JPS63195844A - Magneto-optical recording medium and recording method - Google Patents

Magneto-optical recording medium and recording method

Info

Publication number
JPS63195844A
JPS63195844A JP62027082A JP2708287A JPS63195844A JP S63195844 A JPS63195844 A JP S63195844A JP 62027082 A JP62027082 A JP 62027082A JP 2708287 A JP2708287 A JP 2708287A JP S63195844 A JPS63195844 A JP S63195844A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
coercive force
recording
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62027082A
Other languages
Japanese (ja)
Inventor
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62027082A priority Critical patent/JPS63195844A/en
Priority to CA 541367 priority patent/CA1340058C/en
Priority to AU75306/87A priority patent/AU593364C/en
Priority to EP98200007A priority patent/EP0838815B1/en
Priority to EP98200006A priority patent/EP0838814B1/en
Priority to AT87306038T priority patent/ATE172047T1/en
Priority to KR1019870007322A priority patent/KR960003420B1/en
Priority to EP87306038A priority patent/EP0258978B1/en
Priority to DE3752222T priority patent/DE3752222T2/en
Priority to AT98200007T priority patent/ATE216528T1/en
Publication of JPS63195844A publication Critical patent/JPS63195844A/en
Priority to US07/475,941 priority patent/US5132945A/en
Priority to US08/296,163 priority patent/US5525378A/en
Priority to US08/312,930 priority patent/US5481410A/en
Priority to US08/613,431 priority patent/US5783300A/en
Priority to US09/080,215 priority patent/US6028824A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magneto-optical recording medium which has perpendicularly magnetized films of two-layered structure and is suitable for utilization in a recording method permitting overwriting by forming the above-mentioned recording medium in such a manner as to satisfy prescribed conditions. CONSTITUTION:Magnetic layers 2, 3 are laminated on a transparent substrate 1. The magnetic layer 2 has a low Curie point TL and high coercive force HH and the magnetic layer 3 has a high Curie point TH and low coercive force HL. The conditions expressed by the equation are required to be satisfied between the saturation magnetization MS2 and film thickness h2 of the magnetic layer 3 and the magnetic wall energy sigmaw between the two magnetic layers 2, 3. The magnetic layer 3 is required to satisfy TL<THCOMP when the compensation temp. of said layer is designated as THCOMP and said layer is required to satisfy (the value of the coercive force of the magnetic layer 3 at temp. TL)/(value HL of the coercive force of the magnetic layer 3 at room temp.)>0.5. The purpose is achieved by satisfying the above-mentioned conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気カー効果を利用して読出しすることので
きるキュリー点書込みタイプの光磁気記録媒体と、それ
を用いた重ね書き可能な光磁気記録方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Curie point writing type magneto-optical recording medium that can be read using the magnetic Kerr effect, and an optically overwritable optical recording medium using the same. Related to magnetic recording methods.

〔従来の技術〕[Conventional technology]

消去可能な光デイスクメモリとして光磁気ディスクが知
られている。光磁気ディスクは、従来の磁気ヘッドを使
った磁気記録媒体と比べて高密度記録、非接触での記録
再生などが可能であるという長所がある反面、記録前に
一度記録部分を消去しなければならない(一方向に着磁
しなければならない)という欠点があった。この欠点を
補う為に、記録再生用ヘッドと消去用ヘッドを別々に設
ける方式、あるいは、レーザーの連続ビームを照射しつ
つ、同時に印加する磁場を変調しながら記録する方式な
どが提案されている。
A magneto-optical disk is known as an erasable optical disk memory. Magneto-optical disks have advantages over magnetic recording media using conventional magnetic heads, such as high-density recording and non-contact recording and playback, but on the other hand, the recorded area must be erased before recording. It had the disadvantage that it cannot be magnetized in one direction (it must be magnetized in one direction). In order to compensate for this drawback, proposals have been made such as a method in which a recording/reproducing head and an erasing head are provided separately, or a method in which recording is performed while irradiating a continuous laser beam and simultaneously modulating the applied magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの方法は、装置が大がかりとなり、コス
ト高になる欠点あるいは高速の変調ができないなどの欠
点を有する。
However, these methods have drawbacks such as a large-scale apparatus, high cost, and the inability to perform high-speed modulation.

上述の公知技術の欠点を除去し、従来の装置構成に簡単
な構造の磁界発生手段を付設す、るだけで、磁気記録媒
体と同様な重ね書き(オーバーライド)を可能とした、
光磁気記録方法を本出願人は昭和61年7月8日に特願
昭61.−158787号(該出願は昭和62年2月2
日の国内優先の基礎出願となる)で提案した。
By eliminating the drawbacks of the above-mentioned known techniques and simply adding a magnetic field generating means with a simple structure to the conventional device configuration, it is possible to perform overwriting similar to that of a magnetic recording medium.
The applicant filed a patent application for the magneto-optical recording method on July 8, 1986. -158787 (filed on February 2, 1986)
(This will be a basic application with domestic priority in Japan).

しかし、この方法は全く新しい記録法であるが故に、こ
の方法に関連して、いまだ多くの研究課題が残っていた
。すなわち、この記録に用いるのによりふされしい光磁
気記録媒体の探究等である。
However, since this method is a completely new recording method, there are still many research issues related to this method. In other words, we are searching for a magneto-optical recording medium that is more suitable for use in this recording.

そこで本発明者は更に研究を進めた結果、いくつかの成
果が得られた。
As a result of further research, the present inventors obtained several results.

本発明はこうして完成されたものであり、その目的は重
ね書き可能な記録方法を提供するだけでなく、その重ね
書き可能な記録方法に利用するのによりふされしい光磁
気記録媒体を提供することにある。
The present invention was thus completed, and its purpose is not only to provide an overwritable recording method, but also to provide a magneto-optical recording medium that is more suitable for use in the overwritable recording method. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的達成可能な本発明は、 低いキュリー点(TL )と室温で高い保磁力(HH)
を有する第1磁性層、およびこの磁性層に比べて相対的
に高いキュリー点(TH)と室温で低い保磁力(HL)
を有する第2磁性層から成る二層構造の交換結合してい
る垂直磁化膜を基板上に有して成る光磁気記録媒体であ
って、第2磁性層の飽和磁化をMs2、膜厚をh2、二
つの磁性層間の磁壁エネルギーをσWとすると、 を満たし、 しかも、第2磁性層の補償温度をTHCOMPとすると T L < T HCOMPかつ(温度TLでの第2磁
性層の保磁力の値)/(室温での第2磁性層の保磁力の
値: HL)>0.5 ・・・・(2)の条件を満たし
ている光磁気記録媒体と、これをを使用して、次の二値
の記録を行なうことを特徴とする記録方式である。
The present invention, which can achieve the above objectives, has a low Curie point (TL) and a high coercive force (HH) at room temperature.
and a relatively high Curie point (TH) and low coercive force (HL) at room temperature compared to this magnetic layer.
A magneto-optical recording medium having a two-layer exchange-coupled perpendicular magnetization film on a substrate, the second magnetic layer having a saturation magnetization of Ms2 and a film thickness of h2. , If the domain wall energy between the two magnetic layers is σW, then the following is satisfied.Moreover, if the compensation temperature of the second magnetic layer is THCOMP, then T L < THCOMP and (the value of the coercive force of the second magnetic layer at the temperature TL) /(Value of coercive force of the second magnetic layer at room temperature: HL)>0.5 ... Using a magneto-optical recording medium that satisfies the condition (2), the following two This is a recording method characterized by recording values.

