JPS63195845A - Magneto-optical recording medium and magneto-optical recording method - Google Patents

Magneto-optical recording medium and magneto-optical recording method

Info

Publication number
JPS63195845A
JPS63195845A JP62027083A JP2708387A JPS63195845A JP S63195845 A JPS63195845 A JP S63195845A JP 62027083 A JP62027083 A JP 62027083A JP 2708387 A JP2708387 A JP 2708387A JP S63195845 A JPS63195845 A JP S63195845A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
composition
recording
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62027083A
Other languages
Japanese (ja)
Other versions
JPH0535493B2 (en
Inventor
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62027083A priority Critical patent/JPS63195845A/en
Priority to CA 541367 priority patent/CA1340058C/en
Priority to AU75306/87A priority patent/AU593364C/en
Priority to AT98200007T priority patent/ATE216528T1/en
Priority to KR1019870007322A priority patent/KR960003420B1/en
Priority to DE3752222T priority patent/DE3752222T2/en
Priority to EP98200006A priority patent/EP0838814B1/en
Priority to AT87306038T priority patent/ATE172047T1/en
Priority to EP98200007A priority patent/EP0838815B1/en
Priority to EP87306038A priority patent/EP0258978B1/en
Publication of JPS63195845A publication Critical patent/JPS63195845A/en
Priority to US07/475,941 priority patent/US5132945A/en
Publication of JPH0535493B2 publication Critical patent/JPH0535493B2/ja
Priority to US08/296,163 priority patent/US5525378A/en
Priority to US08/312,930 priority patent/US5481410A/en
Priority to US08/613,431 priority patent/US5783300A/en
Priority to US09/080,215 priority patent/US6028824A/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magneto-optical recording medium which has perpendicularly magnetized films of three-layered structure and is utilized for a recording method permitting overwriting by forming the above-mentioned recording medium in such a manner as to satisfy the prescribed conditions. CONSTITUTION:A magnetic layer 1 has a high Curie point TH1 and low coercive force HL1, a magnetic layer 2 has a low Curie point TL2 and high coercive force HH2, and a magnetic layer 3 has a high Curie point TH3 and low coercive force HL3. The conditions expressed by the equation I are satisfied. In the equation, sigmaw12, sigmaw13 are respectively the magnetic wall energies of the magnetic layers 1, 2, and 2, 3, h1-h3 are respectively the film thicknesses of the magnetic layers 1-3, MS1-MS3 are respectively the magnitudes of the saturation magnetization of the magnetic layers 1-3. All the magnetic layers 1-3 are required to consist of an amorphous alloy of a rare earth element and transition metal element. The magnetic layers 1, 2 are required to consist of the compsn. contg. the transition metal element at the ratio higher than in the compensation compsn. or the magnetic layers 1, 2 are required to consist of the compsn. contg. the rare earth element at the ratio higher than in the compensation compsn. and the magnetic layer 3 is required to consist of the compsn. cotg. the transition metal element at the ratio higher than in the compensation compsn. The purpose is attained by satisfying the above-mentioned conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気カー効果を利用して読出しすることので
きるキュリー点書込みタイプの光磁気記録媒体、および
それを使用した重ね書き可能な光磁気記録方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Curie point writing type magneto-optical recording medium that can be read using the magnetic Kerr effect, and an overwritable optical recording medium using the same. Related to magnetic recording methods.

〔従来の技術〕[Conventional technology]

消去可能な光デイスクメモリとして光磁気ディスクが知
られている。光磁気ディスクは、従来の磁気ヘッドを使
った磁気記録媒体と比べて高密度記録、非接触での記録
再生などが可能であるという長所がある反面、記録前に
一度記録部分を消去しなければならない(一方向に着磁
しなければならない)という欠点があった。この欠点を
補う為に、記録再生用ヘッドと消去用ヘッドを別々に設
ける方式、あるいは、レーザーの連続ビームを照射しつ
つ、同時に印加する磁場を変調しながら記録する方式な
どか提案されている。
A magneto-optical disk is known as an erasable optical disk memory. Magneto-optical disks have advantages over magnetic recording media using conventional magnetic heads, such as high-density recording and non-contact recording and playback, but on the other hand, the recorded area must be erased before recording. It had the disadvantage that it cannot be magnetized in one direction (it must be magnetized in one direction). In order to compensate for this drawback, proposals have been made such as a method in which a recording/reproducing head and an erasing head are provided separately, or a method in which recording is performed while irradiating a continuous laser beam and simultaneously modulating the applied magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの方法は、装置が大がかりとなり、コス
ト高になる欠点あるいは高速の変調が出来ないなどの欠
点を有する。
However, these methods have disadvantages such as a large-scale apparatus, high cost, or inability to perform high-speed modulation.

ト述の公知技術の欠点を除去し、従来の装置構成に簡単
な構造の磁界発生手段を付設するだけで、磁気記録媒体
と同様な重ね書き(オーバーライド)を可能とした、光
磁気記録方法を本出願人は昭和61年9月17日に特願
昭61−]91202号で提案した。
The present invention provides a magneto-optical recording method that eliminates the drawbacks of the known techniques mentioned above and enables overwriting similar to that of magnetic recording media by simply adding a magnetic field generating means with a simple structure to a conventional device configuration. The applicant proposed this in Japanese Patent Application No. 91202 on September 17, 1986.

しかし、この方法は全く新しい記録方法であるが故に、
この方法に関連して、いまだ多くの研究課題が残ワてい
た。すなわち、この記録にとってよりふされしい記録媒
体の探究等である。
However, since this method is a completely new recording method,
Many research questions remain regarding this method. In other words, we are searching for a recording medium that is more suitable for this type of recording.

そこで本発明者は更に研究を進めた結果、いくつかの成
果が得られた。
As a result of further research, the present inventors obtained several results.

