JPH0464940A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0464940A
JPH0464940A JP17808990A JP17808990A JPH0464940A JP H0464940 A JPH0464940 A JP H0464940A JP 17808990 A JP17808990 A JP 17808990A JP 17808990 A JP17808990 A JP 17808990A JP H0464940 A JPH0464940 A JP H0464940A
Authority
JP
Japan
Prior art keywords
magneto
optical recording
nitrogen
recording layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17808990A
Other languages
Japanese (ja)
Inventor
Satohiko Oya
大屋 聡彦
Toshifumi Kawano
敏史 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP17808990A priority Critical patent/JPH0464940A/en
Publication of JPH0464940A publication Critical patent/JPH0464940A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the exchange coupling force with good reproducibility by forming a magneto-optical recording layer having a specified relation between the Curie temp. and coercive force at room temp., and providing a nitrogen- contg. area of specified thickness containing a specified amt. of nitrogen near the interface between the magneto-optical recording layer and an auxiliary recording layer. CONSTITUTION:A rewritable magneto-optical recording medium is obtained by successively forming a magneto-optical recording layer and an auxiliary recording layer on a substrate in a manner that the Curie temp. Tc1 and coercive force Hc1 at room temp. of the magneto-optical recording layer and the Curie temp. Tc2 and coercive force Hc2 at room temp. of the auxiliary recording layer satisfy the relation Tc1<Tc2 and Hc1>Hc2. In this structure, a nitrogen- contg. area is provided near the interface between the magneto-optical recording layer and the auxiliary recording layer so that the nitrogen-contg. area is made between >=20Angstrom and <=100Angstrom thick and contains >=10 atomic % nitrogen and that the maximum nitrogen content in this area is <=30 atomic %.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学的記録、再生が可能な光磁気記録媒体に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium capable of optical recording and reproduction.

〔従来の技術とその課題〕[Conventional technology and its issues]

光磁気記録媒体は、高密度、低コストの書き換え可能な
情報記録媒体として実用化が進められている。特に希土
類と遷移金属のアモルファス合金の記録層を用いた媒体
は非常に優れた特性を示している。
Magneto-optical recording media are being put into practical use as high-density, low-cost, rewritable information recording media. In particular, media using recording layers of amorphous alloys of rare earths and transition metals have shown very excellent characteristics.

光磁気記録媒体の残された大きな欠点として、重ね書き
(オーバーライド)ができないことがある。すなわち、
従来の光磁気記録媒体は記録する前に消去のプロセスを
必要とする為、1回の記録に2回転を要してデーターの
転送速度を低下させていた。
A major drawback of magneto-optical recording media is that they cannot be overwritten. That is,
Conventional magneto-optical recording media require an erasing process before recording, requiring two rotations for one recording, reducing data transfer speed.

近年、光磁気記録媒体においてこの重ね書きを行なう方
法かい(つか提唱されている。有望な方法として多層膜
を用いた、光変調オーバーライド法がある。
In recent years, some methods have been proposed to perform this overwriting in magneto-optical recording media. A promising method is the optical modulation override method using a multilayer film.

この方式は第34回応用物理学関係連合講演会予稿集2
8P−ZL−3P721 (1987)で論じられてい
るもので、低キユリー温度と高保持力を持った垂直磁化
層(光磁気記録層)と該記録層に対し相対的に高いキュ
リー温度と低い保持力を持った垂直磁化層(記録補助層
)から成る。
This method is the 34th Applied Physics Association Conference Proceedings 2
8P-ZL-3P721 (1987), which includes a perpendicular magnetization layer (magneto-optical recording layer) with a low Curie temperature and high coercivity, and a relatively high Curie temperature and low coercivity with respect to the recording layer. It consists of a perpendicularly magnetized layer (recording auxiliary layer) with a strong magnetic field.