(a)該媒体に対して、記録用ヘッドと異なる場所で、
保磁力HLの第2磁性層を一方向に磁化させるのに充分
で保磁力HHの第1磁性層の磁化の向きを反転させるこ
とのない大きさの磁界Bを加え、 (b)次に、記録ヘッドにより、バイアス磁界を印加す
ると同時に低いキュリー点(TL )付近まで該媒体が
昇温するだけのレーザーパワーを照射することにより、
第2磁性層の磁化の向きを変えないまま第1磁性層の磁
化の向きを第2磁性層に対して安定な向きにそろえる第
1種の予備記録か、バイアス磁界を印加すると同時に高
いキュリー点(T□)付近まで該媒体が昇温するだけの
レーザーパワーな照射することにより、第2磁性層の磁
化の向きを反転させて同時に第1磁性層も第2磁性層に
対して安定な向きに磁化する第2種の予備記録かを、信
号に応じて実施し、 (C)次に、該媒体を運動させて、予備記録されたビッ
トを前記磁界Bを通過させることにより、第1種の予備
記録により形成されたビットについては第1磁性層、第
2磁性層とも磁化の向きをそのまま変化させず、 第2種の予備記録により形成されたビットについては、
第2磁性層の磁化の向きを前記磁界Bと同方向に反転さ
せ、第1磁性層については磁化の向きをそのまま変化さ
せないとする、二値の記録。
(a) With respect to the medium, at a location different from the recording head,
Applying a magnetic field B of a magnitude sufficient to magnetize the second magnetic layer with coercive force HL in one direction but not reversing the direction of magnetization of the first magnetic layer with coercive force HH, (b) Next, By applying a bias magnetic field using the recording head and at the same time irradiating the medium with enough laser power to raise the temperature of the medium to near the low Curie point (TL),
The first type of preliminary recording, in which the direction of magnetization of the first magnetic layer is aligned in a stable direction with respect to the second magnetic layer without changing the direction of magnetization of the second magnetic layer, or the Curie point is high while applying a bias magnetic field. By irradiating the medium with enough laser power to raise the temperature of the medium to around (T (C) Next, by moving the medium and passing the pre-recorded bits through the magnetic field B, For the bits formed by the preliminary recording of , the direction of magnetization of both the first magnetic layer and the second magnetic layer remains unchanged, and for the bits formed by the second type of preliminary recording,
Binary recording in which the direction of magnetization of the second magnetic layer is reversed in the same direction as the magnetic field B, and the direction of magnetization of the first magnetic layer is left unchanged.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a) 、(b)は各々本発明により製造される
光磁気記録媒体の一実施例を示す模式断面図である。第
1図(a)の光磁気記録媒体は、プリグループが設けら
れた透光性の基板1上に、第1の磁性層2と第2の磁性
層3が積層されたものである。第1磁性層2は低いキュ
リー点(TL)と高い保磁力(HH)を有し、第2磁性
層3は、高いキュリー点(TH)と低い保磁力(HL 
)を有する。ここで「高い」、「低い」とは両磁性層を
比較した場合の相対的な関係を表わす(保磁力は室温に
おける比較)。ただし、通常は第1磁性層2のTLは7
0〜180℃、H,は、3〜10KOe、第2磁性層3
のTHは150〜400℃、HLは0.5〜2KOe程
度の範囲内にするとよい。
FIGS. 1(a) and 1(b) are schematic sectional views each showing an embodiment of a magneto-optical recording medium manufactured according to the present invention. The magneto-optical recording medium shown in FIG. 1(a) has a first magnetic layer 2 and a second magnetic layer 3 laminated on a transparent substrate 1 provided with a pre-group. The first magnetic layer 2 has a low Curie point (TL) and a high coercive force (HH), and the second magnetic layer 3 has a high Curie point (TH) and a low coercive force (HL).
). Here, "high" and "low" represent a relative relationship when comparing both magnetic layers (coercive force is compared at room temperature). However, normally the TL of the first magnetic layer 2 is 7.
0 to 180°C, H, 3 to 10 KOe, second magnetic layer 3
TH is preferably in the range of 150 to 400°C, and HL is preferably in the range of about 0.5 to 2 KOe.

各磁性層の材料には、垂直磁気異方性を示し且つ磁気光
学効果を呈するものが利用できるが、Gd(:o、 G
dFe 、 TbFe、 DyFe、 GdTbFe、
 TbDyFe、 TbFeCo、 GdTbC:o、
 GdTbFeCo等の希土類元素と遷移金属元素との
非晶質磁性合金が好ましい。
As the material for each magnetic layer, materials that exhibit perpendicular magnetic anisotropy and magneto-optical effects can be used, but Gd(:o, G
dFe, TbFe, DyFe, GdTbFe,
TbDyFe, TbFeCo, GdTbC:o,
An amorphous magnetic alloy of a rare earth element and a transition metal element such as GdTbFeCo is preferred.

本発明による光磁気記録記録媒体を用いた記録方法にお
いては、第1磁性層2が主に再生に関与する。即ち、第
1磁性層2が呈する磁気光学効果が主に再生に利用され
、第2磁性層3は記録に重要な役割りを果たす。
In the recording method using the magneto-optical recording medium according to the present invention, the first magnetic layer 2 is mainly involved in reproduction. That is, the magneto-optic effect exhibited by the first magnetic layer 2 is mainly used for reproduction, and the second magnetic layer 3 plays an important role in recording.

一方、従来の光磁気記録方法における、交換結合二層膜
では、逆に、低いキュリー点と高い保磁力とを有する磁
性層は主に記録に関与し、高いキュリー点と低い保磁力
とを有する磁性層が主に再生に関与した。
On the other hand, in the exchange-coupled double-layer film in the conventional magneto-optical recording method, conversely, the magnetic layer with a low Curie point and high coercive force is mainly involved in recording; The magnetic layer was mainly involved in reproduction.

かかる従来の交換結合二層膜では、主に再生に関与する
磁性層の飽和磁化Msと、膜厚りと、二層間の磁壁エネ
ルギーσWの間に、次の様な関係があるのが望ましかっ
た。
In such a conventional exchange-coupled two-layer film, it is desirable that the following relationship exists between the saturation magnetization Ms of the magnetic layer mainly involved in reproduction, the film thickness, and the domain wall energy σW between the two layers. Ta.

HH> −> HL Msh しかし、本発明に使用する記録媒体の交換結合二層膜で
は、第2磁性層3の飽和磁化Ms2と膜厚h2と、二磁
性層間の磁壁エネルギーσWの間に、次の関係が必要で
ある。
HH>-> HL Msh However, in the exchange-coupled two-layer film of the recording medium used in the present invention, the following relationship exists between the saturation magnetization Ms2 and film thickness h2 of the second magnetic layer 3, and the domain wall energy σW between the two magnetic layers. relationship is necessary.

これは、記録によって最終的に完成されるビットの磁化
状態(第2図(f)に示す)が安定に存在出来るように
するためである(詳しい理由は後述する)。
This is to ensure that the magnetization state of the bit finally completed by recording (shown in FIG. 2(f)) can stably exist (detailed reasons will be described later).

この条件を満たすために、各磁性層の膜厚、保磁力、飽
和磁化の大きさ、磁壁エネルギーなどを適当に設定すれ
ばよい。
In order to satisfy this condition, the film thickness, coercive force, magnitude of saturation magnetization, domain wall energy, etc. of each magnetic layer may be appropriately set.

上記の要件の他に、本発明の光磁気記録媒体は、前述し
た特別な要件(2)を満たすことによって、重ね書き可
能な記録法にとって、よりふされしいものとなっている
(この理由についても後述する、)。
In addition to the above requirements, the magneto-optical recording medium of the present invention satisfies the above-mentioned special requirement (2), making it more suitable for overwritable recording methods. (described later).

なお、両磁性層2,3は、記録時の実効的バイアス磁界
の大きさ、あるいは二値の記録ビットの安定性などを考
えると、交換結合をしていることが望ましい。
Note that, in consideration of the magnitude of the effective bias magnetic field during recording or the stability of binary recorded bits, it is desirable that both magnetic layers 2 and 3 be exchange-coupled.