本発明はこうして完成されたものであり、その目的は重
ね書き可能な記録方法を提供するだけでなく、その重ね
書き可能な記録方法によりふされしい光磁気記録媒体を
提供することにある。
The present invention has been completed in this way, and its purpose is not only to provide an overwritable recording method, but also to provide a magneto-optical recording medium suitable for this overwritable recording method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的達成可能な本発明は、 高いキュリー点(THI)と低い保磁力(HLI)を有
する第1磁性層と、この第1磁性層に比べて相対的に低
いキュリー点(TL2)と高い保磁力(HN3)を有す
る第2磁性層と、この第2磁性層に比べて相対的゛に高
いキュリー点(TI43)と低い保磁力(HL3)を有
する第3磁性層とからなる三層構造の垂直磁化膜を少な
くとも基板上に有して成る光磁気記録媒体であって、上
記3つの磁性層が次の条件(イ)〜(ハ)、 (イ)第1磁性層と第2磁性層の磁壁エネルギーを(f
fW+2、第2磁性層と第3磁性層の磁壁エネルギーを
σw23とし、第1磁性層、第2磁性層、第3磁性層の
膜厚を順にh+、h2.h3.とし、これらの層の飽和
磁化の大きさを順にMs+ 、MS21M!!3とする
と −<    HL3 2Ms、、h3 (ロ)各磁性層共に希土類元素と遷移金属元素との非晶
質合金から成ること (ハ)第1.2磁性層は補償組成よりも遷移金属元素に
富んだ組成であり且つ第3磁性層は補償組成よりも希土
類元素に富んだ組成であるか、あるいは、第1.2磁性
層は補償組成よりも希土類元素に富んだ組成であり且つ
第3磁性層は補償組成よりも遷移金属元素に富んだ組成
であることを満たしている光磁気記録媒体と、これを使
用して、次の二値の記録を行なうことを特徴とする、記
録方式である。
The present invention, which can achieve the above objects, comprises a first magnetic layer having a high Curie point (THI) and a low coercive force (HLI), and a relatively low Curie point (TL2) and high coercive force compared to the first magnetic layer. A three-layer structure consisting of a second magnetic layer having a magnetic force (HN3) and a third magnetic layer having a relatively higher Curie point (TI43) and a lower coercive force (HL3) than the second magnetic layer. A magneto-optical recording medium comprising a perpendicularly magnetized film on at least a substrate, wherein the three magnetic layers meet the following conditions (a) to (c): (a) a first magnetic layer and a second magnetic layer; The domain wall energy is (f
fW+2, the domain wall energy of the second magnetic layer and the third magnetic layer is σw23, and the film thicknesses of the first magnetic layer, second magnetic layer, and third magnetic layer are h+, h2. h3. and the magnitude of the saturation magnetization of these layers is Ms+, MS21M!, in order. ! 3, -< HL3 2Ms, h3 (b) Each magnetic layer is made of an amorphous alloy of a rare earth element and a transition metal element (c) The 1.2nd magnetic layer has a transition metal element rather than a compensation composition. The third magnetic layer has a composition richer in rare earth elements than the compensation composition, or the first and second magnetic layers have a composition richer in rare earth elements than the compensation composition and the third magnetic layer has a composition richer in rare earth elements than the compensation composition. This is a recording method characterized by recording the following binary values using a magneto-optical recording medium whose layer satisfies the requirement that the composition is richer in transition metal elements than the compensation composition. .

(a)該媒体に対して、記録用ヘッドと異なる場所で、
保磁力HL3の第3磁性層を一方向に磁化させるのに充
分で保磁力HH2の第2磁性層の磁化の向きを反転させ
ることのない大きさの磁界Bを加え、 (b)次に、記録ヘッドにより、バイアス磁界を印加す
ると同時に低いキュリー点(TL2)付近まで該媒体が
昇温するだけのレーザーパワーを照射することにより、
第3磁性層の磁化の向きを変えないまま第1磁性層と第
2磁性層、の磁化の向きを第3vii性層に対して安定
な向きにそろえる第1種の予備記録か、バイアス磁界を
印加すると同時に高いキュリー点(T□3)付近まで該
媒体が昇温するだけのレーザーパワーを照射することに
より、第3磁性層の磁化の向きを反転させて、同時に第
1磁性層と第2磁性層とを共に第3磁性層に対して安定
な向きに磁化する第2種の予備記録かを、信号に応じて
実施し、 (C)次に、該媒体を運動させて、予備記録されたビッ
トを前記磁界Bを通過させることにより、第1種の予備
記録により形成されたビットについては、第1磁性層、
第2磁性層、第3磁性層全て磁化の向きをそのまま変化
させず、 第2種の予備記録により形成されたビットについては、
第3磁性層の磁化の向きを前記磁界Bと同方向に反転さ
、せ、第1磁性層と第2磁性層の磁化の向きはそのまま
変化させないとする、二値の記録。
(a) With respect to the medium, at a location different from the recording head,
Applying a magnetic field B having a magnitude sufficient to magnetize the third magnetic layer having a coercive force HL3 in one direction and not reversing the direction of magnetization of the second magnetic layer having a coercive force HH2, (b) Next, By applying a bias magnetic field using the recording head and at the same time irradiating the medium with enough laser power to raise the temperature of the medium to near the low Curie point (TL2),
The first type of preliminary recording, in which the direction of magnetization of the first and second magnetic layers is aligned in a stable direction with respect to the third magnetic layer without changing the direction of magnetization of the third magnetic layer, or the bias magnetic field is applied. By irradiating the medium with enough laser power to raise the temperature of the medium to near the high Curie point (T□3), the direction of magnetization of the third magnetic layer is reversed and the first and second magnetic layers are simultaneously applied. A second type of preliminary recording is performed in response to a signal, in which both the magnetic layer and the third magnetic layer are magnetized in a stable direction, and (C) the medium is then moved to perform preliminary recording. By passing the magnetic field B through the bit formed by the first type of preliminary recording, the first magnetic layer,
For bits formed by the second type of preliminary recording without changing the direction of magnetization in both the second and third magnetic layers,
Binary recording, in which the direction of magnetization of the third magnetic layer is reversed in the same direction as the magnetic field B, and the directions of magnetization of the first and second magnetic layers remain unchanged.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a)、 (b)は各々本発明に用いる光磁気記
録媒体の一実施例を示す模式断面図である。第1図(a
)の光磁気記録媒体は、プリグループが設けられた透光
性の基板B上に、第1の磁性層1と第2の磁性層2と第
3の磁性層3とが積層されたものである。第1磁性層1
は高いキュリー点(T1)と低い保磁力(HLI)を有
し、第2磁性層2は低いキュリー点(TL2)と高い保
磁力(HN3)を有し、第3磁性層3は、高いキュリー
点(TH3)と低い保磁力(HL3)を有する。ここで
「高い」、「低い」とは第1・第3磁性層と第2磁性層
とを比較した場合の相対的な関係を表わす(保磁力は室
温における比較)。
FIGS. 1(a) and 1(b) are schematic cross-sectional views each showing an example of a magneto-optical recording medium used in the present invention. Figure 1 (a
) is a magneto-optical recording medium in which a first magnetic layer 1, a second magnetic layer 2, and a third magnetic layer 3 are laminated on a transparent substrate B provided with a pre-group. be. First magnetic layer 1
has a high Curie point (T1) and a low coercive force (HLI), the second magnetic layer 2 has a low Curie point (TL2) and a high coercive force (HN3), and the third magnetic layer 3 has a high Curie point (TL2) and a high coercive force (HLI). point (TH3) and low coercive force (HL3). Here, "high" and "low" refer to the relative relationship when comparing the first and third magnetic layers and the second magnetic layer (coercive force is compared at room temperature).

ただし、通常は第1磁性層1のT。1は150〜400
℃、HLIは0.1〜I KOe 、第2磁性層2のT
L2は70〜200℃、HN3は2〜10KOe、第3
磁性層3のTBGは100〜250℃、HL3は0.5
〜4 KOe程度の範囲内にするとよい。
However, normally the T of the first magnetic layer 1. 1 is 150-400
°C, HLI is 0.1~IKOe, T of second magnetic layer 2
L2 is 70-200℃, HN3 is 2-10KOe, 3rd
TBG of magnetic layer 3 is 100 to 250°C, HL3 is 0.5
It is preferable to set it within a range of about 4 KOe.

