JPH064918A - Magneto-optical recording medium and its production - Google Patents

Magneto-optical recording medium and its production

Info

Publication number
JPH064918A
JPH064918A JP16509592A JP16509592A JPH064918A JP H064918 A JPH064918 A JP H064918A JP 16509592 A JP16509592 A JP 16509592A JP 16509592 A JP16509592 A JP 16509592A JP H064918 A JPH064918 A JP H064918A
Authority
JP
Japan
Prior art keywords
layer
magneto
recording
optical recording
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16509592A
Other languages
Japanese (ja)
Inventor
Toshifumi Kawano
敏史 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP16509592A priority Critical patent/JPH064918A/en
Publication of JPH064918A publication Critical patent/JPH064918A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply and easily form a nitride layer and to provide the magneto- optical recording medium having the large max. reproducing power and max. recording magnetic field by providing a recording layer and auxiliary recording layer which respectively have the Curie temps. and coercive forces of prescribed relations and nitriding the recording layer before the formation of the auxiliary recording layer. CONSTITUTION:The recording layer and auxiliary recording layer which respectively have the Curie temps. and coercive forces Tc1 and Hc1 and Tc3 and Hc2 are provided on the substrate and the Curie temps. and coercive forces are so selected as to satisfy the conditions Tc1<Tc2, Hc1>Hc2. The surface of the recording layer is easily and simply nitrided when the gas contg. the nitrogen is discharged to the recording layer before the auxiliary recording layer is formed. The magneto-optical recording medium having the large max. reproducing power and max. recording magnetic field is obtd. by this nitriding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学的記録再生が可能な
光磁気記録媒体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium capable of optical recording and reproduction and a method for manufacturing the same.

【0002】[0002]

【従来の技術】光磁気記録媒体は、高密度、低コストの
書換え可能な情報記録媒体として実用化が進められてい
る。特に希土類と遷移金属のアモルファス合金の記録層
を用いた媒体は非常に優れた特性を示している。光磁気
記録媒体の残された大きな欠点として、重ね書き(オー
バーライト)ができないことがある。すなわち従来の光
磁気記録媒体は記録する前に消去のプロセスが必要であ
るため、1回の記録に2回転を要してデーターの転送速
度を低下させていた。
2. Description of the Related Art Magneto-optical recording media are being put to practical use as high density, low cost rewritable information recording media. In particular, a medium using a recording layer of an amorphous alloy of rare earth and a transition metal shows extremely excellent characteristics. The remaining major drawback of the magneto-optical recording medium is that overwrite cannot be performed. That is, since the conventional magneto-optical recording medium needs an erasing process before recording, one rotation requires two rotations to reduce the data transfer rate.

【0003】近年、光磁気記録媒体においてこの重ね書
きを行う方法としていくつか提唱されている。このうち
特に有望な方法として多層膜を用いた光変調オーバーラ
イト法がある。この方法は第34回応用物理学関係連合
講演会予稿集28P ZL−3 (1987)で論じら
れているもので、低キュリー温度と高保磁力を持った垂
直磁化層(光磁気記録層)と該記録層に対し相対的に高
いキュリー温度と低い保磁力を持った垂直磁化層(記録
補助層)から成る。オーバーライトの手段は初めに記録
補助層の磁化の向きをそろえるのに充分でかつ光磁気記
録層に影響をあたえない大きさの初期化磁界(Hin
i)を印加した後、バイアス磁界(Hb )を印加しなが
ら高パワー(PH )および低パワー(PL )の2値に変
調された光ビームを照射する。PL 照射のときには記録
補助層の反転はなく光磁気記録層は記録補助層との交換
結合により安定化する方向に向き、PH 照射のときには
記録補助層が、バイアス磁界(Hb )によって反転をお
こし、それに従って光磁気記録層もPL の場合と逆方向
を向きこの2値の変調によりオーバーライトが可能とな
る。
In recent years, several methods have been proposed as a method for performing this overwriting in a magneto-optical recording medium. Among them, a particularly promising method is a light modulation overwrite method using a multilayer film. This method is discussed in Proceedings of the 34th Joint Lecture on Applied Physics 28P ZL-3 (1987). It is composed of a perpendicular magnetization layer (recording auxiliary layer) having a relatively high Curie temperature and a low coercive force with respect to the recording layer. The overwrite means is initially sufficient to align the magnetization directions of the recording auxiliary layer and has a magnitude of the initializing magnetic field (Hin) that does not affect the magneto-optical recording layer.
After the application of i), a binary modulated light beam of high power (PH) and low power (PL) is applied while applying a bias magnetic field (Hb). During the PL irradiation, there is no inversion of the recording auxiliary layer, and the magneto-optical recording layer faces in a direction in which it is stabilized by exchange coupling with the recording auxiliary layer, and during the PH irradiation, the recording auxiliary layer reverses due to the bias magnetic field (Hb), Accordingly, the magneto-optical recording layer faces in the opposite direction to the case of PL, and the binary modulation allows overwriting.