本発明の他の態様を示す第1図(b)において、4.5
は両磁性層の耐久性を向上させるためのあるいは光磁気
効果を向上させるための保護膜である。
In FIG. 1(b) showing another aspect of the present invention, 4.5
is a protective film for improving the durability of both magnetic layers or for improving the magneto-optical effect.

6は、貼り合わせ用基板7を貼り合わすための接着層で
ある。貼り合わせ用基板7にも、2から5までの層を積
層し、これを接着すれば表裏で記録・再生が可能となる
6 is an adhesive layer for bonding the bonding substrate 7 together. If layers 2 to 5 are laminated on the bonding substrate 7 and bonded together, recording and reproduction can be performed on the front and back sides.

以下、第2図〜第4図を用いて記録の過程を示すが、記
録前、両磁性層2と3の磁化の安定な向きは平行(同じ
向き)でも反平行(逆方向)でも良い。第2図では磁化
の安定な向きが平行な場合について説明する。
The recording process will be described below with reference to FIGS. 2 to 4. Before recording, the stable magnetization directions of both magnetic layers 2 and 3 may be parallel (same direction) or antiparallel (opposite directions). In FIG. 2, a case will be explained in which the stable directions of magnetization are parallel.

第3図の35は、上述したような構成を有する光磁気デ
ィスクである。例えば、この磁性層のある一部の磁化状
態が初め第2図(a)のようになっているとする。光磁
気ディスク35はスピンドルモータにより回転して、磁
界発生部34を通過する。このとき、磁界発生部34の
磁界の大きさを両磁性層2と3の保磁力の間の値に設定
すると(磁界の向きは本実施例では上向き)、第2図(
b)に示す様に第2磁性層3は一様な方向に磁化され、
一方、第1磁性層2の磁化は初めのままである。
35 in FIG. 3 is a magneto-optical disk having the configuration described above. For example, suppose that the magnetization state of a certain part of this magnetic layer is initially as shown in FIG. 2(a). The magneto-optical disk 35 is rotated by a spindle motor and passes through the magnetic field generator 34 . At this time, if the magnitude of the magnetic field of the magnetic field generator 34 is set to a value between the coercive forces of both magnetic layers 2 and 3 (the direction of the magnetic field is upward in this embodiment), as shown in FIG.
As shown in b), the second magnetic layer 3 is magnetized in a uniform direction,
On the other hand, the magnetization of the first magnetic layer 2 remains unchanged.

次に光磁気ディスク35が回転して記録・再生へラド3
1を通過するときに、記録信号発生器32からの信号に
従って、2種類(第1種と第2種)のレーザーパワー値
を持つレーザービームをディスク面に照射する。第1種
のレーザーパワーは該ディスクを第1磁性層2のキュリ
ー点付近まで昇温するだけのパワーであり、第2種のレ
ーザーパワーは該ディスクを第2磁性層3のキュリー点
付近まで昇温可能なパワーである。即ち、両磁性層2゜
3の保磁力と温度との関係の概略を示した第4図におい
て、第1種のレーザーパワーはTL付近、第2種のレー
ザーパワーはTH付近までディスクの温度を上昇できる
Next, the magneto-optical disk 35 rotates to perform recording/reproduction.
1, laser beams having two types of laser power values (first type and second type) are irradiated onto the disk surface according to a signal from the recording signal generator 32. The first type of laser power is enough to raise the temperature of the disk to around the Curie point of the first magnetic layer 2, and the second type of laser power is enough to raise the temperature of the disk to around the Curie point of the second magnetic layer 3. It is a power that can be heated. That is, in FIG. 4, which shows an outline of the relationship between the coercive force and temperature of both magnetic layers 2.3, the first type of laser power increases the temperature of the disk to around TL, and the second type of laser power increases the temperature of the disk to around TH. Can rise.

第1種のレーザーパワーにより第1磁性層2は、キュリ
ー点付近まで昇温するが第2磁性層3はこの温度でビッ
トが安定に存在する保磁力を有しているので記録時のバ
イアス磁界を適正に設定しておくことにより、第2図(
b)のいづれからも第2図(C)のようなビットが形成
される(第1種の予備記録)。
The temperature of the first magnetic layer 2 is raised to near the Curie point by the first type of laser power, but the second magnetic layer 3 has a coercive force that allows bits to stably exist at this temperature, so the bias magnetic field during recording is By setting properly, Figure 2 (
A bit as shown in FIG. 2(C) is formed from any of the bits (b) (first type preliminary recording).

ここでバイアス磁界を適正に設定するとは、次のような
意味である。即ち、第1種の予備記録では、第2磁性層
3の磁化の向きに対して安定な向きに(ここでは同じ方
向に)第1磁性層2の磁化が配列する力(交換力)を受
けるので1本来はバイアス磁界は必要でない。しかし、
バイアス磁界は後述する第2種のレーザーパワーを用い
た予備記録では第2磁性層3の磁化反転を補助する向き
(すなわち、第1種の予備記録を妨げる向き)に設定さ
れる。そして、このバイアス磁界は、第1種、第2種ど
ちらのレーザーパワーの予備記録でも、大きさ、方向を
同じ状態に設定しておくことが便宜上好ましい。
Here, setting the bias magnetic field appropriately means the following. That is, in the first type of preliminary recording, the magnetization of the first magnetic layer 2 receives a force (exchange force) that aligns it in a stable direction (here, in the same direction) as the direction of magnetization of the second magnetic layer 3. Therefore, a bias magnetic field is not originally required. but,
The bias magnetic field is set in a direction that assists magnetization reversal of the second magnetic layer 3 in preliminary recording using the second type of laser power (described later) (that is, in a direction that hinders the first type of preliminary recording). For convenience, it is preferable that the bias magnetic field is set to have the same magnitude and direction in preliminary recording with either the first type or the second type of laser power.

かかる観点からバイアス磁界の設定は次記に示す原理に
よる第2種のレーザーパワーの予備記録に必要最小限の
大きさに設定しておくことが好ましく、これを考慮した
設定が前でいう適正な設定である。
From this point of view, it is preferable to set the bias magnetic field to the minimum size necessary for preliminary recording of the second type of laser power based on the principle shown below, and settings that take this into account are the appropriate setting as mentioned above. It is a setting.

このビット(C)を形成する第1種の予備記録について
、磁性層の最適化には次のことが必要になる。
Regarding the first type of preliminary recording that forms this bit (C), the following is required to optimize the magnetic layer.

第1磁性層の飽和磁化の大きさをM S、、膜厚をhl
とすると(前述したように、第2磁性層3の飽和磁化は
Ms2、膜厚はh2、二磁性層間の磁壁エネルギーはσ
W)、 第1、第2磁性層に働く交換力の大きさく順にHHef
f、  HLeff)はそれぞれHHeff−σw/2
Ms、h。
The magnitude of saturation magnetization of the first magnetic layer is M S, and the film thickness is hl.
(As mentioned above, the saturation magnetization of the second magnetic layer 3 is Ms2, the film thickness is h2, and the domain wall energy between the two magnetic layers is σ
W), HHef in descending order of the exchange force acting on the first and second magnetic layers.
f, HLeff) are respectively HHeff-σw/2
Ms, h.

HLeff=σw/2M82h2   と表わせる。It can be expressed as HLeff=σw/2M82h2.