各磁性層の材料には、垂直磁気異方性を示し且つ磁気光
学効果を呈するGdCo、 GdFe、 TbFe、 
DyFe、 GdTbFe、 TbDyFe、 GdF
eCa、TbFeCo、 GdTbCo等の希土類元素
と遷移金属元素との非晶質磁性合金が使用できる。
The materials of each magnetic layer include GdCo, GdFe, TbFe, which exhibit perpendicular magnetic anisotropy and magneto-optic effect.
DyFe, GdTbFe, TbDyFe, GdF
Amorphous magnetic alloys of rare earth elements and transition metal elements such as eCa, TbFeCo, and GdTbCo can be used.

本発明の光磁気記録媒体の、隣接する磁性層は交換力で
結合しており第1磁性層1と第2磁性層2は相体的に強
く結合しており、第2磁性層2と第3磁性層3は相体的
に弱く結合している。
Adjacent magnetic layers of the magneto-optical recording medium of the present invention are coupled by exchange force, the first magnetic layer 1 and the second magnetic layer 2 are strongly coupled relative to each other, and the second magnetic layer 2 and the second magnetic layer 2 are coupled strongly relative to each other. The three magnetic layers 3 are mutually weakly coupled.

本発明の光磁気記録媒体では、第1磁性層1と第2@性
層2の磁壁エネルギーをσw+2、第2磁性層2と第3
磁性層3の磁壁エネルギーをσw23とし、第1磁性層
1.第2磁性層2.第3磁性層3の膜厚を順にh+、h
2.h3とし、これらの層の飽和磁化の大きさを順にM
SI +MS2 +’S3とすると、上記3つの磁性層
が次の式を満たすように結合している。
In the magneto-optical recording medium of the present invention, the domain wall energy of the first magnetic layer 1 and the second magnetic layer 2 is σw+2, and the domain wall energy of the second magnetic layer 2 and the third magnetic layer 2 is σw+2.
The domain wall energy of the magnetic layer 3 is σw23, and the first magnetic layer 1. Second magnetic layer2. The film thickness of the third magnetic layer 3 is h+, h
2. h3, and the magnitude of the saturation magnetization of these layers is M in order.
When SI +MS2 +'S3, the above three magnetic layers are coupled so as to satisfy the following formula.

これは、最終的に記録によって形成されるビットの磁化
状態(第2図(f)に示す状態)が安定に存在出来る様
にするためである(詳しい理由は後述する。)。
This is to ensure that the magnetization state of the bit finally formed by recording (the state shown in FIG. 2(f)) can exist stably (the detailed reason will be described later).

上記の関係式を満たすように各層の膜厚、保磁力、飽和
磁化の大きさ、磁壁エネルギーなどを設定すればよいの
であるが、これは結局上述したように、第1磁性層と第
2磁性層とを強く交換結合させ、第2磁性層と第3磁性
層とを弱く交換結合させることに結びつく。
The thickness, coercive force, magnitude of saturation magnetization, domain wall energy, etc. of each layer should be set so as to satisfy the above relational expression. This leads to strong exchange coupling between the two magnetic layers and weak exchange coupling between the second magnetic layer and the third magnetic layer.

この点を考慮して研究した結果、実施例で示すように、
磁性層間を強く結合させるためには共に希土類元素に富
んだ組成にするか共に遷移金属に富んだ組成にすること
が有効であノ】、また、磁性層間を弱く結合させるため
には一方の組成を補償組成に対して希土類元素が富んだ
組成にし、他方の組成を遷移金属に富んだ組成にするこ
とが有効であることが明らかになった。
As a result of research taking this point into consideration, as shown in the examples,
In order to achieve strong coupling between magnetic layers, it is effective to make both of them rich in rare earth elements or to make both compositions rich in transition metals.Also, in order to make weak coupling between magnetic layers, it is effective to make one of the compositions rich in rare earth elements or to make both compositions rich in transition metals. It has become clear that it is effective to make the compensation composition rich in rare earth elements and the other composition rich in transition metals.

本発明の光磁気記録媒体の他の例である第1図(b)に
おいては、3つの磁性層1,2.3の耐久性を向上させ
るためのあるいは光磁気効果を向上させるための保護膜
4.5が設けられている。
In FIG. 1(b), which is another example of the magneto-optical recording medium of the present invention, a protective film is provided to improve the durability of the three magnetic layers 1, 2.3 or to improve the magneto-optical effect. 4.5 is provided.

なお、6は貼り合わせ用基板7を貼り合わすための接着
層である。貼り合わせ用基板7にも、1から5までの層
を積層し、これを接着すれば表裏で記録・再生が可能と
なる。
Note that 6 is an adhesive layer for bonding the bonding substrate 7 together. If layers 1 to 5 are also laminated on the bonding substrate 7 and bonded together, recording and reproduction can be performed on the front and back sides.

以下、第2図〜第4図を用いて本発明の記録の過程を示
す、記録前、磁性層1.2の磁化の向きは、平行で安定
状態であり、磁性層1.2と磁性層3の磁化の向きとは
反平行で安定状態である。
The recording process of the present invention will be described below with reference to FIGS. 2 to 4. Before recording, the direction of magnetization of the magnetic layer 1.2 is parallel and stable, and the magnetic layer 1.2 and the magnetic layer 1.2 are in a stable state. It is antiparallel to the magnetization direction of No. 3 and is in a stable state.

第3図の35は、上述したような構成を有する光磁気デ
ィスクである。例えば、この磁性層のある一部の磁化状
態が初め第2図(a)のようになっていたとする。
35 in FIG. 3 is a magneto-optical disk having the configuration described above. For example, assume that the magnetization state of a certain part of this magnetic layer is initially as shown in FIG. 2(a).

光磁気ディスク35はスピンドルモータにより回転して
、磁界発生部34を通過する。このとき、磁界発生部3
4の磁界の大きさを第2磁性層2と第3磁性層3の保磁
力の間の値に設定すると(磁界の向きは本実施例では上
向き)、第2図(b)に示す様に第3磁性層3は一様な
方向に磁化され、一方、第2磁性層2の磁化は初めのま
まである。また、第2磁性層と強く結合している第1磁
性層1の磁化も初めのままである。
The magneto-optical disk 35 is rotated by a spindle motor and passes through the magnetic field generator 34 . At this time, the magnetic field generating section 3
When the magnitude of the magnetic field 4 is set to a value between the coercive forces of the second magnetic layer 2 and the third magnetic layer 3 (the direction of the magnetic field is upward in this example), as shown in FIG. 2(b), The third magnetic layer 3 is magnetized in a uniform direction, while the magnetization of the second magnetic layer 2 remains the same. Furthermore, the magnetization of the first magnetic layer 1, which is strongly coupled to the second magnetic layer, remains as it was.

