JPS63239636A - Magneto-optical recording medium and magneto-optical recording method - Google Patents

Magneto-optical recording medium and magneto-optical recording method

Info

Publication number
JPS63239636A
JPS63239636A JP7172187A JP7172187A JPS63239636A JP S63239636 A JPS63239636 A JP S63239636A JP 7172187 A JP7172187 A JP 7172187A JP 7172187 A JP7172187 A JP 7172187A JP S63239636 A JPS63239636 A JP S63239636A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
recording
coercive force
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7172187A
Other languages
Japanese (ja)
Other versions
JPH0522302B2 (en
Inventor
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7172187A priority Critical patent/JPS63239636A/en
Publication of JPS63239636A publication Critical patent/JPS63239636A/en
Publication of JPH0522302B2 publication Critical patent/JPH0522302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To permit over writing like with a magnetic recording medium by providing perpendicularly magnetized films having specific three-layered structure on a substrate and forming the same so as to satisfy prescribed conditions. CONSTITUTION:This medium has at least the perpendicularly magnetized films having the three-layered structure consisting of a 1st magnetic layer 1 having a Curie point T1 and coercive force H1, the 2nd magnetic layer 2 having a Curie point T2 and coercive force H2 and the 3rd magnetic layer having a Curie point T3 and coercive force H3 on the substrate B. The respective magnetic layers are made of the alloy of rare earths and transition metals and have H1>H3>H2 T3>T1>T2. These layers satisfy the conditions expressed by equation I when the apparent magnetic wall energies of the 1st magnetic layer and the 3rd magnetic layer appearing through the 2nd magnetic layer are designated as deltaw13, and the film thicknesses of the 1st magnetic layer and the 3rd magnetic layer are successively designated as h1, h3. A magnetic field generating means is provided on the position separate from a recording head and recording is executed by binary laser power at the time of recording. The good over writing is thereby enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気カー効果を利用して読出しができるキュ
リー点書込みタイプの新規な光磁気記録媒体、及びこれ
を使用した重ね書き可能な光磁気記録方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a novel Curie point writing type magneto-optical recording medium that can be read using the magnetic Kerr effect, and an overwritable optical recording medium using the same. Related to magnetic recording methods.

〔従来の技術〕[Conventional technology]

消去可能な光デイスクメモリとして光磁気ディスクか知
られている。光磁気ディスクは、従来の磁気ヘッドを使
った磁気記録媒体と比べて高密度記録、非接触での記録
再生などが可能であるという長所がある反面、記録前に
一度記録部分を消去しなければならない(一方向に着磁
しなければならない)という欠点があった。この欠点を
補う為に、記録再生用ヘッドと消去用ヘッドを別々に設
ける方式、あるいは、レーザーの連続ビームを照射しな
がら、同時に印加する磁場を変調しつつ記録する方式な
どか提案されている。
A magneto-optical disk is known as an erasable optical disk memory. Magneto-optical disks have advantages over magnetic recording media using conventional magnetic heads, such as high-density recording and non-contact recording and playback, but on the other hand, the recorded area must be erased before recording. It had the disadvantage that it cannot be magnetized in one direction (it must be magnetized in one direction). To compensate for this drawback, proposals have been made such as a method in which a recording/reproducing head and an erasing head are provided separately, or a method in which recording is performed while irradiating a continuous laser beam while simultaneously modulating the applied magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの方法は、装置が大がかりとなり、コス
ト高になる欠点あるいは高速の変調が出来ないなどの欠
点を有する。
However, these methods have disadvantages such as a large-scale apparatus, high cost, or inability to perform high-speed modulation.

本発明はト述従来例の欠点を除去するためになされたも
のであり、新規な光磁気記録媒体と、これを利用するこ
とによって、従来の装置構成に簡易な構造の磁界発生手
段を付設するだけで、磁気記録媒体と同様に重ね書き(
オーバーライド)を可能とした、光磁気記録方法とを提
供することを目的とする。
The present invention was made in order to eliminate the drawbacks of the conventional example mentioned above, and by using a new magneto-optical recording medium, a magnetic field generating means of a simple structure is added to the conventional device configuration. Just like magnetic recording media, overwriting (
The purpose of the present invention is to provide a magneto-optical recording method that enables overriding.

(問題点を解決するための手段〕 上記の目的は以下の本発明によって達成できる。即ち、
キュリー点T1と保磁力H1を有する第1@性層と、キ
ュリー点T2と保磁力H2を有する第2磁性層と、キュ
リー点T3と保磁力H3を仔する第3磁性層とからなる
三層構造の垂直−一化膜を少なくとも基板上に有して成
る光磁気記録媒体であって、 (A)各磁性層が希土類と遷移金属の合金であること、 (B)     H+ >H3>H2 T 3> T + > 72、 (C)第2磁性層を介して現れる第1Mi性層と第3v
ii性層の見かけの磁壁エネルギーをσ”13、第1磁
性層、第3磁性層の膜厚を順にり1、h3、H3,とす
ると、 を満たしている光磁気記録媒体と、これを使用した。後
に代表的態様が示される記録方法である。
(Means for solving the problem) The above object can be achieved by the present invention as follows.
Three layers consisting of a first magnetic layer having a Curie point T1 and a coercive force H1, a second magnetic layer having a Curie point T2 and a coercive force H2, and a third magnetic layer having a Curie point T3 and a coercive force H3. A magneto-optical recording medium having a perpendicular-uniform structure on at least a substrate, wherein (A) each magnetic layer is an alloy of rare earth and transition metal; (B) H+ > H3 > H2 T 3> T + > 72, (C) the first Mi layer and the third v appearing through the second magnetic layer
Assuming that the apparent domain wall energy of the magnetic layer is σ"13, and the film thicknesses of the first magnetic layer and the third magnetic layer are 1, h3, and H3 in that order, then a magneto-optical recording medium that satisfies the following is used. This is a recording method whose representative aspects will be shown later.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a) 、 (b)は各々本発明に用いる光磁気
記録媒体の一実施例を示す模式断面図である。第1図(
a)の光磁気記録媒体は、プリグループが設けられた透
光性の基板B上に、第1の磁性層1と第2の磁性層2と
第3の磁性層3とが積層されたものである。第1磁性層
1のキュリー点をT1、h3、その保磁力をHl、第3
磁性層3のキュリー点を第3、その保磁力をH3とする
と、 H,>H3 第3 >T、を満たす。
FIGS. 1(a) and 1(b) are schematic cross-sectional views each showing an embodiment of a magneto-optical recording medium used in the present invention. Figure 1 (
The magneto-optical recording medium of a) has a first magnetic layer 1, a second magnetic layer 2, and a third magnetic layer 3 laminated on a transparent substrate B provided with a pre-group. It is. The Curie point of the first magnetic layer 1 is T1, h3, its coercive force is Hl, the third
If the Curie point of the magnetic layer 3 is 3rd and its coercive force is H3, then H,>H3 3rd>T is satisfied.