第2図において、第1種の予備記録の前の状態(b)の
うち、第1、第2磁性層の磁化が平行の状態では、それ
ぞれの磁性層の状態が交換力によって安定化され、第1
磁性層の磁化を反転さるためには)IH’+H□eff
’  (HH′ とHHeff’は、ある温度tにおけ
る第1磁性層の保磁力と第1磁性層に働く交換力を示す
。両者ともに温度tの関数になる。)の磁界が必要であ
り、第2磁性層の磁化を反転させるためにはHL′十H
L、、ff′(HL ’ とHLeff’ は、ある温
度tにおける第2磁性層の保磁力と第2磁性層に働く交
換力を示す。両者ともに温度tの関数になる。)の磁界
が必要である。このため多少のバイアス磁界が、どちら
の方向にかかっていても安定に予備記録によるビット(
C)が形成される。ところが、第2図における状態(b
)のうち、第1、第2磁性層の磁化が反平行の状態では
それぞれの磁性層は交換力によりその磁化を反転させる
方向に向けられる。これに起因して次の(イ)、(ロ)
のようなことになる。
In FIG. 2, in the state (b) before the first type of preliminary recording, when the magnetizations of the first and second magnetic layers are parallel, the state of each magnetic layer is stabilized by the exchange force, 1st
To reverse the magnetization of the magnetic layer) IH'+H□eff
(HH' and HHeff' represent the coercive force of the first magnetic layer and the exchange force acting on the first magnetic layer at a certain temperature t. Both are functions of the temperature t. In order to reverse the magnetization of the two magnetic layers, HL′ 1H
A magnetic field of L,,ff'(HL' and HLeff' indicate the coercive force of the second magnetic layer and the exchange force acting on the second magnetic layer at a certain temperature t. Both are functions of the temperature t) is required. It is. Therefore, even if a slight bias magnetic field is applied in either direction, the bit (
C) is formed. However, the state (b
), when the magnetizations of the first and second magnetic layers are antiparallel, each magnetic layer is oriented in a direction in which its magnetization is reversed by the exchange force. Due to this, the following (a) and (b)
It will be something like this.

(イ)第1種の予備記録時に磁性層の温度がTし付近ま
で上昇したとき、もしも )(H’  Hll、、rt’ <0 ゛となれば、第1磁性層の磁化が反転し、第2磁性層の
磁化に対して安定な向きに配列し、第1種の予備記録が
完了する。ところが、 (ロ)もし第1磁性層の磁化が反転する前にHL ’ 
 H+−eff’ <0 となれば、第2磁性層の磁化が第1磁性層の磁化に対し
て安定な向きに配列し、第1磁性層の磁化を反転させる
必要のある第1種の予備記録は不能になってしまう。
(a) When the temperature of the magnetic layer rises to around T during the first type of preliminary recording, if) (H' Hll,, rt'< 0 ゛, the magnetization of the first magnetic layer is reversed, The first magnetic layer is aligned in a stable direction with respect to the magnetization of the second magnetic layer, and the first type of preliminary recording is completed.However, (b) if the HL'
If H+-eff'< 0, the magnetization of the second magnetic layer is aligned in a stable direction with respect to the magnetization of the first magnetic layer, and the first type of reserve is required to reverse the magnetization of the first magnetic layer. Recording becomes impossible.

よフて、できるだけHL′の値を大きくする、このため
にはHLを大きな値にすることが好ましいが、第2磁性
層は磁界発生部34で一様な方向に磁化する必要がある
ので、せいぜい2 KOe程度までにしかできない。そ
こで、TL付近の温度での第2磁性層の保磁力ができる
限り大きな値にするためには第2磁性層の補償温度T1
4COMPをTL付近の温度に設定することが重要にな
る。
Therefore, it is preferable to increase the value of HL' as much as possible. For this purpose, it is preferable to make HL a large value, but since the second magnetic layer needs to be magnetized in a uniform direction in the magnetic field generating section 34, It can only do up to 2 KOe at most. Therefore, in order to make the coercive force of the second magnetic layer as large as possible at a temperature near TL, the compensation temperature T1 of the second magnetic layer is
It is important to set 4COMP to a temperature near TL.

こうすれば、第2磁性層の飽和磁化Msが低下しても、
補償温度THCOMPでは第2磁性層の保磁力HL′が
無限大となるので、補償温度THcoMPに近ずくよう
に温度が上昇していく過程では、第2磁性層の保磁力H
L’の低下を妨げることになる。
In this way, even if the saturation magnetization Ms of the second magnetic layer decreases,
At the compensation temperature THCOMP, the coercive force HL' of the second magnetic layer becomes infinite, so as the temperature increases to approach the compensation temperature THcoMP, the coercive force H of the second magnetic layer increases.
This will prevent a decrease in L'.

また、THCOMPとTHが近い温度ではT)ICOM
PからT、までの温度域で、第2磁性層の磁化Msの反
転と保磁力のHL′の急激な減少があるため、第1種の
予備記録を安定に行なうためには、T L< T HC
OMPにしておくことが好ましい。
In addition, at temperatures where THCOMP and TH are close, T)ICOM
In the temperature range from P to T, there is a reversal of the magnetization Ms of the second magnetic layer and a sudden decrease in the coercive force HL', so in order to stably perform the first type preliminary recording, T L < THC
It is preferable to set it to OMP.

実施例において立証するように、実際には第2磁性層の
補償組成THCOMPとすると、T L < T HC
OMP 、かつ(温度TLでの第2磁性層の保磁力の値
)/(室温での第2磁性層の保磁力の値(=HH)) 
>0.5 となるような第2磁性層を選択することにより安定な第
1種の予備記録が行なわれることが確認された。
As will be demonstrated in the examples, in fact, if the compensation composition of the second magnetic layer is THCOMP, then T L < T HC
OMP , and (value of coercive force of the second magnetic layer at temperature TL)/(value of coercive force of the second magnetic layer at room temperature (=HH))
It was confirmed that stable first type preliminary recording can be performed by selecting the second magnetic layer such that the magnetic flux is greater than 0.5.

なお、要件(2)を満たす材料としては、前述した材料
中で、TbFeCo系合金で補償組成よりもTb元素に
富んだ系が適しており、さらにこれらの三元系に他の希
土類元素や遷移金属元素等の不純物元素を適量加えた系
などが利用可能である。
Among the materials mentioned above, a TbFeCo-based alloy rich in Tb element than the compensation composition is suitable as a material that satisfies requirement (2). A system in which an appropriate amount of an impurity element such as a metal element is added can be used.

次に第2種の予備記録について説明する。Next, the second type of preliminary recording will be explained.

第2種のレーザーパワーにより、第2磁性層3のキュリ
ー点近くまで昇温させる(第2種の予備記録)と、上述
のように設定されたバイアス磁界により第2磁性層3の
磁化の向きが反転する。続いて第1磁性層2の磁化も第
2磁性層3に対して安定な向きに(ここでは同じ方向に
)配列する。
When the temperature of the second magnetic layer 3 is raised to near the Curie point using the second type of laser power (second type of preliminary recording), the direction of magnetization of the second magnetic layer 3 is changed by the bias magnetic field set as described above. is reversed. Subsequently, the magnetization of the first magnetic layer 2 is also aligned in a stable direction (here, in the same direction) with respect to the second magnetic layer 3.

即ち、第2図(b)のいづれからも第2図(d)のよう
なビットが形成される。
That is, a bit as shown in FIG. 2(d) is formed from any of the bits shown in FIG. 2(b).

このように、バイアス磁界と、信号に応じて変わる第1
種及び第2種のレーザーパワーとによって、光磁気ディ
スクの各箇所は第2図(C)か(d)の状態に予備記録
されることになる。
In this way, the bias magnetic field and the first
Depending on the laser power of the seed and the second type, each location on the magneto-optical disk is preliminarily recorded in the state shown in FIG. 2(C) or FIG. 2(d).