次に光磁気ディスク35が回転して記録・再生ヘッド3
1を通過するときに、2種類(第1種と第2種)のレー
ザーパワー値を持つレーザービームを、記録信号発生器
32からの信号に従って、そのどちらかのパワーでもっ
て、ディスク面に照射する。第1種のレーザーパワーは
該ディスクを第2磁性層2のキュリー点付近まで昇温す
るだけのパワーであり、第2種のレーザーパワーは該デ
ィスクを第3磁性層3のキュリー点付近まで昇温可能な
パワーである。即ち、両磁性層2.3の保磁力と温度と
の関係の概略を示した第4図において、第1種のレーザ
ーパワーはTL2付近、第2種のレーザーパワーはTH
3付近までディスクの温度を上昇できる。
Next, the magneto-optical disk 35 rotates and the recording/reproducing head 3
1, a laser beam having two types of laser power values (first type and second type) is irradiated onto the disk surface with one of the powers according to the signal from the recording signal generator 32. do. The first type of laser power is enough to raise the temperature of the disk to around the Curie point of the second magnetic layer 2, and the second type of laser power is enough to raise the temperature of the disk to around the Curie point of the third magnetic layer 3. It is a power that can be heated. That is, in FIG. 4, which schematically shows the relationship between the coercive force and temperature of both magnetic layers 2.3, the first type laser power is around TL2, and the second type laser power is around TH.
The temperature of the disk can be raised to around 3.

第1種のレーザーパワーにより第2磁性層2と第3磁性
層3とは、第2磁性層2のキュリー点付近まで昇温する
が、第3磁性層3はこの温度でビットが安定に存在する
保磁力を有しているのでバイアス磁界を適正に設定して
おくことにより、第2図(b)に示すどちらの磁化状態
からも、第2図(C)の様なビットが形成される(第1
種の予備記録)。なお、第1磁性層1も、第2磁性層2
との交換結合により図のような磁化状態となるのである
The temperature of the second magnetic layer 2 and the third magnetic layer 3 is raised to near the Curie point of the second magnetic layer 2 by the first type of laser power, but bits stably exist in the third magnetic layer 3 at this temperature. By setting the bias magnetic field appropriately, a bit as shown in Fig. 2(C) can be formed from either magnetization state shown in Fig. 2(b). (1st
Preliminary records of species). Note that the first magnetic layer 1 and the second magnetic layer 2
Due to exchange coupling with the magnet, the magnetized state shown in the figure is created.

ここで、バイアス磁界を適正に設定するとは、次のよう
な意味である。
Here, setting the bias magnetic field appropriately means the following.

第1種の予備記録では第3磁性層3の磁化の向きに対し
て安定な向きに(ここでは反対方向に)第2磁性層2の
磁化が配列する力(交換力)を受けるので、本来はバイ
アス磁界は必要で−ない。しかし、バイアス磁界は後述
する第2種のレーザーパワーの予備記録では第3磁性層
3の磁化反転を補助する向き(第1種の予備記録を妨げ
る向き)に設定される。そして、このバイアス磁界は、
第1種、第2種どちらのレーザーパワーの予備記録でも
、大きさ、方向を同じ状態に設定しておくことが好まし
い。
In the first type of preliminary recording, the magnetization of the second magnetic layer 2 is subjected to a force (exchange force) that aligns it in a stable direction (here, in the opposite direction) to the direction of the magnetization of the third magnetic layer 3. does not require a bias magnetic field. However, the bias magnetic field is set in a direction that assists the magnetization reversal of the third magnetic layer 3 (a direction that hinders the first type of preliminary recording) in the second type of preliminary recording with laser power, which will be described later. And this bias magnetic field is
It is preferable to set the magnitude and direction to be the same in both the first type and the second type of laser power preliminary recording.

かかる観点からバイアス磁界の設定は次記に示す原理に
より第2種のレーザーパワーの予備記録に必要な最小限
の大きさに設定しておくことが好ましく、これを考慮し
た設定が前で言う適正な設置 6 定である。
From this point of view, it is preferable to set the bias magnetic field to the minimum size necessary for preliminary recording of the second type of laser power according to the principle shown below, and settings that take this into consideration are the appropriate settings as mentioned above. The installation is fixed.

一方、第2種のレーザーパワーにより、第3磁性層3の
キュリー点近くまでディスクを昇温させると、上記のよ
うに設定されたバイアス磁界により第3磁性層3の磁化
の向きが反転する。続いて第2磁性層2と第1磁性層1
の磁化も第3磁性層3に対して安定な向きに(ここでは
反対方向に)配列する。即ち、第2図(b)のどちらの
磁化状態からも第2図(d)のようなビットが形成され
る(第2種の予備記録)。
On the other hand, when the temperature of the disk is raised to near the Curie point of the third magnetic layer 3 using the second type of laser power, the direction of magnetization of the third magnetic layer 3 is reversed by the bias magnetic field set as described above. Next, the second magnetic layer 2 and the first magnetic layer 1
The magnetization is also arranged in a stable direction (here, in the opposite direction) with respect to the third magnetic layer 3. That is, bits as shown in FIG. 2(d) are formed from either of the magnetization states shown in FIG. 2(b) (second type of preliminary recording).

このように、バイアス磁界と、信号に応じて変わる第1
種及び第2種のレーザーパワーとによって、光磁気ディ
スクの各箇所は第2図(C)か(d)の状態に予備記録
されることになる。
In this way, the bias magnetic field and the first
Depending on the laser power of the seed and the second type, each location on the magneto-optical disk is preliminarily recorded in the state shown in FIG. 2(C) or FIG. 2(d).

次に光磁気ディスク35を回転させ、予備記録のビット
(C) 、 (d)が磁界発生部34を再び通過すると
、磁界発生部349磁界は前述したように第2磁性層2
と第3磁性層3の保磁力の間に設定されているので、記
録ビット(C)は、変化が起こらずに(e)の状態であ
る(最終的な記録状態)。一方、記録ビット(d)は第
3磁性層3が磁化反転を起こして(f)の状態になる(
もう一つの最終的な記録状態)。
Next, when the magneto-optical disk 35 is rotated and the preliminary recorded bits (C) and (d) pass through the magnetic field generating section 34 again, the magnetic field of the magnetic field generating section 349 is transferred to the second magnetic layer 2 as described above.
and the coercive force of the third magnetic layer 3, the recording bit (C) remains in the state (e) without any change (final recording state). On the other hand, in the recording bit (d), the third magnetic layer 3 undergoes magnetization reversal and becomes the state (f) (
Another final recording state).

(f)の記録ビットの状態が安定に存在する為には、前
記したように となっていることが必要である。これは次のような理由
による。
In order for the state of the recording bit (f) to exist stably, it is necessary that the state described above be met. This is due to the following reasons.