オーバーライドの手段は初めに記録補助層の磁化の向き
をそろえるのに十分でかつ光磁気記録層には影響を与え
ない大きさの初期化磁界(Hint)を印加した後バイ
アス磁界を印加しながら高パワー (po )および低
パワー(pt )の2値に変調された光ビームを照射す
る。PL照射のときは記録補助層の反転はなく光磁気記
録層は記録補助層との交換結合によって安定化する方向
に向き、P□照射の場合は記録補助層が、バイアス磁界
(Hb)によって反転を起こし、それに従って光磁気記
録層もPLの場合と逆方向を向くことにより、オーバー
ライドが可能となる。
The overriding method is to first apply an initializing magnetic field (Hint) of a magnitude sufficient to align the direction of magnetization of the recording auxiliary layer and not to affect the magneto-optical recording layer, and then to apply a high initialization magnetic field (Hint) while applying a bias magnetic field. A light beam modulated into two values of power (po) and low power (pt) is irradiated. During PL irradiation, there is no reversal of the recording auxiliary layer, and the magneto-optical recording layer is stabilized by exchange coupling with the recording auxiliary layer, and in the case of P□ irradiation, the recording auxiliary layer is reversed by the bias magnetic field (Hb). , and the magneto-optical recording layer also faces in the opposite direction to the PL case, thereby making override possible.

前記Hiniは、ドライブのコスト低減や小型化の点か
らなるべく小さくて良いことが望ましい。
It is desirable that the Hini be as small as possible in terms of cost reduction and miniaturization of the drive.

Hintは光磁気記録層と記録補助層の間の交換結合力
が小さいほど小さくできる。
Hint can be made smaller as the exchange coupling force between the magneto-optical recording layer and the recording auxiliary layer becomes smaller.

交換結合力があまりに小さい場合は、オーバーライドそ
のものが不可能となるので適度な大きさに調整すること
が必要である。
If the exchange coupling force is too small, overriding itself becomes impossible, so it is necessary to adjust it to an appropriate size.

交換結合力を適度に低減させる方法として垂直磁気異方
性が小さい中間磁性層(GdFeCo等)を数十入光磁
気記録層と記録補助層の間に挿入する方法が提案されて
いる。
As a method for appropriately reducing the exchange coupling force, a method has been proposed in which an intermediate magnetic layer (such as GdFeCo) having a small perpendicular magnetic anisotropy is inserted between the magneto-optical recording layer and the recording auxiliary layer.

しかし、この方法では3つの異った磁性層を必要とする
為、大きな成膜装置を必要とし、ターゲットコストも増
加するという欠点がある。しかも、中間磁性層の上下に
2つの磁性層の界面がある為、界面の酸化等による影響
を受は易く、再現性良くディスクを作成するのは困難で
あった。従って低コスト、かつ再現性良く交換結合力を
低減する方法が望まれていた。
However, since this method requires three different magnetic layers, it requires a large film forming apparatus and has the disadvantage of increasing target cost. Moreover, since there is an interface between two magnetic layers above and below the intermediate magnetic layer, the interface is easily affected by oxidation, etc., making it difficult to produce a disk with good reproducibility. Therefore, a method for reducing the exchange coupling force at low cost and with good reproducibility has been desired.

〔課題を解決する為の手段〕[Means to solve problems]

本発明者等は上記の問題に関して検討を行なった結果、
光磁気記録層と記録補助層との界面近傍に窒素含有層を
設けることにより低コストかつ再現性良く交換結合力の
低減が行なえることを見出した。
As a result of the inventors' studies regarding the above problems,
It has been found that the exchange coupling force can be reduced at low cost and with good reproducibility by providing a nitrogen-containing layer near the interface between the magneto-optical recording layer and the recording auxiliary layer.

〔発明の構成〕[Structure of the invention]

本発明の要旨は、基板上にキュリー温度Tc1、室温で
の保持力Hc、を待った光磁気記録層および、キュリー
温度Tcz、室温での保持力HC2を持った記録補助層
がこの順に積層され、前記Tc + + T c 2+
 Hc 1+ Hc 2がTc+ <Tcz 、HC+
 >HC2を満足する重ね書き可能な光磁気記録媒体に
おいて、光磁気記録層と記録補助層の界面近傍に窒素を
10原子%以上含有する領域が20Å以上100Å以下
の厚さで存在し、かつその領域の最高窒素含有量が30
原子%以下であることを特徴とする光磁気記録媒体に存
する。
The gist of the present invention is that a magneto-optical recording layer having a Curie temperature Tc1 and a coercive force Hc at room temperature and a recording auxiliary layer having a Curie temperature Tcz and a coercive force Hc2 at room temperature are laminated in this order on a substrate, Said Tc + + T c 2+
Hc 1+ Hc 2 is Tc+ <Tcz, HC+
>In an overwritable magneto-optical recording medium that satisfies HC2, a region containing 10 atomic % or more of nitrogen exists near the interface between the magneto-optical recording layer and the recording auxiliary layer with a thickness of 20 Å or more and 100 Å or less, and The maximum nitrogen content in the area is 30
% or less.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いられる基板としてはガラスや、アクリル樹
脂、ポリカーボネート樹脂等のプラスチック等の透明基
板が挙げられる。基板の厚みは1゜2鵬程度が一般的で
ある。
Examples of the substrate used in the present invention include transparent substrates such as glass and plastics such as acrylic resin and polycarbonate resin. The thickness of the substrate is generally about 1.2 mm.