(保磁力は室温におけるものである) ただし、通常は第1磁性層1のT、は70〜200℃、
H6は2〜10KOe 、第3磁性層3の第3は100
〜400℃、H3は0.1〜4KOe程度の範囲内に設
定するとよい。第2磁性層のキュリー点T2、保磁力H
2の詳細については後に詳述する。
(The coercive force is at room temperature.) However, normally the T of the first magnetic layer 1 is 70 to 200°C,
H6 is 2 to 10 KOe, and the third of the third magnetic layer 3 is 100
~400° C., and H3 is preferably set within a range of about 0.1 to 4 KOe. Curie point T2 of second magnetic layer, coercive force H
The details of 2 will be explained later.

本発明の光磁気記録媒体の第1&fi性層1と第3磁性
層3とは第2磁性層を介して比較的弱く結合している。
The first &fi layer 1 and the third magnetic layer 3 of the magneto-optical recording medium of the present invention are relatively weakly coupled via the second magnetic layer.

本発明の光磁気記録媒体では、第26i性層を介して現
れる第1磁性層1と第3磁性層3の間の見かけの磁壁エ
ネルギーをσWI3 、第1磁性層1の膜厚をhl+第
3磁性層3の膜厚をH3、これらの層の飽和磁化の大き
さ順に”gI+MS3とすると、2つの磁性層1.3は
次の式を満たすように結合している。
In the magneto-optical recording medium of the present invention, the apparent domain wall energy between the first magnetic layer 1 and the third magnetic layer 3 appearing through the 26i-th layer is σWI3, and the film thickness of the first magnetic layer 1 is hl+3. Assuming that the film thickness of the magnetic layer 3 is H3, and the order of the saturation magnetization of these layers is "gI+MS3," the two magnetic layers 1.3 are coupled so as to satisfy the following equation.

−<   H。−<  H.

2Ms、h。2Ms, h.

□<H3 Ms3h3 このような結合が必要な理由の、詳細についても後述す
るが、簡東に言えば記録によって最終的に形成されるビ
ットの磁化(第2図(「)に示す状態)を安定にするた
めである。よって、2つの磁性層1.3は、上記の関係
式を満たすようにその膜厚、保磁力、飽和磁化の大きさ
、磁壁エネルギーなどが設定されればよい。
□<H3 Ms3h3 The reason why such a combination is necessary will be discussed in detail later, but in Kanto terms, it stabilizes the magnetization of the bit (the state shown in Figure 2 ()) that is finally formed during recording. Therefore, the film thickness, coercive force, magnitude of saturation magnetization, domain wall energy, etc. of the two magnetic layers 1.3 may be set so as to satisfy the above relational expression.

各磁性層の材料には、垂直磁気異方性を示し且つ磁気光
学効果を呈する、GdCo、 GdFe、 TbFe、
 DyFe、 GdTbFe、 TbDyFe、 Gd
FeCo、 TbFeCo、 GdTM:o。
The materials of each magnetic layer include GdCo, GdFe, TbFe, which exhibit perpendicular magnetic anisotropy and magneto-optic effect.
DyFe, GdTbFe, TbDyFe, Gd
FeCo, TbFeCo, GdTM:o.

GdTbFeGo等の希土類元素と遷移金属元素との非
晶質磁性合金が使用できる。
An amorphous magnetic alloy of a rare earth element and a transition metal element such as GdTbFeGo can be used.

本発明の光磁気記録媒体の他の例である第1図(b)に
おいて、4,5は3つの磁性層1,2゜3の耐久性を向
上させるためのあるいは光磁気効果を向上させるための
保護膜である。
In FIG. 1(b) which is another example of the magneto-optical recording medium of the present invention, 4 and 5 are for improving the durability of the three magnetic layers 1 and 2.3 or for improving the magneto-optical effect. It is a protective film.

6は、貼り合わせ用基板7を貼り合わすための接着層で
ある。貼り合わせ用基板7にも、1から5までの層を積
層し、これを接着1−れば表裏で記録・再生が可能とな
る。
6 is an adhesive layer for bonding the bonding substrate 7 together. If layers 1 to 5 are laminated on the bonding substrate 7 as well, and these are bonded 1-, recording and reproduction can be performed on the front and back sides.

以下、第2図〜第4図を用いて本発明の記録の過程を示
す。
The recording process of the present invention will be described below using FIGS. 2 to 4.

第3図の35は、上述したような構成を有する光磁気デ
ィスクである。例えば、この磁性層のある一部の磁化状
態が初め第2図(a)のようになっている。即ち、第2
図では、記録前、第1、第3磁性層の磁化の向きが平行
(同じ向き)なときに安定である場合について説明する
35 in FIG. 3 is a magneto-optical disk having the configuration described above. For example, the magnetization state of a certain part of this magnetic layer is initially as shown in FIG. 2(a). That is, the second
In the figure, a case will be described in which the magnetization is stable when the magnetization directions of the first and third magnetic layers are parallel (same direction) before recording.

光磁気ディスク35はスピンドルモータにより回転して
、磁界発生部34を通過する。このとき、磁界発生部3
4の磁界の大きさを第1磁性層1と第3磁性層3の保磁
力の間の値に設定すると(磁界の向きは本実施例では上
向き)、第2図(b)に示す様に第3磁性層3は一様な
方向に磁化され、一方、第1磁性層1の磁化は初めのま
まである。
The magneto-optical disk 35 is rotated by a spindle motor and passes through the magnetic field generator 34 . At this time, the magnetic field generating section 3
When the magnitude of the magnetic field 4 is set to a value between the coercive forces of the first magnetic layer 1 and the third magnetic layer 3 (the direction of the magnetic field is upward in this example), as shown in FIG. 2(b), The third magnetic layer 3 is magnetized in a uniform direction, while the magnetization of the first magnetic layer 1 remains the same.