σ111 + ’2 / 2 M S 1 h +は第
1磁性層□に働く交換力の強さを示す。つまりσ−、2
/2Ms、h、の大きさの磁界で第1磁性層の磁化の向
きを、第2磁性層の磁化の向きに対して安定な方向へ(
この場合は同じ方向に)向けようとする。そこで第1磁
性層の□磁化が常に第2磁性層の向きに対して安定な方
向(この場合は同じ方向に)に向いている為には、第1
磁性層の保磁力HLIが、この交換力より小さければよ
い。つまりσw12 / 2M5ih+> HLlであ
ればよい。
σ111 + '2 / 2 M S 1 h + indicates the strength of the exchange force acting on the first magnetic layer □. That is, σ−, 2
A magnetic field with a magnitude of /2Ms,h changes the direction of magnetization of the first magnetic layer in a direction that is stable with respect to the direction of magnetization of the second magnetic layer (
In this case, try to point them in the same direction). Therefore, in order for the □ magnetization of the first magnetic layer to always be oriented in a stable direction (in this case, in the same direction) as the direction of the second magnetic layer, it is necessary to
It is sufficient that the coercive force HLI of the magnetic layer is smaller than this exchange force. In other words, it is sufficient if σw12/2M5ih+>HLl.

またσw23 / 2M53h3は第3磁性層に働く交
換力の強さを示す。つまりσw23 / 2M53F1
3の大きさの磁界で第3磁性層の磁化の向きを第2磁性
層の磁化の向きに対して安定な方向へ(この場合は同じ
方向へ)向けようとする。そこで第3磁性層がこの磁界
に対して磁化が反転しない為には(第2図(f)の記録
ビットが安定に存在する為には)、第3磁性層の保磁力
をHL3としてa W23 / 2M53h3くHL3
であればよい、 本発明の記録方法では、記録ビットの状態(e)と(f
)は、記録時のレーザーのパワーで制御され、記録前の
状態には依存しないので、重ね書き(オーバーライド)
が可能である。記録ビット(e)と(f)は、再生用の
レーザービームを照射し、再生光を記録信号再生器33
で処理することにより、再生できる。再生信号の大きさ
く変調度)は主として第1磁性層の光磁気効果に依存す
る。
Further, σw23/2M53h3 indicates the strength of the exchange force acting on the third magnetic layer. In other words, σw23 / 2M53F1
A magnetic field of magnitude 3 attempts to direct the magnetization direction of the third magnetic layer in a direction that is stable with respect to the magnetization direction of the second magnetic layer (in this case, in the same direction). Therefore, in order for the magnetization of the third magnetic layer not to be reversed in response to this magnetic field (for the recorded bits in Fig. 2(f) to exist stably), the coercive force of the third magnetic layer should be set to HL3, a W23 / 2M53h3kuHL3
In the recording method of the present invention, the recording bit states (e) and (f
) is controlled by the laser power during recording and does not depend on the state before recording, so overwriting is possible.
is possible. Recording bits (e) and (f) are irradiated with a laser beam for reproduction, and the reproduction light is transmitted to a recording signal regenerator 33.
It can be played back by processing it. The magnitude and degree of modulation of the reproduced signal mainly depend on the magneto-optical effect of the first magnetic layer.

このことと、本発明の記録方法において使用される3つ
の磁性層を有する媒体の、再生光が人射する第1f/j
i性層1にはキュリー温度の高い材料(即ち、光磁気効
果の大きな材料)を使用できることとから、本発明では
再生信号の大きい(変調度の大きい)記録が可能となる
In addition to this, in the medium having three magnetic layers used in the recording method of the present invention, the first f/j where the reproduction light is irradiated
Since a material with a high Curie temperature (that is, a material with a large magneto-optical effect) can be used for the i-type layer 1, the present invention enables recording with a large reproduced signal (with a large degree of modulation).

実施例1 4元のターゲット源を備えたスパッタ装置内に、プリグ
ループ、プリフォーマット信号の刻まれたポリカーボネ
ート製のディスク状基板を、ターゲットとの間の距離1
0’cmの間隔にセットし、回転させた。
Example 1 A polycarbonate disk-shaped substrate with pregroup and preformat signals engraved thereon is placed at a distance of 1 from the target in a sputtering apparatus equipped with four target sources.
They were set at intervals of 0'cm and rotated.

アルゴン中で、第1のターゲットより、スパッタ速度1
00人/min、スパッタ圧sx to−3Torrで
ZnSを保護層として800人の厚さに設けた。
Sputtering speed 1 from the first target in argon
A protective layer of ZnS was formed at a thickness of 800 mm/min and a sputtering pressure of sx to -3 Torr.

次にアルゴン中で、第2のターゲットよりスパッタ速度
100人/min、スパッタ圧5 X 10= Tor
rでGdFeCo合金をスパッタし、膜厚400人、T
H,=約350℃のGd2oFe66Go24の第1磁
性層を形成した。この第1磁性層自身のHLIは約50
00e以下であり、副格子磁化は遷移金属の方が大きか
った。
Next, in argon, sputtering was performed from the second target at a sputtering rate of 100 people/min and a sputtering pressure of 5 x 10 = Tor.
GdFeCo alloy was sputtered at r, film thickness was 400mm, T
A first magnetic layer of Gd2oFe66Go24 was formed at a temperature of about 350°C. The HLI of this first magnetic layer itself is approximately 50.
00e or less, and the sublattice magnetization was larger in the transition metal.

次に同様な条件で、第3のターゲットよりTbFe合金
をスパッタし、膜厚200A 、 T L2=約140
 ”CのTb、8Fe82の第2磁性層を形成した。こ
の第2磁性層自身のHH2は約100000e以上であ
り、副格子磁化は遷移金属の方が大きかった。
Next, under the same conditions, TbFe alloy was sputtered from the third target to a film thickness of 200A and T L2 = approximately 140.
A second magnetic layer of Tb, 8Fe82 of C was formed. The HH2 of this second magnetic layer itself was approximately 100,000e or more, and the sublattice magnetization was larger in the transition metal.

次に同様な条件で第4のターゲットよりGdTbFeG
o合金をスパッタし、膜厚300人、T、3=約210
℃のGd13Tb13Fe69. C,GO4,5の第
3磁性層を形成した。この第3磁性層自身のHL3は約
500〜15000eであり、副格子磁化は希土類金属
の方が大きかった。
Next, under the same conditions, GdTbFeG was prepared from the fourth target.
Sputter o alloy, film thickness 300, T, 3 = approx. 210
Gd13Tb13Fe69. A third magnetic layer of C, GO4,5 was formed. The HL3 of the third magnetic layer itself was about 500 to 15,000e, and the sublattice magnetization was larger in the rare earth metal.

次に同条件で、第1のターゲットより、ZnSをスパッ
タし、保護層として2000人の厚さのZnS層を設け
た。
Next, under the same conditions, ZnS was sputtered from the first target to form a ZnS layer with a thickness of 2000 nm as a protective layer.

次に膜形成を終えた上記の基板を、ホットメルト接着剤
を用いて、ポリカーボネートの貼り合わせ用基板と貼り
合わせ光磁気ディスクを作成した。この光磁気ディスク
を記録再生装置にセットし、2KOeの磁界発生部を、
線速度約7 m/secで通過させつつ、約1μに集光
した830mmの波長のレーザービームを50%のデユ
ーティで2MHzで変調させながら、4mWと8mWの
2値のレーザーパワーで記録を行なった。バイアス磁界
は1500eであった。その後1[11Wのレーザービ
ームを照射して再生を行なったところ、2値の信号の再
生ができた。
Next, the above substrate on which the film had been formed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to create a magneto-optical disk. This magneto-optical disk was set in a recording/reproducing device, and the 2KOe magnetic field generator was
While passing at a linear velocity of about 7 m/sec, a laser beam with a wavelength of 830 mm focused to about 1 μ was modulated at 2 MHz with a duty of 50%, and recording was performed with binary laser powers of 4 mW and 8 mW. . The bias magnetic field was 1500e. Thereafter, a 1[11 W laser beam was irradiated to perform reproduction, and a binary signal could be reproduced.

