-05-20 1989-03-10 Nippon Telegraph & Telephone Magneto-optical recording system
US5599619A (en) * 1991-10-18 1997-02-04 International Business Machines Corporation Write once magneto-optic media and system

Similar Documents

Publication Publication Date Title
JPH0535499B2 (en)
JPS63155449A (en) Magneto-optical recording method
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPH0395745A (en) Magneto-optical recording method and recording device
JPS6348637A (en) Magneto-optical recording medium and magnet-optical recording method
JPH0535494B2 (en)
JPS63237242A (en) Magneto-optical recording system
JPH0522301B2 (en)
JPS63153752A (en) Magneto-optical recording medium and its recording method
JP2570777B2 (en) Recording method of magneto-optical recording
JPH0535498B2 (en)
JPH03152743A (en) Magneto-optical recording medium
JP2555272B2 (en) Magneto-optical recording / reproducing method
JPH0535493B2 (en)
JPH0522302B2 (en)
JPS63193351A (en) Magneto-optical recording medium and recording system
JP2589453B2 (en) Magneto-optical recording method
JPS63133338A (en) Magneto-optical recording method
JPH0535496B2 (en)
JPH0522300B2 (en)
JPH0535497B2 (en)
JPH01227245A (en) Magneto-optical recording system
JPS63191338A (en) Magneto-optical recording medium and recording system
JPS63225944A (en) Magneto-optical recording medium and recording system
JPS63224053A (en) Magneto-optical recording medium and recording method