次に光磁気ディスク35が回転して記録・再生ヘッド3
1を通過するときに、2種(第1種と第2種)のレーザ
ーパワー値を持つレーザービームを、記録信号発生器3
2からの信号に従って、そのどちらかのパワーでもって
、ディスク面に照射する。第1種のレーザーパワーは該
ディスクを第1磁性層1のキュリー点付近まで昇温する
だけのパワーであり、第2種のレーザーパワーは該ディ
スクを第3Wl性層3のキュリー点付近まで昇温可能な
パワーである。即ち、両磁性層1.−3の保磁力と温度
との関係の概略を示した第4図において、第1種のレー
ザーパワーはT1付近(TIに近い温度で、第1磁性層
の磁化の向きを均一に第3@性層の向きに対して安定な
方向に配列可能な温度)、第2種のレーザーパワーはT
3付近(T3に近い温度で、第3Idi性層の磁化の向
きを均一に反転可能な温度)までディスクの温度を上昇
できる。
Next, the magneto-optical disk 35 rotates and the recording/reproducing head 3
1, a laser beam having two types (first type and second type) of laser power values is transmitted to a recording signal generator 3.
According to the signal from 2, the disk surface is irradiated with either power. The first type of laser power is enough to raise the temperature of the disk to around the Curie point of the first magnetic layer 1, and the second type of laser power is enough to raise the temperature of the disk to around the Curie point of the third Wl magnetic layer 3. It is a power that can be heated. That is, both magnetic layers 1. In Figure 4, which shows an outline of the relationship between the coercive force and temperature of -3, the first type of laser power is near T1 (at a temperature close to TI, the magnetization direction of the first magnetic layer is uniformly changed to the third (temperature that allows alignment in a stable direction with respect to the orientation of the magnetic layer), and the second type of laser power is T
The temperature of the disk can be raised to around 3 (a temperature close to T3, at which the direction of magnetization of the third Idi layer can be uniformly reversed).

第1種のレーザーパワーにより第1磁性層1と第3磁性
層3とは、第1ifi性層1のキュリー点付近まで昇温
するが、第3磁性層3はこの温度でビットが安定に存在
する保磁力を有しているのでバイアス磁界を適正に設定
しておくことにより、第2図(b)に示すどちらの磁化
状態からも、第2図(C)の様な記録ビットが形成され
る(第1種の予備記録)。
The temperature of the first magnetic layer 1 and the third magnetic layer 3 is raised to near the Curie point of the first ifi layer 1 by the first type of laser power, but bits stably exist in the third magnetic layer 3 at this temperature. By setting the bias magnetic field appropriately, recording bits as shown in Fig. 2(C) can be formed from either magnetization state shown in Fig. 2(b). (Type 1 preliminary record).

ここで、バイアス磁界を適正に設定するとは、次のよう
な意味である。
Here, setting the bias magnetic field appropriately means the following.

第1種の予備記録では第3磁性層3の磁化の向きに対し
て安定な向きに(ここでは同じ方向に)第1磁性層1の
磁化が配列する力(交換力)を受けるので、本来はバイ
アス磁界は必要でない。しかし、バイアス磁界は後述す
る第2種のレーザーパワーの予備記録では第3磁性層3
の磁化反転を補助する向きに設定される。そして、この
バイアス磁界は、第1種、第2種どちらのレーザーパワ
ーの予備記録でも、大きさ、方向を同じ状態に設定して
おくことが便宜上好ましい。かかる観点からバイアス磁
界の設定は次記に示す原理による第2種のレーザーパワ
ーの予備記録に必要な最小限の大きさに設定しておくこ
とが好ましく、この点を考慮したのが前でいう適正に設
定するという意味である。
In the first type of preliminary recording, the magnetization of the first magnetic layer 1 is subjected to a force (exchange force) that aligns it in a stable direction (here, in the same direction) as the direction of magnetization of the third magnetic layer 3. does not require a bias magnetic field. However, in the preliminary recording of the second type of laser power, which will be described later, the bias magnetic field is applied to the third magnetic layer 3.
The direction is set to assist in magnetization reversal. For convenience, it is preferable that the bias magnetic field is set to have the same magnitude and direction in preliminary recording with either the first type or the second type of laser power. From this point of view, it is preferable to set the bias magnetic field to the minimum size necessary for preliminary recording of the second type of laser power according to the principle shown below, and this point was taken into consideration in the previous section. This means setting it appropriately.

一方、第2種のレーザーパワーにより、第3Wl性層3
のキュリー点近くまでディスクを昇温させる(第2種の
予備記録)と、上記のバイアス磁界により第3iff性
層3の磁化の向きが反転する。続いて第1Wt性層1の
磁化も第3磁性層3に対して安定な向きに(ここでは同
じ方向に)配列する。
On the other hand, with the second type of laser power, the third Wl property layer 3
When the temperature of the disk is raised to near the Curie point (second type of preliminary recording), the direction of magnetization of the third if-sensitive layer 3 is reversed by the bias magnetic field. Subsequently, the magnetization of the first Wt magnetic layer 1 is also aligned in a stable direction (here, in the same direction) with respect to the third magnetic layer 3.

即ち、第2図(b)のどちらの磁化状態からも第2図(
d)のような予備記録のビットが形成される。
In other words, from either magnetization state in FIG. 2(b), FIG.
d) Preliminary recording bits are formed.

このように、バイアス磁界と、信号に応じて変わる第1
種及び第2種のレーザーパワーとによって、光磁気ディ
スクの各箇所は第2図(C)か(d)の状態に予備記録
されることになる。
In this way, the bias magnetic field and the first
Depending on the laser power of the seed and the second type, each location on the magneto-optical disk is preliminarily recorded in the state shown in FIG. 2(C) or FIG. 2(d).

次に光磁気ディスク35を回転させ、記録ビット(C)
 、 (d)が磁界発生部34を再び通過すると、磁界
発生部34は前述したように第1磁性層1と第3!f!
性層3の間に設定されているので、記録ビット(C)は
、変化が起こらずに(e)の状態である。一方、記録ビ
ット(d)は第3磁性層3が磁化反転を起こしてCf)
の状態になる。
Next, rotate the magneto-optical disk 35 to record bits (C).
, (d) passes through the magnetic field generating section 34 again, the magnetic field generating section 34 is divided into the first magnetic layer 1 and the third!, as described above. f!
Since the recording bit (C) is set between the sexual layers 3 and 3, no change occurs and the recording bit (C) remains in the state (e). On the other hand, the recorded bit (d) is caused by magnetization reversal in the third magnetic layer 3 (Cf)
becomes the state of

(「)の記録ビットの状態が安定に存在する為には、前
記したように σW13 −   <  H。
In order for the state of the recorded bits (') to exist stably, as described above, σW13 − < H.