次に一上記と同様の実験を、全面記録された後の光磁気
ディスクについて行なった。この結果前に記録された信
号成分は検出されず、オーバーライドが可能であること
が確認された。
Next, an experiment similar to the one above was conducted on a magneto-optical disk that had been completely recorded. As a result, previously recorded signal components were not detected, confirming that overriding is possible.

実施例2と比較例 実施例1の光磁気ディスクと、保護層、磁性層各層の膜
厚および保磁力の大きさに関しては代えることなく、3
つの磁性層の組み合わせに関しては、各磁性層の遷移金
属元素と希土類元素の割合を変化させることによって、
表1に示すように代えて、光磁気ディスクのサンプルを
作製した。
Example 2 and Comparative Example The magneto-optical disk of Example 1, the protective layer, the magnetic layer, and the coercive force were not changed, but 3.
Regarding the combination of two magnetic layers, by changing the ratio of transition metal elements and rare earth elements in each magnetic layer,
Samples of magneto-optical disks were fabricated as shown in Table 1 instead.

各サンプルについて外部磁場を印加しながら各磁性層の
磁化が反転するときの印加磁界を調べ記録ビット(e)
 、’(f)の安定性を調べた。
While applying an external magnetic field to each sample, examine the applied magnetic field when the magnetization of each magnetic layer is reversed.Record bit (e)
, '(f) was investigated.

次に実施例1と同様の方法で記録の実験を行ない4mW
と8mWの2値の記録の状態を評価した。結果を表1に
示す。
Next, a recording experiment was conducted in the same manner as in Example 1, and 4 mW
The state of binary recording of 8 mW and 8 mW was evaluated. The results are shown in Table 1.

記録ビットの安定性に関しては、外部磁界のない状態で
(e)と(f)の状態が安定に存在できる場合は、表1
に○、そうでない場合は×で表わした。
Regarding the stability of the recorded bits, if states (e) and (f) can exist stably in the absence of an external magnetic field, Table 1
If not, it is indicated by ○, otherwise, it is indicated by ×.

記録の状態の評価は、4mWと8mWの2値で記録した
ときに再生信号の確認できないものはX印、確認はでき
るが良好でないものは△印、C/N約40dB以上の良
好な再生信号の得られるものは○印で示した。
For evaluation of the recording condition, when recording with binary values of 4 mW and 8 mW, if the playback signal cannot be confirmed, mark it with an X, if it can be confirmed but it is not good, mark it with a △ mark, and if the playback signal is good with a C/N of about 40 dB or more. Those obtained are indicated with a circle.

表1の結果からも明らかなように安定な記録ビットを得
て良好な記録を行なうためには第1、第2磁性層の組成
が共に補償組成よりも遷移金属に富んだ(副格子磁化が
遷移金属の方が大きい)ものか、あるいは共に希土類元
素に富んだ(副複格子磁化が希土類元素の方が大きい)
ものであり、第3磁性層の組成が第1.2磁性に対して
副格子磁化の大きい元素が反対になっているもの(実施
例1.2)に限られていることがわかる。
As is clear from the results in Table 1, in order to obtain stable recording bits and perform good recording, the compositions of both the first and second magnetic layers must be richer in transition metals than the compensation composition (sublattice magnetization is transition metal is larger), or both are rich in rare earth elements (submultiple lattice magnetization is larger in rare earth elements)
It can be seen that the composition of the third magnetic layer is limited to those in which the element having a large sublattice magnetization is opposite to that of the first magnetic layer (Example 1.2).

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、所定の要件を満たす三層構
造の垂直磁化膜を有する光磁気記録媒体を用い、記録時
に、記録ヘッドと別位置に磁界発生部を設け、2値レー
ザーパワーで記録することにより、良好な重ね書き(オ
ーバーライド)が可能になった。
As explained in detail above, a magneto-optical recording medium having a perpendicular magnetization film with a three-layer structure that satisfies predetermined requirements is used, and during recording, a magnetic field generating section is provided at a separate position from the recording head, and recording is performed using a binary laser power. By doing so, it became possible to perform good overwriting.

また、本発明の記録法で用いる記録媒体の、主に再生に
利用される磁性層は、光磁気効果の大きい材料から選び
得るので、結果として本発明により記録されたビットは
再生信号が大きいという利点がある。。
Furthermore, the magnetic layer of the recording medium used in the recording method of the present invention, which is mainly used for reproduction, can be selected from materials with a large magneto-optical effect, so that as a result, the bits recorded by the present invention have a large reproduction signal. There are advantages. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は各々本発明で使用する光磁
気媒体の一例の構成を示す図、第2図は、本発明の記録
法を実施中の、磁性層1,2.3の磁化の向きを示す図
、第3図は、記録・再生装置の概念図、第4図は第2磁
性層2と第3磁性層3の保磁力と温度との関係を示す概
略図である。 Bニブリグルーブ付の透光性基板、 1.2,3:磁性層 4.5:保護層、 6:接着層、 7:貼り合わせ用基板、 31:記録・再生用ヘッド、 32:記録信号発生器、 33:記録信号再生器 34:磁界発生部 35:光磁気ディスク、
FIGS. 1(a) and 1(b) are diagrams each showing the structure of an example of a magneto-optical medium used in the present invention, and FIG. FIG. 3 is a conceptual diagram of the recording/reproducing device, and FIG. 4 is a schematic diagram showing the relationship between the coercive force and temperature of the second magnetic layer 2 and the third magnetic layer 3. . Transparent substrate with B nibli groove, 1.2, 3: Magnetic layer 4.5: Protective layer, 6: Adhesive layer, 7: Bonding substrate, 31: Recording/reproducing head, 32: Recording signal generator , 33: Recorded signal regenerator 34: Magnetic field generator 35: Magneto-optical disk,

Claims (1)