本発明では基板上に光磁気記録層及び記録補助層を設け
る。光磁気記録層としては相対的にキュリー温度Tc、
が低く保持力Hc、が大きいものが用いられる。例えば
TbFe、TbFeCo。
In the present invention, a magneto-optical recording layer and a recording auxiliary layer are provided on a substrate. As a magneto-optical recording layer, the relative Curie temperature Tc,
A material with a low holding force Hc and a large holding force Hc is used. For example, TbFe, TbFeCo.

DyFe、DyFeCo、TbDyFeCo等が挙げら
れる。Tc+ とじては、120°C以上200°C以
下のものが好ましくまたHc、とじては10 koe以
上のものが好ましい。膜厚は300〜1000人程度が
好ましい。
Examples include DyFe, DyFeCo, TbDyFeCo, and the like. Tc+ is preferably 120°C or more and 200°C or less, and Hc is preferably 10 koe or more. The film thickness is preferably about 300 to 1000 people.

記録補助層としては相対的にキュリー温度Tc2が高く
、保持力HczがHc、より小さいものが用いられる。
As the recording auxiliary layer, one having a relatively high Curie temperature Tc2 and a coercive force Hcz smaller than Hc is used.

例えばTbFeCo、DyFeCo、DyCo、TbD
yFeCo、TbCo、GdDyFe、GdDyFeC
o、GdTbFe。
For example, TbFeCo, DyFeCo, DyCo, TbD
yFeCo, TbCo, GdDyFe, GdDyFeC
o, GdTbFe.

GdTbFeCo等が挙げられる。Tczとしては18
0℃以上250°C以下のものが好ましいが当然Tc、
より大きい必要がある。またHczとしては小さい方が
初期化磁界(Hi n i )を低減させる為に好まし
いが、光磁気記録層との交換結合の為、記録補助層は実
効的バイアス磁界(Hw)を受けるので、初期化した状
態を安定に存在させる為にはある程度の大きさのHc2
が必要である。
Examples include GdTbFeCo. 18 as Tcz
Of course, Tc is preferably 0°C or higher and 250°C or lower.
Needs to be bigger. Furthermore, a smaller Hcz is preferable in order to reduce the initialization magnetic field (Hi n i ), but the recording auxiliary layer receives an effective bias magnetic field (Hw) due to exchange coupling with the magneto-optical recording layer. In order to maintain a stable state of
is necessary.

Hczとしては一般的に1 kOe以上3 koe以下
程度のものが好ましい。
Hcz is generally preferably about 1 kOe or more and 3 koe or less.

記録補助層の膜厚ば500Å以上2500Å以下が好ま
しい。
The thickness of the recording auxiliary layer is preferably 500 Å or more and 2500 Å or less.

本発明においては、記録層と補助層の界面近傍に、窒素
の含有領域を設ける。窒素を含有させるには、例えば記
録層、または補助層の界面近傍の成膜時に窒素ガスを導
入する方法等がある。
In the present invention, a nitrogen-containing region is provided near the interface between the recording layer and the auxiliary layer. In order to contain nitrogen, for example, there is a method of introducing nitrogen gas during film formation near the interface of the recording layer or the auxiliary layer.

窒素の含有領域は垂直磁気異方性が低下するが完全には
失われていない為、交換結合力を適度に低減させるのに
好適な特性を持つ。
In the nitrogen-containing region, the perpendicular magnetic anisotropy decreases but is not completely lost, so it has characteristics suitable for appropriately reducing the exchange coupling force.