次に光磁気ディスク35を回転させ、予備記録のビット
(C)、(d)が磁界発生部34を再び通過すると、磁
界発生部34の大きさはは前述したように磁性層2と3
の磁化反転磁界間に設定されているので、記録ビット(
c)は、変化が起こらずに(e)の状態である(最終的
な記録状態)。一方、記録ビット(d)は第2磁性層3
が磁化反転を起こして(f)の状態になる(もう一つの
最終的な記録状態)。
Next, when the magneto-optical disk 35 is rotated and the pre-recorded bits (C) and (d) pass through the magnetic field generating section 34 again, the size of the magnetic field generating section 34 changes between the magnetic layers 2 and 3 as described above.
The recording bit (
c) is the state of (e) without any change (final recording state). On the other hand, the recording bit (d) is recorded in the second magnetic layer 3.
causes magnetization reversal and becomes state (f) (another final recording state).

(f)の記録ビットの状態が安定に存在する為には、前
述したように次の様な関係があれば良い。
In order for the state of the recording bit (f) to exist stably, it is sufficient that the following relationship exists as described above.

ここで0w 72M5zh2は第2磁性層に働く交換力
の強さを示す。つまり、0w 72M52h2の大きさ
の磁界で第2磁性層3の磁化の向きを、第1@性層2の
磁化の向きに対して安定な方向へ(この場合は同じ方向
)向けようとする。そこで第2磁性層3がこの磁界に抗
して磁化が反転しないためには第2磁性層3の保磁力を
Hl、としてH,、>σW/2M52h2であればよい
Here, 0w72M5zh2 indicates the strength of the exchange force acting on the second magnetic layer. In other words, a magnetic field with a magnitude of 0w72M52h2 attempts to direct the magnetization direction of the second magnetic layer 3 in a direction that is stable with respect to the magnetization direction of the first magnetic layer 2 (in this case, the same direction). Therefore, in order to prevent the magnetization of the second magnetic layer 3 from being reversed against this magnetic field, it is sufficient that the coercive force of the second magnetic layer 3 is H, >σW/2M52h2, where Hl is the coercive force.

記録ビットの状態(e)と(f)は、記録時のレーザー
のパワーで制御され、記録前の状態には依存しないので
、重ね書き(オーバーライド)が可能である。記録ビッ
ト(e)と(f)は、再生用のレーザービームを照射し
、再生光を記録信号再生器33で処理することにより、
再生できる。
The states (e) and (f) of the recorded bits are controlled by the power of the laser during recording and do not depend on the state before recording, so overwriting is possible. Recording bits (e) and (f) are generated by irradiating a laser beam for reproduction and processing the reproduction light by a recording signal regenerator 33.
Can be played.

第2図の説明では第1磁性層2と第2Wi性層3の磁化
の向きが同じときに安定な例を示したが、磁化の向きが
反平行のときに安定な磁性層についても同様に考えられ
る。第5図に、この場合の記録過程の磁化状態を第2図
に対応させて示しておく。
In the explanation of FIG. 2, an example was shown in which the first magnetic layer 2 and the second Wi layer 3 are stable when their magnetization directions are the same, but the same applies to magnetic layers that are stable when their magnetization directions are antiparallel. Conceivable. FIG. 5 shows the magnetization state during the recording process in this case, corresponding to FIG. 2.

〔実施例〕〔Example〕

実施例1 3元のターゲット源を備えたスパッタ装置内に、プリグ
ループ、プリフォーマット信号の刻まれたポリカーボネ
ート族のディスク状基板を、ターゲットとの間の距11
tlocmの間隔にセットし、回転させた。
Example 1 A polycarbonate disk-shaped substrate with pregroup and preformat signals engraved thereon was placed in a sputtering apparatus equipped with three target sources at a distance of 11 mm from the target.
It was set at intervals of tlocm and rotated.

スパッタ装置内をI X 1O−6Torr以下に排気
後アルゴン中で、第1のターゲットより、スパッタ速度
100人/min、スパッタ圧5X 1o−3Torr
でZnSを保護層として1000人の厚さに設けた。次
にアルゴン中で、第2のターゲットよりスパッタ速度1
00人/min、スパッタ圧5X 1O−3Torrで
TbFe合金をスパッタし、膜厚300人、TL=約1
30℃、H,=約10KOeのTb1aFea2の第1
磁性層を形成した。
After evacuating the inside of the sputtering apparatus to below IX 1O-6 Torr, the sputtering was performed from the first target in argon at a sputtering speed of 100 people/min and a sputtering pressure of 5X 1O-3 Torr.
A protective layer of ZnS was formed to a thickness of 1000 mm. Next, in argon, a sputtering speed of 1 was applied from the second target.
TbFe alloy was sputtered at a sputtering rate of 00 people/min, a sputtering pressure of 5X 1O-3 Torr, and a film thickness of 300 people/min, TL=approx.
30°C, H, = about 10 KOe Tb1aFea2 first
A magnetic layer was formed.

次にアルゴン中でスパッタ圧5X 1O−3Torrで
かTbFeCo合金をスパッタし、膜厚500人、TH
=Hl90℃、T HCOMP = 210℃、Ht=
約1にOeのTb27F e64cro9の第2磁性層
を形成した。
Next, TbFeCo alloy was sputtered at a sputtering pressure of 5X 1O-3 Torr in argon, and the film thickness was 500 mm.
= Hl90℃, T HCOMP = 210℃, Ht=
A second magnetic layer of Tb27F e64cro9 with an Oe of about 1 Oe was formed.

次にアルゴン中で第1のターゲットよりスパッタ速度1
00人/min、スパッタ圧5 X I 0−3Tor
rで、ZnSを保護層として3000人の厚さに設けた
Next, in argon, the first target is sputtered at a sputtering rate of 1
00 people/min, sputtering pressure 5 X I 0-3 Tor
ZnS was applied as a protective layer to a thickness of 3000 nm.

次に膜形成を終えた上記の基板を、ホットメルト接着剤
を用いて、ポリカーボネートの貼り合わせ用基板と貼り
合わせ光磁気ディスクを作成した。
Next, the above substrate on which the film had been formed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to create a magneto-optical disk.

ここで、実施例2に示す方法により、第1磁性層のキュ
リー温度130℃近くでの、第2磁性層の保磁力を測定
したところ約7000eであった。
Here, when the coercive force of the second magnetic layer was measured by the method shown in Example 2 at a Curie temperature of 130° C. of the first magnetic layer, it was approximately 7000 e.

この光磁気ディスクを記録再生装置にセットし、2.5
KOeの磁界発生部を、線速度的8 m/secで通過
させつつ、約1μに集光した830mmの波長のレーザ
ービームを50%のデユーティで2MHzで変調させな
がら、4mWと8mWの2値のレーザーパワーで記録を
行な゛った。バイアス磁界は第2磁性層の磁化を反転さ
せる方向に1000eであった。その後1 、5mWの
レーザービームを照射して再生を行なったところ、2値
の信号の再生ができた。
Set this magneto-optical disk in the recording/reproducing device, and
While passing through the magnetic field generation part of KOe at a linear velocity of 8 m/sec, a laser beam with a wavelength of 830 mm focused to approximately 1 μ is modulated at 2 MHz with a duty of 50%, and a binary signal of 4 mW and 8 mW is generated. Recording was done using laser power. The bias magnetic field was 1000e in the direction to reverse the magnetization of the second magnetic layer. Thereafter, when regeneration was performed by irradiating a laser beam of 1.5 mW, a binary signal could be regenerated.

次に、上記と同様の実験を、全面記録された後の光磁気
ディスクについて行なった。この結果前に記録された信
号成分は検出されず、良好なオーパーライトが可能であ
ることが確認された。
Next, an experiment similar to the above was conducted on the magneto-optical disk after the entire surface had been recorded. As a result, previously recorded signal components were not detected, confirming that good overwriting was possible.