【特許請求の範囲】 1)高いキュリー点(T_H_1)と低い保磁力(H_
L_1)を有する第1磁性層と、この第1磁性層に比べ
て相対的に低いキュリー点(T_L_2)と高い保磁力
(H_H_2)を有する第2磁性層と、この第2磁性層
に比べて相対的に高いキュリー点(T_H_3)と低い
保磁力(H_L_3)を有する第3磁性層とからなる三
層構造の垂直磁化膜を少なくとも基板上に有して成る光
磁気記録媒体であって、上記3つの磁性層が次の条件(
イ)〜 (ハ)を満たしていることを特徴とする光磁気記録媒体
。 (イ)第1磁性層と第2磁性層の磁壁エネルギーをσw
_1_2、第2磁性層と第3磁性層の磁壁エネルギーを
σw_2_3とし、第1磁性層、第2磁性層、第3磁性
層の膜厚を順にh_1、h_2、h_3、とし、これら
の層の飽和磁化の大きさを順にMs_1、M_s_2、
M_s_3とすると σw_1_2/(2M_s_1h_1)>H_L_1σ
w_2_3/(2M_s_3h_3)<H_L_3(ロ
)各磁性層共に希土類元素と遷移金属元素との非晶質合
金から成ること (ハ)第1、2磁性層は補償組成よりも遷移金属元素に
富んだ組成であり且つ第3磁性層は補償組成よりも希土
類元素に富んだ組成であるか、あるいは、第1、2磁性
層は補償組成よりも希土類元素に富んだ組成であり且つ
第3磁性層は補償組成よりも遷移金属元素に富んだ組成
であること 2)高いキュリー点(T_H_1)と低い保磁力(H_
L_1)を有する第1磁性層と、この第1磁性層に比べ
て相対的に低いキュリー点(T_L_2)と高い保磁力
(H_H_2)を有する第2磁性層と、この第2磁性層
に比べて相対的に高いキュリー点(T_H_3)と低い
保磁力(H_L_3)を有する第3磁性層とからなる三
層構造の垂直磁化膜を少なくとも基板上に有して成る光
磁気記録媒体であって、上記3つの磁性層が次の条件(
イ)〜 (ハ)、すなわち、 (イ)第1磁性層と第2磁性層の磁壁エネルギーをσw
_1_2、第2磁性層と第3磁性層の磁壁エネルギーを
σw_2_3とし、第1磁性層、第2磁性層、第3磁性
層の膜厚を順にh_1、h_2、h_3、とし、これら
の層の飽和磁化の大きさを順にM_s_1、M_s_2
、M_s_3とすると σw_1_2/(2M_s_1h_1)>H_L_1σ
w_2_3/(2M_s_3h_3)<H_L_3(ロ
)各磁性層共に希土類元素と遷移金属元素との非晶質合
金から成ること (ハ)第1、2磁性層は補償組成よりも遷移金属元素に
富んだ組成であり且つ第3磁性層は補償組成よりも希土
類元素に富んだ組成であ るか、あるいは、第1、2磁性層は補償組成よりも希土
類元素に富んだ組成であり且つ第3磁性層は補償組成よ
りも遷移金属元素に富んだ組成であること を満たしている光磁気記録媒体を使用して、次の二値の
記録を行なうことを特徴とする記録方式。 (a)該媒体に対して、記録用ヘッドと異なる場所で、
保磁力H_L_3の第3磁性層を一方向に磁化させるの
に充分で保磁力H_H_2の第2磁性層の磁化の向きを
反転させることのない大きさの磁界Bを加え、 (b)次に、記録ヘッドにより、バイアス磁界を印加す
ると同時に低いキュリー点(T_L_2)付近まで該媒
体が昇温するだけのレーザーパワーを照射することによ
り、第3磁性層の磁化の向きを変えないまま第1磁性層
と第2磁性層の磁化の向きを第3磁性層に対して安定な
向きにそろえる第1種の予備記録か、バイアス磁界を印
加すると同時に高いキュリー点(T_H_3)付近まで
該媒体が昇温するだけのレーザーパワーを照射すること
により、第3磁性層の磁化の向きを反転させて、同時に
第1磁性層と第2磁性層とを共に第3磁性層に対して安
定な向きに磁化する第2種の予備記録かを、信号に応じ
て実施し、(c)次に、該媒体を運動させて、予備記録
されたビットを前記磁界Bを通過させることにより、第
1種の予備記録により形成されたビットについては、第
1磁性層、第2磁性層、第3磁性層全て磁化の向きをそ
のまま変化させず、 第2種の予備記録により形成されたビットについては、
第3磁性層の磁化の向きを前記磁界Bと同方向に反転さ
せ、第1磁性層と第2磁性層の磁化の向きはそのまま変
化させないとする、二値の記録。
[Claims] 1) High Curie point (T_H_1) and low coercive force (H_
a first magnetic layer having a relatively low Curie point (T_L_2) and a high coercive force (H_H_2) compared to the first magnetic layer; A magneto-optical recording medium comprising, at least on a substrate, a perpendicularly magnetized film having a three-layer structure consisting of a third magnetic layer having a relatively high Curie point (T_H_3) and a low coercive force (H_L_3), The three magnetic layers meet the following conditions (
A magneto-optical recording medium characterized by satisfying (a) to (c). (a) The domain wall energy of the first magnetic layer and the second magnetic layer is σw
_1_2, the domain wall energy of the second magnetic layer and the third magnetic layer is σw_2_3, the film thicknesses of the first magnetic layer, the second magnetic layer, and the third magnetic layer are h_1, h_2, h_3 in order, and the saturation of these layers is The magnitude of magnetization is sequentially Ms_1, M_s_2,
If M_s_3, σw_1_2/(2M_s_1h_1)>H_L_1σ
w_2_3/(2M_s_3h_3)<H_L_3 (b) Each magnetic layer is made of an amorphous alloy of a rare earth element and a transition metal element (c) The first and second magnetic layers have a composition richer in transition metal elements than the compensation composition and the third magnetic layer has a composition richer in rare earth elements than the compensation composition, or the first and second magnetic layers have a composition richer in rare earth elements than the compensation composition, and the third magnetic layer has a composition richer in rare earth elements than the compensation composition. 2) High Curie point (T_H_1) and low coercive force (H_
a first magnetic layer having a relatively low Curie point (T_L_2) and a high coercive force (H_H_2) compared to the first magnetic layer; A magneto-optical recording medium comprising, at least on a substrate, a perpendicularly magnetized film having a three-layer structure consisting of a third magnetic layer having a relatively high Curie point (T_H_3) and a low coercive force (H_L_3), The three magnetic layers meet the following conditions (
A) ~ (C), that is, (A) The domain wall energy of the first magnetic layer and the second magnetic layer is σw
_1_2, the domain wall energy of the second magnetic layer and the third magnetic layer is σw_2_3, the film thicknesses of the first magnetic layer, the second magnetic layer, and the third magnetic layer are h_1, h_2, h_3 in order, and the saturation of these layers is The magnitude of magnetization is M_s_1, M_s_2
, M_s_3, σw_1_2/(2M_s_1h_1)>H_L_1σ
w_2_3/(2M_s_3h_3)<H_L_3 (b) Each magnetic layer is made of an amorphous alloy of a rare earth element and a transition metal element (c) The first and second magnetic layers have a composition richer in transition metal elements than the compensation composition and the third magnetic layer has a composition richer in rare earth elements than the compensation composition, or the first and second magnetic layers have a composition richer in rare earth elements than the compensation composition, and the third magnetic layer has a composition richer in rare earth elements than the compensation composition. A recording method characterized by recording the following binary values using a magneto-optical recording medium that satisfies the following conditions: the composition is richer in transition metal elements than the composition. (a) With respect to the medium, at a location different from the recording head,
Applying a magnetic field B of a magnitude sufficient to magnetize the third magnetic layer with coercive force H_L_3 in one direction but not reversing the direction of magnetization of the second magnetic layer with coercive force H_H_2, (b) Next, The recording head applies a bias magnetic field and at the same time irradiates the medium with laser power sufficient to raise the temperature of the medium to near the low Curie point (T_L_2), thereby increasing the temperature of the first magnetic layer without changing the direction of magnetization of the third magnetic layer. and the first type of preliminary recording in which the direction of magnetization of the second magnetic layer is aligned in a stable direction with respect to the third magnetic layer, or the medium is heated to near the high Curie point (T_H_3) at the same time as a bias magnetic field is applied. By irradiating with a laser power of (c) Next, by moving the medium and passing the prerecorded bits through the magnetic field B, the first type of preliminary recording is performed. For the bits formed, the direction of magnetization of the first, second, and third magnetic layers remains unchanged, and for the bits formed by the second type of preliminary recording,
Binary recording in which the direction of magnetization of the third magnetic layer is reversed in the same direction as the magnetic field B, and the directions of magnetization of the first and second magnetic layers are left unchanged.
JP62027083A 1986-06-18 1987-02-10 Magneto-optical recording medium and magneto-optical recording method Granted JPS63195845A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP62027083A JPS63195845A (en) 1987-02-10 1987-02-10 Magneto-optical recording medium and magneto-optical recording method
CA 541367 CA1340058C (en) 1986-07-08 1987-07-06 Magnetooptical recording medium allowing overwriting with tow or more magnetic layers and recording method utilizing the same
AU75306/87A AU593364C (en) 1986-07-08 1987-07-07 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
EP98200006A EP0838814B1 (en) 1986-07-08 1987-07-08 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
EP87306038A EP0258978B1 (en) 1986-07-08 1987-07-08 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
KR1019870007322A KR960003420B1 (en) 1986-07-08 1987-07-08 Magneto optical recording medium
DE3752222T DE3752222T2 (en) 1986-07-08 1987-07-08 Magnetic optical recording medium with the possibility of overwriting with two or more magnetic layers and recording method using this medium
AT98200007T ATE216528T1 (en) 1986-07-08 1987-07-08 APPARATUS AND SYSTEM FOR RECORDING ON A MAGNETOPTICAL RECORDING MEDIUM
AT87306038T ATE172047T1 (en) 1986-07-08 1987-07-08 MAGNETOPTICAL RECORDING MEDIUM WITH THE POSSIBILITY OF OVERWRITING WITH TWO OR MORE MAGNETIC LAYERS AND RECORDING METHOD USING SUCH MEDIUM
EP98200007A EP0838815B1 (en) 1986-07-08 1987-07-08 Apparatus and system for recording on a magnetooptical recording medium
US07/475,941 US5132945A (en) 1986-07-08 1990-01-30 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US08/296,163 US5525378A (en) 1986-07-08 1994-08-26 Method for producing a magnetooptical recording medium
US08/312,930 US5481410A (en) 1986-07-08 1994-09-30 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US08/613,431 US5783300A (en) 1986-06-18 1996-02-29 Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US09/080,215 US6028824A (en) 1986-07-08 1998-05-18 Magnetooptical recording medium allowing overwriting with two or more magnetic layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027083A JPS63195845A (en) 1987-02-10 1987-02-10 Magneto-optical recording medium and magneto-optical recording method