【0004】こういった2層の磁性層による媒体の他
に、記録補助層の次に初期化の役割をはたす層を設け、
初期化磁石を省略した3層または4層の構造等も提案さ
れている。
In addition to such a medium having two magnetic layers, a layer which plays a role of initialization is provided next to the recording auxiliary layer,
A three-layer or four-layer structure without the initializing magnet has also been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記いずれの方法にお
いても、光磁気記録層と記録補助層との間の交換結合力
が特性に大きく影響することが知られており、この交換
結合力の制御のために、通常Gd−Fe−Co等の垂直
磁気異方性が小さい材料による中間層が設けられてい
る。
In any of the above-mentioned methods, it is known that the exchange coupling force between the magneto-optical recording layer and the recording auxiliary layer greatly affects the characteristics, and the control of this exchange coupling force is known. Therefore, an intermediate layer made of a material having a small perpendicular magnetic anisotropy such as Gd-Fe-Co is usually provided.

【0006】しかしながら、このような中間層を設けた
場合には、磁性層の層数の増加に伴い、装置が複雑化す
ると共に、ターゲットコストが増加するという問題を生
じる。また、感度をなるべく上げたいという観点から
は、中間層を省略して全体の膜厚を低下させることが望
ましい。以上の理由により、中間層を用いない交換結合
の制御方法が求められていた。
However, when such an intermediate layer is provided, there arises a problem that the device becomes complicated and the target cost increases as the number of magnetic layers increases. From the viewpoint of increasing the sensitivity as much as possible, it is desirable to omit the intermediate layer and reduce the total film thickness. For the above reasons, there has been a demand for a method of controlling exchange coupling that does not use an intermediate layer.

【0007】[0007]

【課題を解決するための手段】本発明者等は上記課題を
解決すべく検討を行った結果、光磁気記録層の表面を特
定の条件で窒化処理を行なうことにより、適度な交換結
合力が得られることを見いだした。本発明の要旨は、基
板上にキュリー温度TC1、室温での保磁力HC1を持った
光磁気記録層および、キュリー温度TC2、室温での保磁
力HC2を持った記録補助層がこの順に形成され、Tc1
C2、HC1、HC2がTc1<TC2、HC1>HC2を満足する
重ね書き可能な光磁気記録媒体において、記録層と記録
補助層との間に記録層を形成後その表面を窒化すること
によって窒化層を形成したことを特徴とする光磁気記録
媒体及びこの光磁気記録媒体の窒化層を形成する方法、
すなわち、記録層の成膜後、記録補助層の成膜前に窒素
を含有したガスを放電させ記録気層表面を、下記の条件
で窒化することを特徴とする光磁気記録媒体の製造方法
に存する。
Means for Solving the Problems As a result of investigations made by the present inventors to solve the above-mentioned problems, as a result of nitriding the surface of the magneto-optical recording layer under specific conditions, an appropriate exchange coupling force can be obtained. I found what I could get. The gist of the present invention resides in a magneto-optical recording layer having a Curie temperature T C1 and a coercive force H C1 at room temperature and a recording auxiliary layer having a Curie temperature T C2 and a coercive force H C2 at room temperature on a substrate. Formed in order, T c1 ,
T C2, H C1, H C2 in the T c1 <T C2, H C1 > overwritable magneto-optical recording medium which satisfies the H C2, formed after the surface of the recording layer between the recording layer and the recording auxiliary layer And a method of forming a nitride layer of the magneto-optical recording medium, characterized in that a nitride layer is formed by nitriding
That is, in the method for manufacturing a magneto-optical recording medium, after the formation of the recording layer and before the formation of the recording auxiliary layer, a gas containing nitrogen is discharged to nitride the surface of the recording gas layer under the following conditions. Exist.