実施例2と比較例1 実施例1と同様な方法でガラス基板上にZnSを100
0A %Tb、8Fe82の第1磁性層を300人、T
b27’es4Cogの第2磁性層を500人、ZnS
を100OA 、この順に積層した光磁気ディスクのサ
ンプル2−1(実施例2)と、これと同じ構成であるが
、第2磁性層の材料だけをTb1gFea+ll:O+
に代えたサンプル2−2(比較例1)とを作製した。
Example 2 and Comparative Example 1 100% ZnS was deposited on a glass substrate in the same manner as in Example 1.
0A%Tb, 8Fe82 first magnetic layer by 300 people, T
500 people, ZnS for the second magnetic layer of b27'es4Cog
Sample 2-1 (Example 2) of a magneto-optical disk laminated in this order has the same structure, but only the material of the second magnetic layer is Tb1gFea+ll:O+
A sample 2-2 (comparative example 1) was prepared in which sample 2-2 was replaced with sample 2-2 (comparative example 1).

次に、サンプル2−1.2−2を徐々に加温しながら磁
気カー効果により磁化の反転する磁界を測定(B−Hル
ープの測定)することにより各磁性層Tb+aFea2
((A )とする) 、Tb27Fes4CO9((B
)とする) 、 Tb+5Fea+GO+ ((C)と
する)の保磁力の温度変化(第6図)と保磁カー交換力
の温度変化(第7図)を得た。
Next, while gradually heating sample 2-1.2-2, each magnetic layer Tb+aFe2
((A)), Tb27Fes4CO9((B
) and Tb+5Fea+GO+ (referred to as (C)), the temperature change in the coercive force (Fig. 6) and the temperature change in the coercive Kerr exchange force (Fig. 7) were obtained.

第6図で(A)の室温での保磁力HHは約10KOe 
、キュリー点TLは約130℃であった。
In Figure 6, the coercive force HH of (A) at room temperature is approximately 10 KOe.
, Curie point TL was about 130°C.

(B)と(C)の室温での保磁力Hしは共に約IKOe
 、キュリー点THは約190℃であった。
Both (B) and (C) have a coercive force H of about IKOe at room temperature.
, the Curie point TH was about 190°C.

ただし、補償温度は(B)では約210℃であり、(C
)では約−130℃であった。また、(B)と(C)の
TL付近での保磁力の値は、室温でのその値に対してそ
れぞれ約70%と約30%であった。
However, the compensation temperature is approximately 210°C in (B), and (C
), the temperature was approximately -130°C. Moreover, the coercive force values near the TL in (B) and (C) were about 70% and about 30%, respectively, of their values at room temperature.

第7図に示される保磁カー交換力の温度変化によるグラ
フで点線はHL ’  HLevf’の値(第2磁性層
(B)か(C)の値)を表わし、実線はHo ’  H
Heff’の値(第1磁性層(A)の示す値)を表わす
In the graph of the coercive Kerr exchange force as a function of temperature change shown in FIG.
It represents the value of Heff' (the value shown by the first magnetic layer (A)).

A/Bはサンプル2−1に関し、A/Cはサンプル2−
2に関する。
A/B relates to sample 2-1 and A/C relates to sample 2-1.
Regarding 2.

なお、測定可能な保磁カー交換力の値はHH’  HH
eff’ とHL ’−HLerr’の絶対値のうち小
さい方の値だけである。(大きい方の値は印加磁界を大
きくしていくと反転磁界より小さな値で、小さな値をも
つ磁性層の磁化が反転してしまうので、測定できないた
めである) 第7図の示す内容について次に説明する。
The measurable value of coercive Kerr exchange force is HH' HH
It is only the smaller of the absolute values of eff' and HL'-HLerr'. (The larger value is smaller than the reversal magnetic field as the applied magnetic field is increased, and the magnetization of the magnetic layer with a small value is reversed, so it cannot be measured.) Regarding the contents shown in Figure 7: Explain.

測定サンプルの温度を上げて反転磁界の大きさを調べる
と、初めは第2磁性層のHL’−HLeff’の大きさ
が正で200〜3QOOeの値を示すが、TLより20
〜50℃低い温度で第1磁性層のHH’−)(He、、
’の値が負の値をとり、自発的に第1磁性層の磁化に対
して安定な方向に配列するようになる。ざらにTLより
も高温になると第1磁性層の磁化は消失し交換力は無く
なるので、測定されるのは第2磁性層の保磁力の値だけ
になる。
When the temperature of the measurement sample is raised and the magnitude of the reversal magnetic field is investigated, the magnitude of HL'-HLeff' of the second magnetic layer is initially positive and shows a value of 200 to 3QOOe, but
HH'-)(He,...) of the first magnetic layer at ~50℃ lower temperature.
' takes a negative value, and the magnetic layer spontaneously becomes aligned in a direction stable with respect to the magnetization of the first magnetic layer. Roughly speaking, when the temperature is higher than TL, the magnetization of the first magnetic layer disappears and there is no exchange force, so only the coercive force value of the second magnetic layer is measured.

ここでサンプル2−1と2−2の差に着目すると、サン
プル2−1ではTLより約50℃低い温度から第1種の
予備記録が始まり、強い交換力により第1磁性層の磁化
の反転が起こるのに比べて、サンプル2−2ではTLよ
り約20℃低い温度で弱い交換力によって第1種の予備
記録が行なわれる。
Focusing on the difference between samples 2-1 and 2-2, in sample 2-1, the first type of preliminary recording begins at a temperature approximately 50°C lower than the TL, and the magnetization of the first magnetic layer is reversed due to the strong exchange force. In contrast, in sample 2-2, the first type of preliminary recording is performed with a weak exchange force at a temperature about 20° C. lower than TL.

この違いは、第2磁性層の保磁力の温度変化、つまり補
償温度の違いによるものでサンプルの温度上昇によって
第1磁性層の保磁カー交換力の値は大きな正の値から負
の値へ変化していくので、このとき、第1種の予備記録
の行なわれる温度域で、第2磁性層の保磁カー交換力の
値が正で且つ比較的大きな値であれば、第1種の予備記
録時に、より低い温度から第1磁性層に、より強い交換
力(保磁カー交換力の値が負で絶対値が大きな)が働い
て第1磁性層の磁化を第2磁性層の磁化に対して安定な
方向へ配列させることが可能になることを示している。
This difference is due to a temperature change in the coercive force of the second magnetic layer, that is, a difference in compensation temperature.As the temperature of the sample increases, the value of the coercive Kerr exchange force of the first magnetic layer changes from a large positive value to a negative value. At this time, if the value of the coercive Kerr exchange force of the second magnetic layer is positive and relatively large in the temperature range where the first type preliminary recording is performed, the first type During preliminary recording, a stronger exchange force (the value of the coercive Kerr exchange force is negative and the absolute value is large) acts on the first magnetic layer from a lower temperature, changing the magnetization of the first magnetic layer to the magnetization of the second magnetic layer. This shows that it is possible to arrange them in a stable direction relative to

つまり、第1種の予備記録の安定性、感度を決める要素
として、第2磁性層の保磁力の温度変化の様子、そして
第2磁性層の補償温度と第1磁性層のキュリー温度との
大小関係、とが考えられることを示す。
In other words, the factors that determine the stability and sensitivity of the first type of preliminary recording are how the coercive force of the second magnetic layer changes with temperature, and the magnitude of the compensation temperature of the second magnetic layer and the Curie temperature of the first magnetic layer. It shows that a relationship is possible.

実施例3と比較例 実施例1と同様な方法で第2磁性層の材料だけを代えた
他は構成、膜厚なと同条件で光磁気ディスクのサンプル
(サンプル1.2−4.2−5゜2−6は実施例、2−
1.2−2.2−3は比較例)を作製した。実施例1と
同じ条件で記録再生した。結果を次の表1に示す、。
Example 3 and Comparative Examples Magneto-optical disk samples (Samples 1.2-4.2- 5゜2-6 is an example, 2-
1.2-2.2-3 was a comparative example). Recording and reproduction were performed under the same conditions as in Example 1. The results are shown in Table 1 below.