窒素の代わりに酸素を用いても垂直磁気異方性の低下は
起こるが、酸素の場合磁性層との反応が激しく、わずか
な量の導入でもHwをほとんど零にしてしまい、オーバ
ーライドそのものが不可能になる。磁性層と適度に反応
性を持った窒素は添加元素として好適である。また、窒
素含有領域は、窒素を含まない場合よりも酸素との反応
性が小さい為、チャンバー中の残留酸素や水分の影響を
受けず、特性の再現性が非常に優れている。
A decrease in perpendicular magnetic anisotropy occurs even when oxygen is used instead of nitrogen, but oxygen reacts violently with the magnetic layer, and even a small amount of oxygen reduces Hw to almost zero, making override itself impossible. become. Nitrogen, which is appropriately reactive with the magnetic layer, is suitable as an additive element. Furthermore, since the nitrogen-containing region has lower reactivity with oxygen than in the case where it does not contain nitrogen, it is not affected by residual oxygen or moisture in the chamber, and the reproducibility of characteristics is extremely excellent.

窒素の含有量および含有領域幅は、交換結合力を十分に
低減しかつオーバーライド現象を維持できる範囲で規定
され、10原子%以上含有する領域が20Å以上、10
0Å以下である。また、この領域における窒素の最高含
有量は30原子%以下である。窒素含有領域は、いずれ
かの一方の層にあっても、両方の層にまたがっていても
さしつかえない。窒素含有領域の幅は10Å以上100
Å以下が好ましい。
The content of nitrogen and the width of the containing region are defined within a range that can sufficiently reduce the exchange bonding force and maintain the override phenomenon, and the region containing 10 atomic % or more is 20 Å or more, 10
It is 0 Å or less. Further, the maximum content of nitrogen in this region is 30 atomic % or less. The nitrogen-containing region may be present in one of the layers or may span both layers. The width of the nitrogen-containing region is 10 Å or more
Å or less is preferable.

記録補助層を成膜後、磁性層の酸化防止の為に保護層を
設けることもできる。保護層としては、S 13Na、
AIN、Taz05.AnzOz、TiO2等の安定な
誘電体が好ましく用いられる。
After forming the recording auxiliary layer, a protective layer may be provided to prevent oxidation of the magnetic layer. As a protective layer, S 13Na,
AIN, Taz05. Stable dielectrics such as AnzOz and TiO2 are preferably used.

保護層の膜厚は500人〜2000人程度が好ましい。The thickness of the protective layer is preferably about 500 to 2000.

基板と光磁気記録層の間に干渉層を設けてもよい。干渉
層としてはS i3N4.AffN、Ta2es。
An interference layer may be provided between the substrate and the magneto-optical recording layer. The interference layer is Si3N4. AffN, Ta2es.

A 42 z Oz 、 T 102等の透明な誘電体
が用いられる。干渉層の目的は干渉効果によって反射率
を下げ、感度の向上とノイズの低下をはかるもので、そ
の膜厚は干渉層の屈折率によって決定されるが、通常5
C1O〜1500人が用いられる。
A transparent dielectric material such as A 42 z Oz or T 102 is used. The purpose of the interference layer is to lower the reflectance through the interference effect, improving sensitivity and reducing noise.The thickness of the layer is determined by the refractive index of the interference layer, but it is usually 5.
C10~1500 people are used.

基板上に各層を形成する方法には、スパッタリング等の
物理蒸着法(PVD)、プラズマCVDのような化学蒸
着法CCVD)等が適用される。
Physical vapor deposition (PVD) such as sputtering, chemical vapor deposition (CCVD) such as plasma CVD, etc. are applied to the method of forming each layer on the substrate.

PVD法にて光磁気記録層、反射層及び保護層を成膜形
成するには、所定の組成をもったターゲットを用いて電
子ビーム蒸着またはスパッタリングにより基板上に各層
を堆積するのが通常の方法である。
To form a magneto-optical recording layer, a reflective layer, and a protective layer using the PVD method, the usual method is to deposit each layer on a substrate by electron beam evaporation or sputtering using a target with a predetermined composition. It is.

また、イオンブレーティングを用いる方法も考えられる
Furthermore, a method using ion blating is also considered.

膜の堆積速度は早すぎると膜応力を増加させ、遅すぎれ
ば生産性に影響するので通常0,1人/Sec〜100
人/ s e c程度とされる。
If the film deposition rate is too fast, it will increase the film stress, and if it is too slow, it will affect productivity, so it is usually 0.1 person/Sec to 100.
It is said to be about 1 person/sec.