【0008】[0008]

【数2】0.6<PN ×t<2.0 PN :窒素の分圧(Pa ) t :放電時間 (秒)[Equation 2] 0.6 <PN × t <2.0 PN: Partial pressure of nitrogen (Pa) t: Discharge time (seconds)

【0009】以下、本発明を詳細に説明する。本発明に
用いられる基板としてはガラスやアクリル樹脂、ポリカ
ーボネート樹脂等のプラスチック等の透明基板が挙げら
れる。基板の厚みは1.2mm程度が一般的である。
The present invention will be described in detail below. Examples of the substrate used in the present invention include transparent substrates such as glass and plastics such as acrylic resin and polycarbonate resin. The substrate generally has a thickness of about 1.2 mm.

【0010】本発明では基板上に光磁気記録層及び記録
補助層を設ける。光磁気記録層としては相対的にキュリ
ー温度Tc1が低く保磁力Tc1が大きいものが用いられ
る。例えばTb−Fe、Tb−Fe−Co、Dy−Fe
−Dy−Fe−Co、Tb−Dy−Fe−Co等が挙げ
られる。Tc1としては120℃以上200℃以下のもの
が好ましく、またHc1としては10kOe以上のものが
好ましい。膜厚は300〜1000Å程度が好ましい。
In the present invention, a magneto-optical recording layer and a recording auxiliary layer are provided on the substrate. As the magneto-optical recording layer, one having a relatively low Curie temperature T c1 and a large coercive force T c1 is used. For example, Tb-Fe, Tb-Fe-Co, Dy-Fe
-Dy-Fe-Co, Tb-Dy-Fe-Co, etc. are mentioned. T c1 is preferably 120 ° C. or higher and 200 ° C. or lower, and H c1 is preferably 10 kOe or higher. The film thickness is preferably about 300 to 1000Å.

【0011】記録補助層としては相対的にキュリー温度
C2が高く保磁力HC2がHc1より小さいものが用いられ
る。例えばTb−Fe−Co、Dy−Fe−Co、Dy
−Co、Tb−Dy−Fe−Co、Tb−Co、Gd−
Dy−Fe、Gd−Dy−Fe−Co、Gd−Tb−F
e、Gd−Tb−Fe−Co等が挙げられる。TC2とし
ては180℃以上250℃以下のものが好ましいが当然
c1より大きい必要がある。またHC2としては小さい方
が初期化磁界(Hini)を低減させるために好ましい
が、光磁気記録層との交換結合のため、記録補助層は実
効的バイアス磁界(HW )を受けるので、初期化した状
態を安定に存在させるためにはある程度の大きさのHC2
が必要である。HC2としては一般的に1kOe以上3k
Oe以下程度のものが好ましい。記録補助層の膜厚は5
00Å以上1500Å以下が好ましい。
As the recording auxiliary layer, one having a relatively high Curie temperature T C2 and a coercive force H C2 smaller than H c1 is used. For example, Tb-Fe-Co, Dy-Fe-Co, Dy
-Co, Tb-Dy-Fe-Co, Tb-Co, Gd-
Dy-Fe, Gd-Dy-Fe-Co, Gd-Tb-F
e, Gd-Tb-Fe-Co and the like. It is preferable that T C2 is 180 ° C. or higher and 250 ° C. or lower, but naturally it needs to be higher than T c1 . A smaller value of H C2 is preferable to reduce the initializing magnetic field (Hini), but the recording auxiliary layer receives an effective bias magnetic field (H W) due to exchange coupling with the magneto-optical recording layer, so that the initializing magnetic field (Hini) is initialized. H C2 of a certain size in order to make the existing state stable
is necessary. H C2 is generally 1 kOe or more and 3 k
It is preferably about Oe or less. The thickness of the recording auxiliary layer is 5
It is preferably 00 Å or more and 1500 Å or less.