ただし、第2磁性層の保磁力HLはどのサンプルもほぼ
同じI KOeである。表1において、rTLでの保磁
力の、室温での値との比」の項は、第1磁性層の温度T
L (この実施例では約130℃)での保磁力の値を、
その室温での保磁力の値で割った値を示す。
However, the coercive force HL of the second magnetic layer is approximately the same IKOe in all samples. In Table 1, the term "ratio of coercive force at rTL to the value at room temperature" refers to the temperature T of the first magnetic layer.
The value of coercive force at L (approximately 130°C in this example) is
It shows the value divided by the coercive force value at room temperature.

また、第1種の記録しきい値は、記録が可能になるレー
ザーパワー値を示す。
Further, the first type of recording threshold value indicates a laser power value at which recording is possible.

第1種、第2種の記録の評価はC/N値40dB程度の
良好な再生信号を得られたものをO1記録信号を確認で
きるものを△、記録されていないものを×で示した。
For the evaluation of the first and second types of recording, those in which a good reproduced signal with a C/N value of about 40 dB was obtained were indicated by △ if the O1 recorded signal could be confirmed, and those in which no recording was observed were indicated by ×.

表1の結果より、第1種の記録が良好に行なえたのは、
T、での保磁力の室温の値との比が0.5以上の値のサ
ンプルで(実施例1、実施例2−4〜2−6、比較例2
−2〜2−3)これらのサンプルは、第2磁性層の補償
温度が、第1磁性層のキュリー温度TLより高いものか
、あるいは、第2磁性層のキュリー温度TI(が、他の
サンプルに比して高い(比較例2−2.2−3)もので
ある。
From the results in Table 1, it is clear that type 1 recording was performed well because:
For samples with a ratio of coercive force at T, to the room temperature value of 0.5 or more (Example 1, Examples 2-4 to 2-6, Comparative Example 2)
-2 to 2-3) In these samples, the compensation temperature of the second magnetic layer is higher than the Curie temperature TL of the first magnetic layer, or the Curie temperature TI of the second magnetic layer is higher than that of other samples. (Comparative Example 2-2.2-3).

同時に第2種の記録が良好に行なえたのは、第2磁性層
のキュリー温度THが、 200℃より低いものであっ
た。(実施例1、実施例2−4.2−5.2−6)これ
らのことより、第1種、第2種の記録を感度良く、良好
に行なうには、第2磁性層の補償温度T。co、、、p
を、第1磁性層のキュリー温度TLより高く設定するこ
とが有効であることが分かる。
At the same time, the second type of recording was successfully performed when the Curie temperature TH of the second magnetic layer was lower than 200°C. (Example 1, Example 2-4.2-5.2-6) From the above, in order to perform type 1 and type 2 recording with good sensitivity, it is necessary to adjust the compensation temperature of the second magnetic layer. T. co,,,p
It can be seen that it is effective to set the Curie temperature TL higher than the Curie temperature TL of the first magnetic layer.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、所定の要件を満たす二層構
造の垂直磁化膜を有する光磁気媒体を用いて、記録時に
、記録ヘッドと別位置に磁界発生部を設け、2値レーザ
ーパワーで記録することにより、良好な重ね書き(オー
バーライド)特性が得られた。
As explained in detail above, a magneto-optical medium having a two-layer perpendicular magnetization film that satisfies predetermined requirements is used, and during recording, a magnetic field generating section is provided at a separate position from the recording head, and recording is performed using a binary laser power. By doing so, good override characteristics were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は各々本発明で使用する光磁
気媒体の一例構成を示す図、第2図は、本発明の記録法
を実施中の、磁性層2,3の磁化の向きを示す図、第3
図は、記録・再生装置の概念図、第4図は内磁性層2と
3の保磁力と温度との関係を示す概略図である。第5図
は本発明の他の実施例における磁性層の磁化状態を示す
図である。第6.7図はそれぞれ実施例2と比較例1と
で得られた光磁気ディスクの特性を示す図である。 1ニブリグルーブ付の透光性基板、 2.3:磁性層 4.5:保護層、 6:接着層、 7:貼り合わせ用基板、 31:記録・再生用ヘッド、 32:記録信号発生器、 33:記録信号再生器 34:磁界発生部 35:光磁気ディスク、
FIGS. 1(a) and 1(b) each show an example of the structure of the magneto-optical medium used in the present invention, and FIG. 2 shows the magnetization of the magnetic layers 2 and 3 during the recording method of the present invention. Diagram showing orientation, 3rd
The figure is a conceptual diagram of the recording/reproducing apparatus, and FIG. 4 is a schematic diagram showing the relationship between the coercive force of the inner magnetic layers 2 and 3 and temperature. FIG. 5 is a diagram showing the magnetization state of the magnetic layer in another embodiment of the present invention. FIG. 6.7 is a diagram showing the characteristics of the magneto-optical disks obtained in Example 2 and Comparative Example 1, respectively. 1 Transparent substrate with nibli groove, 2.3: Magnetic layer 4.5: Protective layer, 6: Adhesive layer, 7: Bonding substrate, 31: Recording/reproducing head, 32: Recording signal generator, 33 : Recorded signal regenerator 34 : Magnetic field generator 35 : Magneto-optical disk,

Claims (1)