〔実施例〕〔Example〕

以下に実施例をもって本発明をさらに詳細に説明するが
、本発明はその要旨を越えない限り以下の実施例に限定
されるものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1〜3、比較例1〜4 130mmΦのポリカーボネート基板を2つの成膜チャ
ンバーを持つスパッタリング装置に導入し、まず3 X
 10−7Torr以下まで排気し、Arと0□の混合
ガスを用いてTaターゲットの反応性スパッタリングを
行い、Taz osからなる800人の干渉層を形成し
た。
Examples 1 to 3, Comparative Examples 1 to 4 A 130 mmΦ polycarbonate substrate was introduced into a sputtering apparatus having two film formation chambers, and first 3X
The atmosphere was evacuated to 10-7 Torr or less, and a Ta target was reactively sputtered using a mixed gas of Ar and 0□ to form an interference layer of 800 Tazos.

基板を2 X 10−7Torr以下の真空度である別
のチャンバーに移動した後、Arを10100c、4m
Torrの圧力に導入し、TbとFeqsCOs  (
原子%以下間じ)のターゲットを、同時にスパッタリン
グを行ない、T b+q (F eqsCO5) e+
の記録層の成膜を行なった。記録層の膜厚が500人に
達したところで、窒素ガスを導入し、窒素含有領域を所
定の膜厚に形成した。窒素の含有量は窒素ガス流量を変
えることにより調整した。
After moving the substrate to another chamber with a vacuum level of 2 X 10-7 Torr or less, Ar was heated at 10100C, 4 m
Tb and FeqsCOs (
At the same time, sputtering is performed on a target of less than atomic %, and T b+q (F eqsCO5) e+
A recording layer was formed. When the thickness of the recording layer reached 500 layers, nitrogen gas was introduced to form a nitrogen-containing region to a predetermined thickness. The nitrogen content was adjusted by changing the nitrogen gas flow rate.

窒素ガスを停止した後、DyとFe−toCo3゜のタ
ーゲットの同時スパッタリングを行い、D)’3Q(F
 e 7.Co 3.) 7.の組成を持つ補助層を1
500人形成した。
After stopping the nitrogen gas, simultaneous sputtering of Dy and Fe-toCo3° targets was performed, and D)'3Q(F
e7. Co3. ) 7. An auxiliary layer with a composition of 1
500 people were formed.

基板を初めのチャンバーに戻した後、T a 20 s
からなる800人の保護層を形成した。
After returning the substrate to the initial chamber, T a 20 s
A protective layer of 800 people was formed.

このようにして作成したディスクのオーバーライド特性
と窒素含有領域中の最高窒素含有量と領域巾(窒素含有
量が10原子%を超える領域)を表1に示す。オーバー
ライド特性は線速5.6m/s。
Table 1 shows the override characteristics of the disk thus prepared, the maximum nitrogen content in the nitrogen-containing region, and the region width (region where the nitrogen content exceeds 10 atom %). The override characteristic is a linear velocity of 5.6 m/s.

Pt =4mJ  P、 −9mW、 Hb=2000
eの条件で、1.4 MHzの信号上に3.7 MHz
の信号をオーバーライドした。窒素含有量はオージェ電
子分光法を用いてArイオンでエツチングしながら分析
を行なった。
Pt = 4mJ P, -9mW, Hb = 2000
3.7 MHz on a 1.4 MHz signal under e conditions
signal was overridden. The nitrogen content was analyzed using Auger electron spectroscopy while etching with Ar ions.

この結果、適当な窒素含有領域を持つディスクは低いH
intでオーバーライドが可能であった。
As a result, disks with suitable nitrogen-containing regions have low H
It was possible to override with int.

実施例4 実施例1〜3と同様の構成であるが記録層の作成時には
窒素ガスを流さず、補助層の成膜開始時から所定膜厚に
達するまでの間窒素ガスを導入し、その後窒素ガスを停
止して1500人になるまで補助層を成膜した。
Example 4 The structure was similar to Examples 1 to 3, but nitrogen gas was not flowed when forming the recording layer, but nitrogen gas was introduced from the start of forming the auxiliary layer until a predetermined film thickness was reached, and then nitrogen gas was introduced. The gas supply was stopped and the auxiliary layer was deposited until the number of people reached 1,500.