【0012】重ね書きは、光磁気記録層と記録補助層の
間の交換結合力によって可能となる。交換結合力が弱す
ぎる場合、低パワー(PL )記録において、逆方向に印
可されたバイアス磁界(Hb )により、記録層の磁区の
反転が不十分となる。交換結合力が強すぎる場合磁壁を
持った記録磁区が不安定となり、再生パワー(Pr )に
対する強さが低下する。信号特性を低下させない最大の
バイアス磁界(Hmax)は通常400(Oe)以上であ
れば十分であると考えられる。同様に最大の再生パワー
(Pmax )は、ほぼ1.5mW以上必要である。
Overwriting is possible by the exchange coupling force between the magneto-optical recording layer and the recording auxiliary layer. If the exchange coupling force is too weak, in the low power (PL) recording, the bias magnetic field (Hb) applied in the opposite direction causes insufficient reversal of the magnetic domain of the recording layer. If the exchange coupling force is too strong, the recording domain having the domain wall becomes unstable and the strength against the reproducing power (Pr) decreases. It is considered that the maximum bias magnetic field (H max ) that does not deteriorate the signal characteristics is usually 400 (Oe) or more. Similarly, the maximum reproducing power (P max ) needs to be approximately 1.5 mW or more.

【0013】Hb ,Pr 両者に対して、適当な強度を持
った媒体を得るには、交換結合力を適当な値にコントロ
ールする必要がある。我々は、先の出願(特願平2−1
78089号)において光磁気記録層と記録補助層との
間に窒素含有層を設けることにより、交換結合力を低下
させることができることを提案した。本発明においては
窒素含有層の形成を窒素含有ガスの放電による記録層の
窒化処理によって行う。
In order to obtain a medium having appropriate strength for both Hb and Pr, it is necessary to control the exchange coupling force to an appropriate value. We applied for the previous application (Japanese Patent Application No. 2-1
No. 78089), it was proposed that the exchange coupling force can be reduced by providing a nitrogen-containing layer between the magneto-optical recording layer and the recording auxiliary layer. In the present invention, the nitrogen-containing layer is formed by nitriding the recording layer by discharging a nitrogen-containing gas.

【0014】このときの窒化量は、放電を起こす際の窒
素分圧PN 、放電時間tの2つによって制御することが
可能であり、窒素分圧が高い程、また放電時間が長い
程、窒化量は大きくなる。窒化量は、ほぼPN とtの積
によって現わされ、0.6<PN ×t<2.0が好まし
い範囲である。窒化された層は窒素を10原子%以上含
有する領域が20Å以上10Å以下で、その領域の最高
窒素含有量が30原子%以上であるのが良い。
The nitriding amount at this time can be controlled by two factors, that is, the nitrogen partial pressure PN at the time of causing the discharge and the discharge time t. The higher the nitrogen partial pressure is, and the longer the discharge time is, the higher the nitriding amount is. The amount will increase. The amount of nitriding is approximately represented by the product of PN and t, and 0.6 <PN × t <2.0 is a preferable range. The nitrided layer preferably has a region containing nitrogen of 10 atomic% or more in the range of 20 Å or more and 10 Å or less, and the maximum nitrogen content of the region is 30 atomic% or more.