2Ms+h+ σW11 〈H3 Ms3h3 となっていることが必要である。2Ms+h+ σW11 <H3 Ms3h3 It is necessary that the

ここで、σ19+3 / 2Ms、h、は第1磁性層に
働く交換力の強さを示す。つまりσWI372M5lh
lの大きさの磁界で第1Wl性層の磁化の向きを、第3
磁性層の磁化の向きに対して安定な方向へ(この場合は
同じ方向に)向けようとする。そこで第1rdi性層の
磁化がこの磁界に抗して反転しないためには、第1Wt
性層の保磁力H,が、この交換力より大きければよい。
Here, σ19+3/2Ms, h indicates the strength of the exchange force acting on the first magnetic layer. In other words, σWI372M5lh
The direction of magnetization of the first Wl layer is changed by a magnetic field of magnitude l, and the direction of magnetization of the first Wl layer is
An attempt is made to orient it in a direction that is stable (in this case, in the same direction) as the direction of magnetization of the magnetic layer. Therefore, in order to prevent the magnetization of the first rdi layer from reversing against this magnetic field, the first Wt
It is sufficient that the coercive force H of the magnetic layer is larger than this exchange force.

つまりσW+3 / 2Ms+t+、 < H+であれ
ばよい。
In other words, it is sufficient if σW+3/2Ms+t+, <H+.

同様にして、第3磁性層には界面磁壁よりσW13. 
/ 2M53t+3の大きさで、第16tA性層の磁化
に対して安定な向きに配列させる交換力が働くので、(
f)の記録ビットが安定なためにはσW13/2M53
hs< Haであればよい。
Similarly, in the third magnetic layer, σW13.
/ 2M53t+3, an exchange force acts to align the magnetization of the 16th tA layer in a stable direction, so (
In order for the recording bit of f) to be stable, σW13/2M53
It is sufficient if hs<Ha.

かかる条件(第1、第3磁性層共、働いている交換力よ
りも保磁力の方が大きい)を満たすようにするには、す
なわち、第1、第3ff!性層に働く交換力が小さくな
るようにするためには、前記したように両層の膜厚、飽
和磁化を調整すれば良いが、記録感度あるいは保磁力に
は適正値があるので、任意には設定できない。そこで、
本発明では第2Mi性層を、例えば、10〜150人の
ごく小さい厚さで設けることにより、第1磁性層1と第
3磁性層3の界面で働く交換相互作用を抑制し、第2磁
性層を介して現れる見かけ上の0w13の大きさを小さ
くすることを可能とした。
In order to satisfy this condition (the coercive force is larger than the exchange force acting on both the first and third magnetic layers), that is, the first and third ff! In order to reduce the exchange force acting on the magnetic layer, the film thickness and saturation magnetization of both layers can be adjusted as described above, but since there is an appropriate value for the recording sensitivity or coercive force, you can adjust it arbitrarily. cannot be set. Therefore,
In the present invention, by providing the second Mi layer with a very small thickness of, for example, 10 to 150 layers, the exchange interaction acting at the interface between the first magnetic layer 1 and the third magnetic layer 3 is suppressed, and the second magnetic layer This made it possible to reduce the apparent size of 0w13 appearing through the layers.

第2磁性層の保磁力については、第1種の予備記録時に
、第2図(b)において、第2磁性層の磁化が均一に、
同じ方向に配列していることが望ましい。
Regarding the coercive force of the second magnetic layer, during the first type of preliminary recording, in FIG. 2(b), the magnetization of the second magnetic layer is uniform.
It is desirable that they be arranged in the same direction.

そこで、ディスクが回転して磁界発生部34を通過した
ときに、第2&Ii性層の磁化も、第3磁性層の磁化と
同様に、磁界に対して安定な方向に磁化が配列すること
が望ましい。
Therefore, when the disk rotates and passes through the magnetic field generating section 34, it is desirable that the magnetization of the second &Ii magnetic layer be arranged in a stable direction with respect to the magnetic field, similar to the magnetization of the third magnetic layer. .

また、第2磁性層は第1磁性層か第3磁性層どちらかの
磁化の向きに対して常に安定な方向に配列していること
が望ましいので、保磁力H2は小さい方が好ましい。
Further, since it is desirable that the second magnetic layer is always aligned in a stable direction with respect to the direction of magnetization of either the first magnetic layer or the third magnetic layer, it is preferable that the coercive force H2 is small.

そこで、保磁力の関係はHr > 83 > 82 と
すれば良い。
Therefore, the relationship of coercive force may be set as Hr > 83 > 82.

第2iH性層に用いられる材料は第1、第2磁性層と°
同じ希土類元素−遷移金属元素の合金であるが、キュリ
ー温度が第1磁性層よりも低いことが必要である。これ
は次のような理由による。
The material used for the second iH layer is different from the first and second magnetic layers.
Although it is an alloy of the same rare earth element and transition metal element, it is necessary that the Curie temperature is lower than that of the first magnetic layer. This is due to the following reasons.

第fil性層−と第、3磁性層の界面に働く交換力(そ
れぞれの原子の磁気モーメントを一定方向へ配列させる
力)の大きさは、それぞれの界面に配位する原子の種類
、数、そしてそれぞれの原子間の交換定数(相互作用の
大きさを示す)、そして、それぞれの層のキュリー温度
などで決められる。
The magnitude of the exchange force (the force that aligns the magnetic moments of each atom in a certain direction) acting on the interface between the first filtration layer and the third magnetic layer depends on the type and number of atoms coordinated at each interface. It is determined by the exchange constant between each atom (indicating the magnitude of interaction) and the Curie temperature of each layer.

キュリー温度が関与するというのは、例えば、キュリー
温度以上では熱運動により磁気モーメントの配列が無く
なるので、交換力が働がなくなるからである。そこで、
第1、第3磁性層間に設けた第2磁性層のキュリー温度
が低い(室温に近い)ときは、室温においても、熱運動
により磁気モーメントの配列が起こりにくいので、第1
磁性層と第3磁性層の間に働く交換力を減少させること
ができる。実際にはキュリー温度が室温以下の第2磁性
層を第1、第3磁性層で挟んだ構成では、第1、第3両
磁性層からの交換力により、室温においても第2磁性層
の磁気モーメントの配列が生じることも実験で確認した
The Curie temperature is involved because, for example, above the Curie temperature, the alignment of magnetic moments disappears due to thermal motion, and therefore the exchange force ceases to work. Therefore,
When the Curie temperature of the second magnetic layer provided between the first and third magnetic layers is low (close to room temperature), it is difficult for magnetic moments to align due to thermal motion even at room temperature.
The exchange force acting between the magnetic layer and the third magnetic layer can be reduced. In reality, in a configuration in which a second magnetic layer whose Curie temperature is below room temperature is sandwiched between the first and third magnetic layers, the exchange force from both the first and third magnetic layers causes the second magnetic layer to become magnetic even at room temperature. We also confirmed through experiments that an array of moments occurs.