【特許請求の範囲】 1)低いキュリー点(T_L)と室温で高い保磁力(H
_H)を有する第1磁性層、およびこの磁性層に比べて
相対的に高いキュリー点(T_H)と室温で低い保磁力
(H_L)を有する第2磁性層から成る二層構造の交換
結合している垂直磁化膜を基板上に有して成る光磁気記
録媒体であって、第2磁性層の飽和磁化をMs_2、膜
厚をh_2、二つの磁性層間の磁壁エネルギーをσwと
すると、 H_H>H_L>σw/(2Ms_2h_2)・・・・
(1)を満たし、 しかも、第2磁性層の補償温度をT_H_C_O_M_
Pとすると T_L<T_H_C_O_M_P、かつ(温度T_Lで
の第2磁性層の保磁力の値)/(室温での第2磁性層の
保磁力の値:H_L)>0.5・・・・(2)の条件を
満たしていることを特徴とする光磁気記録媒体 2)低いキュリー点(T_L)と室温で高い保磁力(H
_H)を有する第1磁性層、およびこの磁性層に比べて
相対的に高いキュリー点(T_H)と室温で低い保磁力
(H_L)を有する第2磁性層から成る二層構造の交換
結合している垂直磁化膜を基板上に有して成る光磁気記
録媒体であって、第2磁性層の飽和磁化をMs_2、膜
厚をh_2、二つの磁性層間の磁壁エネルギーをσwと
すると、 H_H>H_L>σw/(2Ms_2h_2)・・・・
(1)を満たし、 しかも、第2磁性層の補償温度をT_H_C_O_M_
Pとすると T_L<T_H_C_O_M_Pかつ(温度T_Lでの
第2磁性層の保磁力の値)/(室温での第2磁性層の保
磁力の値:H_L)>0.5・・・・(2)の条件を満
たしている光磁気記録媒体を使用して、次の二値の記録
を行なうことを特徴とする記録方式。 (a)該媒体に対して、記録用ヘッドと異なる場所で、
保磁力H_Lの第2磁性層を一方向に磁化させるのに充
分で保磁力H_Hの第1磁性層の磁化の向きを反転させ
ることのない大きさの磁界Bを加え、 (b)次に、記録ヘッドにより、バイアス磁界を印加す
ると同時に低いキュリー点(T_L)付近まで該媒体が
昇温するだけのレーザーパワーを照射することにより、
第2磁性層の磁化の向きを変えないまま第1磁性層の磁
化の向きを第2磁性層に対して安定な向きにそろえる第
1種の予備記録か、バイアス磁界を印加すると同時に高
いキュリー点(T_H)付近まで該媒体が昇温するだけ
のレーザーパワーを照射することにより、第2磁性層の
磁化の向きを反転させて同時に第1磁性層も第2磁性層
に対して安定な向きに磁化する第2種の予備記録かを、
信号に応じて実施し、 (c)次に、該媒体を運動させて、予備記録されたビッ
トを前記磁界Bを通過させることにより、第1種の予備
記録により形成されたビットについては第1磁性層、第
2磁性層とも磁化の向きをそのまま変化させず、 第2種の予備記録により形成されたビットについては、
第2磁性層の磁化の向きを前記磁界Bと同方向に反転さ
せ、第1磁性層については磁化の向きをそのまま変化さ
せないとする、二値の記録。
[Claims] 1) Low Curie point (T_L) and high coercive force (H
The exchange-coupled two-layer structure consists of a first magnetic layer having a magnetic field (_H) and a second magnetic layer having a relatively high Curie point (T_H) and a low coercive force (H_L) at room temperature compared to this magnetic layer. A magneto-optical recording medium having a perpendicularly magnetized film on a substrate, where the saturation magnetization of the second magnetic layer is Ms_2, the film thickness is h_2, and the domain wall energy between the two magnetic layers is σw, H_H>H_L. >σw/(2Ms_2h_2)・・・
(1) is satisfied, and the compensation temperature of the second magnetic layer is T_H_C_O_M_
When P, T_L<T_H_C_O_M_P and (value of coercive force of the second magnetic layer at temperature T_L)/(value of coercive force of the second magnetic layer at room temperature: H_L)>0.5...(2 ) A magneto-optical recording medium characterized by satisfying the following conditions: 2) A low Curie point (T_L) and a high coercive force (H) at room temperature.
The exchange-coupled two-layer structure consists of a first magnetic layer having a magnetic field (_H) and a second magnetic layer having a relatively high Curie point (T_H) and a low coercive force (H_L) at room temperature compared to this magnetic layer. A magneto-optical recording medium having a perpendicularly magnetized film on a substrate, where the saturation magnetization of the second magnetic layer is Ms_2, the film thickness is h_2, and the domain wall energy between the two magnetic layers is σw, H_H>H_L. >σw/(2Ms_2h_2)・・・
(1) is satisfied, and the compensation temperature of the second magnetic layer is T_H_C_O_M_
When P, T_L<T_H_C_O_M_P and (value of coercive force of the second magnetic layer at temperature T_L)/(value of coercive force of the second magnetic layer at room temperature: H_L)>0.5 (2) A recording method characterized by recording the following binary values using a magneto-optical recording medium that satisfies the following conditions. (a) With respect to the medium, at a location different from the recording head,
Applying a magnetic field B having a magnitude sufficient to magnetize the second magnetic layer having a coercive force H_L in one direction and not reversing the direction of magnetization of the first magnetic layer having a coercive force H_H, (b) Next, By applying a bias magnetic field using the recording head and at the same time irradiating the medium with enough laser power to raise the temperature of the medium to near the low Curie point (T_L),
The first type of preliminary recording, in which the direction of magnetization of the first magnetic layer is aligned in a stable direction with respect to the second magnetic layer without changing the direction of magnetization of the second magnetic layer, or the Curie point is high while applying a bias magnetic field. By irradiating the medium with enough laser power to raise the temperature to around (T_H), the direction of magnetization of the second magnetic layer is reversed, and at the same time, the first magnetic layer is also oriented stably with respect to the second magnetic layer. Is it a second type of preliminary recording that magnetizes?
(c) then moving the medium to cause the pre-recorded bits to pass through said magnetic field B; For bits formed by the second type of preliminary recording without changing the direction of magnetization in both the magnetic layer and the second magnetic layer,
Binary recording in which the direction of magnetization of the second magnetic layer is reversed in the same direction as the magnetic field B, and the direction of magnetization of the first magnetic layer is left unchanged.
JP62027082A 1986-06-18 1987-02-10 Magneto-optical recording medium and recording method Pending JPS63195844A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP62027082A JPS63195844A (en) 1987-02-10 1987-02-10 Magneto-optical recording medium and recording method
CA 541367 CA1340058C (en) 1986-07-08 1987-07-06 Magnetooptical recording medium allowing overwriting with tow or more magnetic layers and recording method utilizing the same
AU75306/87A AU593364C (en) 1986-07-08 1987-07-07 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
KR1019870007322A KR960003420B1 (en) 1986-07-08 1987-07-08 Magneto optical recording medium
AT98200007T ATE216528T1 (en) 1986-07-08 1987-07-08 APPARATUS AND SYSTEM FOR RECORDING ON A MAGNETOPTICAL RECORDING MEDIUM
EP98200006A EP0838814B1 (en) 1986-07-08 1987-07-08 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
AT87306038T ATE172047T1 (en) 1986-07-08 1987-07-08 MAGNETOPTICAL RECORDING MEDIUM WITH THE POSSIBILITY OF OVERWRITING WITH TWO OR MORE MAGNETIC LAYERS AND RECORDING METHOD USING SUCH MEDIUM
EP98200007A EP0838815B1 (en) 1986-07-08 1987-07-08 Apparatus and system for recording on a magnetooptical recording medium
EP87306038A EP0258978B1 (en) 1986-07-08 1987-07-08 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
DE3752222T DE3752222T2 (en) 1986-07-08 1987-07-08 Magnetic optical recording medium with the possibility of overwriting with two or more magnetic layers and recording method using this medium
US07/475,941 US5132945A (en) 1986-07-08 1990-01-30 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US08/296,163 US5525378A (en) 1986-07-08 1994-08-26 Method for producing a magnetooptical recording medium
US08/312,930 US5481410A (en) 1986-07-08 1994-09-30 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US08/613,431 US5783300A (en) 1986-06-18 1996-02-29 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US09/080,215 US6028824A (en) 1986-07-08 1998-05-18 Magnetooptical recording medium allowing overwriting with two or more magnetic layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027082A JPS63195844A (en) 1987-02-10 1987-02-10 Magneto-optical recording medium and recording method

Publications (1)

Publication Number Publication Date
JPS63195844A true JPS63195844A (en) 1988-08-12

Family

ID=12211153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027082A Pending JPS63195844A (en) 1986-06-18 1987-02-10 Magneto-optical recording medium and recording method

Country Status (1)

Country Link
JP (1) JPS63195844A (en)

Similar Documents

Publication Publication Date Title
US5210724A (en) Optomagnetic recording method and apparatus which precludes an interface magnetic wall within block magnetic wall
JPH0535499B2 (en)
US5503924A (en) Exchange-coupled magnetooptical recording medium with first layer having smaller vertical orientation saturation magnetization than in-plane orientation saturation magnetization of second layer
JPH0395745A (en) Magneto-optical recording method and recording device
JPS63155449A (en) Magneto-optical recording method
JPH0535494B2 (en)
JPS6348637A (en) Magneto-optical recording medium and magnet-optical recording method
JPS63237238A (en) Magneto-optical recording medium and magneto-optical recording method
JPH0535498B2 (en)
JPS63195844A (en) Magneto-optical recording medium and recording method
JPS63153752A (en) Magneto-optical recording medium and its recording method
JPS63133338A (en) Magneto-optical recording method
JP2555272B2 (en) Magneto-optical recording / reproducing method
JPH0535493B2 (en)
JP2589453B2 (en) Magneto-optical recording method
JPS63237236A (en) Magneto-optical recording medium and recording method
JPS63193351A (en) Magneto-optical recording medium and recording system
JPH0535496B2 (en)
JPH0522302B2 (en)
JPS63225944A (en) Magneto-optical recording medium and recording system
JP2589451B2 (en) Magneto-optical recording / reproducing device
JPS63237242A (en) Magneto-optical recording system
JPH0522300B2 (en)
JPH0522306B2 (en)
JPS63133337A (en) Magneto-optical recording method