Publications (2)

Publication Number Publication Date
JPS63195845A true JPS63195845A (en) 1988-08-12
JPH0535493B2 JPH0535493B2 (en) 1993-05-26

Family

ID=12211181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027083A Granted JPS63195845A (en) 1986-06-18 1987-02-10 Magneto-optical recording medium and magneto-optical recording method

Country Status (1)

Country Link
JP (1) JPS63195845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241051A (en) * 1988-03-19 1989-09-26 Fujitsu Ltd Magneto-optical recording medium
JPH02304751A (en) * 1989-05-19 1990-12-18 Nec Corp Magneto-optical recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250203A (en) * 1975-10-20 1977-04-22 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic transfer recording material
JPS5778652A (en) * 1980-11-01 1982-05-17 Daido Steel Co Ltd Thermal magnetic recording carrier and thermal magnetic recording system
DE3619618A1 (en) * 1985-06-11 1986-12-11 Nippon Kogaku K.K., Tokio/Tokyo Magneto-optic recording process with overwriting capability, magneto-optic recording apparatus and associated recording carrier
JPS6364651A (en) * 1986-09-04 1988-03-23 Nikon Corp Overwritable magneto-optical recording method, magneto-optical recording medium used by same and magneto-optical reproducing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250203A (en) * 1975-10-20 1977-04-22 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic transfer recording material
JPS5778652A (en) * 1980-11-01 1982-05-17 Daido Steel Co Ltd Thermal magnetic recording carrier and thermal magnetic recording system
DE3619618A1 (en) * 1985-06-11 1986-12-11 Nippon Kogaku K.K., Tokio/Tokyo Magneto-optic recording process with overwriting capability, magneto-optic recording apparatus and associated recording carrier
JPS62175948A (en) * 1985-06-11 1987-08-01 Nippon Kogaku Kk <Nikon> Overwritable photomagnetic recording method and photomagnetic recording device and medium therefor
JPS6364651A (en) * 1986-09-04 1988-03-23 Nikon Corp Overwritable magneto-optical recording method, magneto-optical recording medium used by same and magneto-optical reproducing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241051A (en) * 1988-03-19 1989-09-26 Fujitsu Ltd Magneto-optical recording medium
JPH02304751A (en) * 1989-05-19 1990-12-18 Nec Corp Magneto-optical recording medium

Also Published As

Publication number Publication date
JPH0535493B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JPH0535499B2 (en)
JPH0522303B2 (en)
JP2703587B2 (en) Magneto-optical recording medium and recording method
JPS6348637A (en) Magneto-optical recording medium and magnet-optical recording method
JPS63205835A (en) Magneto-optical recording medium and magneto-optical recording method
JPS63155449A (en) Magneto-optical recording method
JPH0395745A (en) Magneto-optical recording method and recording device
JPS63195845A (en) Magneto-optical recording medium and magneto-optical recording method
JPH0522301B2 (en)
JPH0535498B2 (en)
JPS63153752A (en) Magneto-optical recording medium and its recording method
JPH0522302B2 (en)
JP2555272B2 (en) Magneto-optical recording / reproducing method
JPS63193351A (en) Magneto-optical recording medium and recording system
JPH0535496B2 (en)
JPS63133338A (en) Magneto-optical recording method
JPH0522300B2 (en)
JP2589453B2 (en) Magneto-optical recording method
JPS63237242A (en) Magneto-optical recording system
JPH0535495B2 (en)
JP2589451B2 (en) Magneto-optical recording / reproducing device
JPH0535497B2 (en)
JPS63133337A (en) Magneto-optical recording method
JPS63225944A (en) Magneto-optical recording medium and recording system
JPS63220440A (en) Magneto-optical recording method