本発明の記録方法では、記録ビットの状態(e)と(f
)は、記録時のレーザーのパワーで制御され、記録前の
状態には依存しないので、瓜ね書き(オーバーライド)
が可能である。記録ビット(e)と([)は、再生用の
レーザービームを照射し、再生光を記録信号再生器33
で処理することにより、再生できる。
In the recording method of the present invention, the recording bit states (e) and (f
) is controlled by the laser power during recording and does not depend on the state before recording, so it is possible to override
is possible. Recording bits (e) and ([) are irradiated with a laser beam for reproduction, and the reproduction light is transmitted to a recording signal regenerator 33.
It can be played back by processing it.

第2図の説明では第111Ii性層1・第2磁性層2と
第3ifi性層3との磁化の向きが平行なときに安定な
例を示したが、こわらの磁化の向きが反平行のときに安
定な磁性層についても同様に考えられる。
In the explanation of FIG. 2, an example is shown where the magnetization direction of the 111Ii magnetic layer 1, the second magnetic layer 2, and the third ifi magnetic layer 3 are parallel to each other. The same can be said of a magnetic layer that is stable when .

〔実施例) 実施例1 4元のターゲット源を備えたスパッタ装置内に、プリグ
ループ、プリフォーマット信号の刻まれたポリカーボネ
ート製のディスク状基板を、ターゲットとの間の距11
10cmの間隔にセットし、回転させた。
[Example] Example 1 A polycarbonate disc-shaped substrate with pregroup and preformat signals engraved thereon was placed in a sputtering apparatus equipped with four target sources at a distance of 11 mm from the target.
They were set at 10 cm intervals and rotated.

アルゴン中で、第1のターゲットより、スパッタ速度7
0λ/m1(r、スパッタ圧8x 1O−3Torrで
Sf、 N4を保護層として650人の厚さに設けた。
Sputtering speed 7 from the first target in argon
A protective layer of Sf and N4 was formed to a thickness of 650 mm at a sputtering pressure of 8 x 10-3 Torr.

次にアルゴン中で、第2のターゲットよりスパッタ速度
50人/min、スパッタ圧2 X 10’ Torr
でTbFe1l:。
Next, in argon, sputtering was performed from the second target at a sputtering rate of 50 people/min and a sputtering pressure of 2 x 10' Torr.
TbFe1l:.

合金をスパッタし、膜厚300人、キュリー点T。Sputtered alloy, film thickness 300mm, Curie point T.

=約160℃のTb、 、Fe8.Go、の第1磁性層
を形成した。この第1磁性層自身のH,は約12KOe
であリ、副格子磁化は遷移金属の方が大きかった。
= Tb at about 160°C, , Fe8. A first magnetic layer of Go was formed. The H of this first magnetic layer itself is approximately 12 KOe.
However, the sublattice magnetization was larger in transition metals.

上記操作を複数回実施し、できた各々に第4のターゲッ
トよりDyFe合金を2 X 10’ Torrのアル
ゴン圧で、スパッタし、キュリー点T2約60℃、H2
500(Oe)のDy+7Fea3の第2磁性層を設け
た。
The above operation was carried out several times, and DyFe alloy was sputtered from the fourth target onto each of the resulting targets at an argon pressure of 2 x 10' Torr, and the Curie point T2 was about 60°C, H2
A second magnetic layer of 500 (Oe) Dy+7Fea3 was provided.

その膜厚はゼロ(このときは第2磁性層は設けてない)
から70人まで10人ずつ変化させた。第2iff性層
自身の副格子磁化は遷移金属元素の方が大きかった。
The film thickness is zero (no second magnetic layer is provided at this time)
The number of participants was changed from 10 to 70 in increments of 10. The sublattice magnetization of the second IF layer itself was larger in the transition metal element.

次に、各々に、アルゴン中で、第3のターゲットより、
スパッタ速度50人/min、スパッタ圧2X10’ 
TorrでかTbFeGoCu合金をスパッタし、膜厚
250人、T3=約190℃、Tb2.Fe5.Go1
、h3、Cu 1、h3、の第3磁性層を形成した。こ
の第3磁性層自身のH3は1.1にOeであり、副格子
磁化は希土類元素の方が大きかった。
Then, each from a third target in argon,
Sputtering speed 50 people/min, sputtering pressure 2X10'
A TbFeGoCu alloy was sputtered at Torr, the film thickness was 250 mm, T3=approximately 190°C, Tb2. Fe5. Go1
, h3, and Cu 1, h3. The H3 of the third magnetic layer itself was 1.1 Oe, and the sublattice magnetization was larger for the rare earth element.

次に、各々に第1のターゲットよりSi3N4を先程と
同じ条件でスパッタし、保護層として1200人の厚さ
のSi3 N4層を設けた。
Next, Si3N4 was sputtered from the first target under the same conditions as before to provide a Si3N4 layer with a thickness of 1200 mm as a protective layer.

次に膜形成を終えた各々の基板を、ホットメルト接着剤
を用いて、ポリカーボネートの貼り合わせ用基板と貼り
合わせ複数の光磁気ディスクのサンプルを作製した。
Next, each of the substrates on which the film had been formed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to produce a plurality of magneto-optical disk samples.

作成した各サンプルについて、ビットの安定性(特に(
「)の状態での)を調べた。これは外部磁界を印加しな
がら磁性層の磁化の反転の起こる磁界をVSM (試料
振動型磁化測定器)により測定した。
For each sample created, the bit stability (especially (
) was investigated by applying an external magnetic field and measuring the magnetic field at which the magnetization of the magnetic layer was reversed using a VSM (vibrating sample magnetometer).

本実施例においては第3磁性層の磁化の方がより小さな
外部磁界で反転が開始するので、測定できたのは第3磁
性層に働く交換力σw 、3層2M52h2である。
In this example, since the magnetization of the third magnetic layer starts to be reversed by a smaller external magnetic field, what was able to be measured was the exchange force σw acting on the third magnetic layer and the three layers 2M52h2.