このようにして作成したディスクのオーバーライド特性
と窒素含有領域中の窒素含有量と領域巾を実施例1〜3
と同様にして測定した。
Examples 1 to 3 show the override characteristics, nitrogen content in the nitrogen-containing region, and region width of the disk thus created.
It was measured in the same manner.

その結果、記録層に窒素を含有している場合と同様に、
低いHiniでオーバーライドが可能であった。
As a result, similar to the case where the recording layer contains nitrogen,
Override was possible at low Hini.

〔発明の効果〕〔Effect of the invention〕

本発明の光磁気記録媒体はオーバーライドが可能なもの
であり、再現性良く交換結合力の低減が行なえ、かつ低
コストに製造することができるものである。
The magneto-optical recording medium of the present invention can be overridden, can reduce exchange coupling force with good reproducibility, and can be manufactured at low cost.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上にキュリー温度Tc_1、室温での保持力
Hc_1を持った光磁気記録層および、キュリー温度T
c_2、室温での保持力Hc_2を持った記録補助層が
この順に積層され、前記Tc_1、Tc_2、Hc_1
、Hc_2が Tc_1<Tc_2、Hc_1>Hc_2 を満足する重ね書き可能な光磁気記録媒体において、光
磁気記録層と記録補助層の界面近傍に窒素を10原子%
以上含有する領域が20Å以上100Å以下の厚さで存
在し、かつその領域の最高窒素含有量が30原子%以下
であることを特徴とする光磁気記録媒体。
(1) A magneto-optical recording layer with a Curie temperature Tc_1 and a coercivity Hc_1 at room temperature on a substrate, and a Curie temperature T
c_2, a recording auxiliary layer having a coercive force Hc_2 at room temperature is laminated in this order, and the Tc_1, Tc_2, Hc_1
, Hc_2 satisfies Tc_1<Tc_2, Hc_1>Hc_2 in an overwritable magneto-optical recording medium, in which 10 atomic % of nitrogen is added near the interface between the magneto-optical recording layer and the recording auxiliary layer.
A magneto-optical recording medium characterized in that a region containing the above-mentioned nitrogen exists with a thickness of 20 Å or more and 100 Å or less, and the maximum nitrogen content of the region is 30 atomic % or less.
JP17808990A 1990-07-05 1990-07-05 Magneto-optical recording medium Pending JPH0464940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17808990A JPH0464940A (en) 1990-07-05 1990-07-05 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17808990A JPH0464940A (en) 1990-07-05 1990-07-05 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH0464940A true JPH0464940A (en) 1992-02-28

Family

ID=16042443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17808990A Pending JPH0464940A (en) 1990-07-05 1990-07-05 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0464940A (en)

Similar Documents

Publication Publication Date Title
US5783320A (en) Magneto-optical recording medium and process for producing the same
EP0606498A1 (en) Magneto-optic recording medium and method of its manufacture method
US5577020A (en) Magneto-optical disc with intermediate film layer between a recording film and a dielectric film
US5112701A (en) Magneto-optic recording media and process for producing the same
US4995024A (en) Magneto-optical recording element
US5233575A (en) Magneto-optical recording medium
EP0470546B1 (en) Magneto-optical recording medium
JPH056820A (en) Magneto-optical recording medium
US4751142A (en) Magneto-optical recording element
JPH0464940A (en) Magneto-optical recording medium
EP0454858B1 (en) Magnetooptical recording medium
JP2766520B2 (en) Method for manufacturing magneto-optical recording medium
JP2900957B2 (en) Method for manufacturing magneto-optical recording medium
US5730846A (en) Method of producing a magneto-optical recording medium
JP2770836B2 (en) Method for manufacturing magneto-optical recording medium
KR100209584B1 (en) Magneto-optical disk
JPH10177749A (en) Magnetic-optical recording medium
JP2815034B2 (en) Method for manufacturing magneto-optical recording medium
JPH01315051A (en) Magneto-optical recording medium
JPH064918A (en) Magneto-optical recording medium and its production
JPH10177748A (en) Magneto-optical recording medium
JPH0644624A (en) Magneto-optical recording medium
JPH0528554A (en) Magneto-optical recording medium
JPH06180880A (en) Method of correcting saturated magnetic moment and production of magneto-optical recording medium
JPH0314208A (en) Magnetic film