【0015】本発明においては、記録層と記録補助層に
加えて、更に他の層を形成する場合がある。例えば、初
期化磁界を用いない媒体を作製するには、記録補助層に
続いて、制御層、初期化層を設ける。制御層としては、
光磁気記録層、記録補助層のいずれよりもキュリー温度
が低いものが好ましい。初期化層としては光磁気記録
層、記録補助層のいずれよりもキュリー温度が高いもの
が好ましい。膜厚としては、制御層が50〜300Å、
初期層が100〜500Å程度が好ましく用いられる。
In the present invention, other layers may be formed in addition to the recording layer and the recording auxiliary layer. For example, in order to manufacture a medium that does not use an initializing magnetic field, a control layer and an initializing layer are provided after the recording auxiliary layer. As the control layer,
It is preferable that the Curie temperature is lower than that of both the magneto-optical recording layer and the recording auxiliary layer. The initialization layer is preferably one having a higher Curie temperature than either the magneto-optical recording layer or the recording auxiliary layer. As for the film thickness, the control layer is 50 to 300 Å,
An initial layer of about 100 to 500 Å is preferably used.

【0016】磁性層に用いられる希土類と遷移金属の合
金は非常に酸化され易いため磁性層の両側に保護膜を設
けるのはこの発明の好ましい形態である。保護層として
はSiN、AlN、TaO、TiO、ZnS等が好まし
く用いられる。保護層の膜厚としては500〜2000
Å程度が好ましい。基板と磁性層の間の保護層は干渉効
果により反射率を低下させる干渉層としての役目も持っ
ている。
Since the alloy of rare earth and transition metal used in the magnetic layer is very easily oxidized, it is a preferred embodiment of the present invention to provide protective films on both sides of the magnetic layer. As the protective layer, SiN, AlN, TaO, TiO, ZnS or the like is preferably used. The thickness of the protective layer is 500 to 2000
Å is preferable. The protective layer between the substrate and the magnetic layer also serves as an interference layer that lowers the reflectance due to the interference effect.

【0017】基板上に各層を形成する方法としてはスパ
ッタリング、電子ビーム蒸着、CVD法等が用いられる
が、スパッタリング法を用いた場合、異方性の高い良質
な膜が得られるので特に好ましい。
As a method for forming each layer on the substrate, sputtering, electron beam vapor deposition, CVD method or the like is used. The use of the sputtering method is particularly preferable because a film having high anisotropy and high quality can be obtained.

【0018】[0018]

【実施例】以下に実施例をもって本発明をさらに詳細に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。 実施例 記録領域上に溝の底に平坦な領域を持つ案内溝を有する
130mmφのポリカーボネート基板を2つの成膜チャ
ンバーを持つスパッタリング装置に導入し、まず3×1
-7Torr以下まで排気しArとN2 の混合ガスを用
いてSiターゲットの反応性スパッタリングを行いSi
3 4 からなる800Åの保護層を形成した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist. Example A 130 mmφ polycarbonate substrate having a guide groove having a flat area at the bottom of the recording area was introduced into a sputtering apparatus having two film forming chambers, and 3 × 1 was first prepared.
Exhaust to 0 -7 Torr or less and reactive sputtering of Si target using mixed gas of Ar and N 2 is performed.
An 800 Å protective layer of 3 N 4 was formed.