次に光磁気ディスクのサンプルを記録再生装置にセット
し、2 KOeの磁界発生部を、線速度約9m/sec
で通過させつつ、約1μに集光した83oIIII11
の波長のレーザービームを50%のデユーティで2M1
lzで変調させながら、4mWと8mWの2値のレーザ
ーパワーで記録を行なった。記録ヘッド部でのバイアス
磁界は1200eであった。
Next, the sample of the magneto-optical disk was set in the recording/reproducing device, and the magnetic field generator of 2 KOe was set at a linear velocity of about 9 m/sec.
83oIII11 which was focused to about 1μ while passing through
2M1 laser beam with a wavelength of 50% duty
Recording was performed using binary laser powers of 4 mW and 8 mW while modulating the laser beam with lz. The bias magnetic field at the recording head was 1200e.

その後1mWのレーザービームを照射して再生を行なっ
たところ、2値の信号の再生ができた。この実験を、全
面記録された後のサンプルについて行ない、前に記録さ
れた信号成分冷(検出されないかを、つまり、オーバー
ライドが可能であったか否かをチェックした。以上の結
果を表1にまとめて示す。
Thereafter, a 1 mW laser beam was irradiated to perform reproduction, and a binary signal could be reproduced. This experiment was performed on the sample after the entire surface was recorded, and it was checked whether the previously recorded signal component was not detected (in other words, whether it was possible to override it).The above results are summarized in Table 1. show.

表1でオーバーライドの可否の判断で2値の信号記録が
可能なものに○印、そうでないものにx印、不完全なも
のにΔ印を付けた。記録が不充分だったのは、第1種の
ビットを行なったビットで1表1の第3磁性層に働く交
換力の測定値とを対応させることができる。すなわち、
サンプル1−1と1−2とは交換力の大きさが第3!f
I性層の保磁力H3に比して小さくない値で、(f)の
記録ビットが安定に存在しないためである。
In Table 1, in determining whether or not to override, those that are capable of recording binary signals are marked with a circle, those that are not are marked with an x, and those that are incomplete are marked with a Δ. The reason why the recording was insufficient can be correlated with the measured value of the exchange force acting on the third magnetic layer in Table 1 in the bit where the first type bit was performed. That is,
Samples 1-1 and 1-2 have the third largest exchange force! f
This is because the recording bit of (f) does not exist stably because the value is not small compared to the coercive force H3 of the I-type layer.

サンプル1−8は第2ifi性層、第1磁性層共に働く
交換力が小さすぎて、第1種の記録が完全に行なえず、
第1磁性層の磁化を反転させることができないためと考
えられる。
In sample 1-8, the exchange force acting on both the second ifi layer and the first magnetic layer was so small that type 1 recording could not be performed completely.
This is thought to be because the magnetization of the first magnetic layer cannot be reversed.

実施例2 第4のターゲトを用いて第2磁性層2の材料と膜厚を変
化させたほかは、実施例1と同じ構成、同じ材料を用い
て光磁気ディスクのサンプルを作成した。
Example 2 A magneto-optical disk sample was prepared using the same configuration and materials as in Example 1, except that a fourth target was used and the material and film thickness of the second magnetic layer 2 were changed.

用いた第2磁性層の材料は、キュリー温度が80℃であ
るDV+2TbsFea2.キュリー温度が30℃であ
るDyFeCrキュリー温度が5℃であるDV+Je7
aCrs 、それぞれ用いて、膜厚を変化させて設けた
The material of the second magnetic layer used was DV+2TbsFea2. having a Curie temperature of 80°C. DyFeCr whose Curie temperature is 30°C DV+Je7 whose Curie temperature is 5°C
aCrs was used, and the film thickness was varied.

作成したそれぞれのサンプルについて、実施例1と同様
な評価を行なった。結果を表2に示す。
The same evaluation as in Example 1 was performed for each of the prepared samples. The results are shown in Table 2.

表−2 表1.2の結果から、第1磁性層のキュリー温度より低
い温度をもつ第2磁性層を第1磁性層と第3Mi性層の
間に適正膜厚で設けることにより第3磁性層に働く交換
力を減少させることができることが明らかである。
Table 2 From the results in Table 1.2, it is clear that by providing a second magnetic layer with a temperature lower than the Curie temperature of the first magnetic layer with an appropriate thickness between the first magnetic layer and the third Mi layer, the third magnetic layer can be It is clear that the exchange forces acting on the layers can be reduced.

キュリー温度を、例えば、室温あるいは室温以下の第2
磁性層を用いると、第2磁性層の膜厚が5O−150A
程度の厚さで、記録ビットが安定になるので、記録層の
厚さく第1、第2、第3磁性層の膜厚の和)を小さな値
に設定できるため、記録感度が低下することがない。
Curie temperature, for example, at room temperature or a second temperature below room temperature.
When a magnetic layer is used, the thickness of the second magnetic layer is 5O-150A.
Since the recording bits become stable with a thickness of about do not have.

比較例1 第4のターゲットを用いて、第2磁性層の構成位置に次
の材料を、膜厚を変化させて設けたほかは、実施例1.
2と同じ構成、同じ材料を用いて光磁気ディスクのサン
プルを作製した。
Comparative Example 1 Example 1 except that the fourth target was used and the following materials were provided at the positions of the second magnetic layer with varying film thicknesses.
A magneto-optical disk sample was fabricated using the same configuration and materials as in Example 2.

用いた材料は非磁性層であるSiとキュリー温度が第1
磁性層のT1より大きい170℃であり、保磁力が第3
&Ii性層よりも小さい500・(Oe)であるTb1
3Fea2CO3の2種を用いて膜厚を変化させて設け
た。
The materials used are Si, which is a nonmagnetic layer, and the Curie temperature is the first.
The temperature is 170°C, which is higher than T1 of the magnetic layer, and the coercive force is 3rd.
Tb1 which is 500·(Oe) smaller than the &Ii layer
Two types of 3Fea2CO3 were used and the film thickness was varied.

作製したサンプルそれぞれについて、実施例1と同様の
評価を行なった。結果を表3に示す。
The same evaluation as in Example 1 was performed for each of the prepared samples. The results are shown in Table 3.

表−3 表3の結果から第1磁性層と第3磁性層の間に設ける層
の材料として非磁性層のSi、あるいはキュリ〒温度が
18以上で保磁力がH3以下の磁性層Tb、5Fe、2
Co3のどちらも第3磁性層へ働く交換力を減少させる
効果がある。
Table 3 From the results in Table 3, the material for the layer provided between the first magnetic layer and the third magnetic layer is Si for the non-magnetic layer, or Tb, 5Fe for the magnetic layer with a Curie temperature of 18 or higher and a coercive force of H3 or lower. ,2
Both Co3 have the effect of reducing the exchange force acting on the third magnetic layer.

しかし、非磁性材料のSiではオーバーライドを可能に
する適正膜厚が20〜40人であり、再現性良く設ける
ことが必ずしも容易ではなく、Tb1、h3、Fe、□
Co3では150Å以上の膜厚においても、オーバーラ
イドが可能だが、第1、第2、第3Mi性層の膜厚の和
も大きくなり、光磁気記録ディスクの記録感度の低下す
る傾向にある。
However, with Si, which is a non-magnetic material, the appropriate film thickness to enable override is 20 to 40, and it is not necessarily easy to provide it with good reproducibility.
With Co3, overriding is possible even with a film thickness of 150 Å or more, but the sum of the film thicknesses of the first, second, and third Mi layers also increases, which tends to reduce the recording sensitivity of the magneto-optical recording disk.

さらに、本発明のような第2磁性層を設けない場合は、
第3磁性層の厚さを600〜l0QQ八にすることが望
ましく、厚さが小さい場合は、記録ビットが不安定にな
る傾向がある。
Furthermore, when the second magnetic layer is not provided as in the present invention,
It is desirable that the third magnetic layer has a thickness of 600 to 10QQ8; if the thickness is small, recording bits tend to become unstable.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように光磁気媒体として、キュリー
点T、と保磁力H0を有する第1磁性層と、キュリー点
T2と保磁力H2を有する第2&fi性層と、キュリー
点T3と保磁力H3を有する第3磁性層とからなる三層
の磁性層を有し。且つ他の所定の要件を満たす媒体を用
い1、J己録時に、記録ヘッドと別位置に磁界発生手段
を設け、2値レーザーパワーで記録することにより、良
好な重ね書き(オーバーライド)が可能になった。
As explained in detail above, the magneto-optical medium includes a first magnetic layer having a Curie point T and a coercive force H0, a second magnetic layer having a Curie point T2 and a coercive force H2, and a Curie point T3 and a coercive force H3. and a third magnetic layer having three magnetic layers. In addition, when recording using a medium that meets other predetermined requirements, good overwriting is possible by providing a magnetic field generating means in a position separate from the recording head and recording with binary laser power. became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は各々本発明で使用する光磁
気媒体の一例の構成を示す図、第2図は、本発明の記録
法を実施中の、磁性層1.3の磁化の向きを示す図、第
3図は、記録・再生装置の概念図、第4図は第1磁性層
1と第3磁性層3の保磁力と温度との関係を示す概略図
である。 Bニブリグルーブ付の透光性基板、 1.2,3:磁性層 4.5:保護層、 6:接着層、 7:貼り合わせ用基板。 31:記録・再生用ヘッド、 32:記録信号発生器、 35:光磁気ディスク、
FIGS. 1(a) and 1(b) each show the structure of an example of a magneto-optical medium used in the present invention, and FIG. 2 shows the magnetization of the magnetic layer 1.3 during the recording method of the present invention. FIG. 3 is a conceptual diagram of the recording/reproducing apparatus, and FIG. 4 is a schematic diagram showing the relationship between the coercive force and temperature of the first magnetic layer 1 and the third magnetic layer 3. B Transparent substrate with nibli groove, 1.2, 3: Magnetic layer 4.5: Protective layer, 6: Adhesive layer, 7: Substrate for bonding. 31: recording/reproducing head, 32: recording signal generator, 35: magneto-optical disk,

Claims (1)

【特許請求の範囲】 1)キュリー点T_1と保磁力H_1を有する第1磁性
層と、キュリー点T_2と保磁力H_2を有する第2磁
性層と、キュリー点T_3と保磁力H_3を有する第3
磁性層とからなる三層構造の垂直磁化膜を少なくとも基
板上に有して成る光磁気記録媒体であって、次の条件を
満たしていることを特徴とする光磁気記録媒体。 (A)各磁性層が希土類元素と遷移金属の合金であるこ
と、 (B)H_1>H_3>H_2 T_3>T_1>T_2、 (C)第2磁性層を介して現れる第1磁性層と第3磁性
層の見かけの磁壁エネルギーを σw_1_3、第1磁性層、第3磁性層の膜厚を順にh
_1、h_3、とすると、 σw_1_3/2Ms_1h_1<H_1且つσw_1
_3/2Ms_3h_3<H_3 2)第2磁性層のキュリー温度が室温以下であり、第2
磁性層の膜厚が10〜150Åである特許請求の範囲第
1項記載の光磁気記録媒体。 3)キュリー点T_1と保磁力H_1を有する第1磁性
層と、キュリー点T_2と保磁力H_2を有する第2磁
性層と、キュリー点T_3と保磁力H_3を有する第3
磁性層とからなる三層構造の垂直磁化膜を少なくとも基
板上に有して成る光磁気記録媒体であって、次の条件(
A)〜(B)、すなわち、 (A)各磁性層が希土類と遷移金属の合金であること、 (B)H_1>H_3>H_2 T_3>T_1>T_2、 (C)第2磁性層を介して現れる第1磁性層と第3磁性
層の見かけの磁壁エネルギーを σw_1_3、第1磁性層、第3磁性層の膜厚を順にh
_1、h_3、とすると、 σw_1_3/2Ms_1h_1<H_1且つσw_1
_3/2Ms_3h_3<H_3 を満たしている光磁気記録媒体を使用して、次の二値の
記録を行なうことを特徴とする記録方法。 (a)該媒体に対して、記録用ヘッドと異なる場所で、
保磁力H_3の第3磁性層を一方向に磁化させるのに充
分で保磁力H_1の第1磁性層の磁化の向きを反転させ
ることのない大きさの磁界Bを加え、 (b)次に、記録ヘッドにより、バイアス磁界を印加す
ると同時に第1磁性層のキュリー点T_1付近まで該媒
体が昇温するだけのレーザーパワーを照射することによ
り、第3磁性層の磁化の向きを変えないまま第1磁性層
と第2磁性層の磁化の向きを第3磁性層に対して安定な
向きにそろえる第1種の予備記録か、バイアス磁界を印
加すると同時に第3磁性層のキュリー点T_3付近まで
該媒体が昇温するだけのレーザーパワーを照射すること
により、第3磁性層の磁化の向きを反転させて、同時に
第1、第2磁性層を共に第3磁性層に対して安定な向き
に磁化する第2種の予備記録かを、信号に応じて実施し
、(c)次に、該媒体を運動させて、予備記録されたビ
ットを前記磁界Bを通過させることにより、第1種の予
備記録により形成されたビットについては、第1磁性層
、第2磁性層、第3磁性層それぞれの磁化の向きをその
まま変化させ ず、 第2種の予備記録により形成されたビットについては、
第2、3磁性層の磁化の向きを前記磁界Bと同方向に反
転させ、第1磁性層の磁化の向きはそのまま変化させな
いとする、二値の記録。
[Claims] 1) A first magnetic layer having a Curie point T_1 and a coercive force H_1, a second magnetic layer having a Curie point T_2 and a coercive force H_2, and a third magnetic layer having a Curie point T_3 and a coercive force H_3.
1. A magneto-optical recording medium comprising a perpendicularly magnetized film having a three-layer structure including a magnetic layer on at least a substrate, the medium satisfying the following conditions. (A) Each magnetic layer is an alloy of a rare earth element and a transition metal, (B) H_1>H_3>H_2 T_3>T_1>T_2, (C) The first magnetic layer and the third magnetic layer appear through the second magnetic layer. The apparent domain wall energy of the magnetic layer is σw_1_3, and the film thicknesses of the first magnetic layer and third magnetic layer are h in that order.
_1, h_3, σw_1_3/2Ms_1h_1<H_1 and σw_1
_3/2Ms_3h_3<H_3 2) The Curie temperature of the second magnetic layer is below room temperature, and the second
2. The magneto-optical recording medium according to claim 1, wherein the magnetic layer has a thickness of 10 to 150 Å. 3) A first magnetic layer having a Curie point T_1 and a coercive force H_1, a second magnetic layer having a Curie point T_2 and a coercive force H_2, and a third magnetic layer having a Curie point T_3 and a coercive force H_3.
A magneto-optical recording medium having a perpendicularly magnetized film with a three-layer structure consisting of a magnetic layer on at least a substrate, which satisfies the following conditions (
A) to (B), that is, (A) each magnetic layer is an alloy of rare earth and transition metal, (B) H_1>H_3>H_2 T_3>T_1>T_2, (C) via the second magnetic layer The apparent domain wall energy of the first and third magnetic layers that appear is σw_1_3, and the film thicknesses of the first and third magnetic layers are h in that order.
_1, h_3, σw_1_3/2Ms_1h_1<H_1 and σw_1
A recording method characterized by performing the following binary recording using a magneto-optical recording medium that satisfies _3/2Ms_3h_3<H_3. (a) With respect to the medium, at a location different from the recording head,
Applying a magnetic field B of a magnitude sufficient to magnetize the third magnetic layer with coercive force H_3 in one direction but not reversing the direction of magnetization of the first magnetic layer with coercive force H_1, (b) Next, The recording head applies a bias magnetic field and at the same time irradiates laser power sufficient to raise the temperature of the medium to near the Curie point T_1 of the first magnetic layer. The first type of preliminary recording, in which the direction of magnetization of the magnetic layer and the second magnetic layer is aligned in a stable direction with respect to the third magnetic layer, or the medium is recorded until the third magnetic layer reaches near the Curie point T_3 at the same time as applying a bias magnetic field. By irradiating the laser with enough power to raise the temperature, the direction of magnetization of the third magnetic layer is reversed, and at the same time both the first and second magnetic layers are magnetized in a stable direction relative to the third magnetic layer. (c) Next, by moving the medium and passing the prerecorded bits through the magnetic field B, a first type of preliminary recording is performed. For the bits formed by the second type of preliminary recording, the magnetization directions of the first, second, and third magnetic layers are not changed, and for the bits formed by the second type of preliminary recording,
Binary recording in which the magnetization directions of the second and third magnetic layers are reversed in the same direction as the magnetic field B, and the magnetization direction of the first magnetic layer is left unchanged.
JP7172187A 1987-03-27 1987-03-27 Magneto-optical recording medium and magneto-optical recording method Granted JPS63239636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7172187A JPS63239636A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and magneto-optical recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7172187A JPS63239636A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and magneto-optical recording method

Publications (2)

Publication Number Publication Date
JPS63239636A true JPS63239636A (en) 1988-10-05
JPH0522302B2 JPH0522302B2 (en) 1993-03-29

Family

ID=13468669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7172187A Granted JPS63239636A (en) 1987-03-27 1987-03-27 Magneto-optical recording medium and magneto-optical recording method

Country Status (1)

Country Link
JP (1) JPS63239636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241051A (en) * 1988-03-19 1989-09-26 Fujitsu Ltd Magneto-optical recording medium
FR2683074A1 (en) * 1991-06-28 1993-04-30 Toshiba Kk DISC-SHAPED ELEMENT HAVING DATA STORAGE PART HAVING RIB AREAS AND GROOVED AREAS, AND WRITE-WRITE APPARATUS USING THE SAME.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241051A (en) * 1988-03-19 1989-09-26 Fujitsu Ltd Magneto-optical recording medium
FR2683074A1 (en) * 1991-06-28 1993-04-30 Toshiba Kk DISC-SHAPED ELEMENT HAVING DATA STORAGE PART HAVING RIB AREAS AND GROOVED AREAS, AND WRITE-WRITE APPARATUS USING THE SAME.

Also Published As

Publication number Publication date
JPH0522302B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
JPS63239637A (en) Magneto-optical recording medium and recording method thereof
JPH0522303B2 (en)
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPH0395745A (en) Magneto-optical recording method and recording device
JPS63155449A (en) Magneto-optical recording method
JPS63205835A (en) Magneto-optical recording medium and magneto-optical recording method
JPS6348637A (en) Magneto-optical recording medium and magnet-optical recording method
JPS63239636A (en) Magneto-optical recording medium and magneto-optical recording method
JPS63237238A (en) Magneto-optical recording medium and magneto-optical recording method
JPS63153752A (en) Magneto-optical recording medium and its recording method
JPS63195845A (en) Magneto-optical recording medium and magneto-optical recording method
JPS63237237A (en) Magneto-optical recording medium and recording method
JP2555272B2 (en) Magneto-optical recording / reproducing method
JP2589453B2 (en) Magneto-optical recording method
JPH0522300B2 (en)
JPS63133338A (en) Magneto-optical recording method
JPS63237242A (en) Magneto-optical recording system
JPS63193351A (en) Magneto-optical recording medium and recording system
JP2674815B2 (en) Magneto-optical recording method
JPS63224054A (en) Production of magneto-optical recording medium
JPS63191338A (en) Magneto-optical recording medium and recording system
JPS63133337A (en) Magneto-optical recording method
JPS63237236A (en) Magneto-optical recording medium and recording method
JPS63224053A (en) Magneto-optical recording medium and recording method
JPS63195844A (en) Magneto-optical recording medium and recording method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term