【0019】基板を2×10-7Torr以下の真空度で
ある別のチャンバーに移動した後、Arガスを導入しT
b とFe93Co7 (原子%、以下同じ)のターゲットを
同時にスパッタリングを行い、Tb19(Fe93Co7
の光磁気記録層を400Å形成した。その後Arガスと
所定分圧のN2 をガス導入し、13.56MHzの高周
波で100Wのパワーを投入し、所定時間の放電を行っ
た。具体的にはN2 の分圧を0.025Paで一定と
し、放電時間を変化させる方法及び放電時間を15秒で
一定とし、N2 の分圧を変化させる方法によった。
After the substrate is moved to another chamber having a vacuum degree of 2 × 10 -7 Torr or less, Ar gas is introduced and T
b and Fe 93 Co 7 (atomic%, the same applies below) were simultaneously sputtered to obtain Tb 19 (Fe 93 Co 7 )
400 Å was formed on the magneto-optical recording layer. After that, Ar gas and N 2 having a predetermined partial pressure were introduced, a 100 W power was applied at a high frequency of 13.56 MHz, and discharge was performed for a predetermined time. Specifically, a partial pressure of N 2 was kept constant at 0.025 Pa and a discharge time was changed, and a method of keeping discharge time constant at 15 seconds and a partial pressure of N 2 was changed.

【0020】その後、DyとFe60Co40のターゲット
を同時にスパッタリングを行い、Dy30(Fe60
40)の組成を持つ記録補助層を800Å形成した。デ
ィスクを始めのチャンバーに戻した後、再度Si3 4
を保護層として800Å成膜を行ない光磁気記録媒体を
得た。窒素ガス分圧を0.025Paで一定とし、放電
時間を変えた場合の、得られた光磁気記録媒体の最大記
録磁界(Hmax )と最大再生パワー(Pmax )の関係を
図1に、放電時間を15秒で一定とし、窒素分圧を変化
させた場合の同様の関係を図2に示した。
After that, Dy and Fe 60 Co 40 targets were simultaneously sputtered to obtain Dy 30 (Fe 60 C
The recording auxiliary layer having a composition of o 40 ) was formed at 800Å. After returning the disk to the first chamber, re-apply Si 3 N 4
Was formed as a protective layer to obtain a magneto-optical recording medium. FIG. 1 shows the relationship between the maximum recording magnetic field (H max ) and the maximum reproducing power (P max ) of the obtained magneto-optical recording medium when the discharge time was changed while keeping the nitrogen gas partial pressure constant at 0.025 Pa. FIG. 2 shows a similar relationship when the discharge time is fixed at 15 seconds and the nitrogen partial pressure is changed.

【0021】この図1、図2からPN ×t(Pa ・秒)
とHmax 及びPmax との関係を示したのが図3である。
図3からHmax が400(Oe )以上、Pmax が1.5
mW以上となるのは、PN ×tが0.5近くから2近く
であることがわかる。得られたディスクのうち、Hmax
とPmax が上記を満足するものは、いずれも初期化磁界
3kOeでオーバーライトが可能であり、CNRは47
〜50dB(ビット長0.78μm)という高い値がえ
られた。
From FIG. 1 and FIG. 2, PN × t (Pa · sec)
FIG. 3 shows the relationship between H max and P max .
From FIG. 3, H max is 400 (Oe) or more and P max is 1.5.
It can be seen that the value of mW or more is from PN × t close to 0.5 to close to 2. Of the obtained discs, H max
And P max satisfying the above conditions can be overwritten with an initializing magnetic field of 3 kOe, and the CNR is 47.
A high value of ˜50 dB (bit length 0.78 μm) was obtained.

【0022】[0022]

【発明の効果】本発明で得られた光磁気記録媒体は窒化
層の働きにより最大再生パワー、最大記録磁界ともに優
れたものである。また、本発明の方法によれば、記録層
を窒化して窒化層を形成しているので、窒化層の形成が
コスト的、装置的に簡単で良くなり、実用上大変好まし
い。
The magneto-optical recording medium obtained in the present invention is excellent in both maximum reproducing power and maximum recording magnetic field due to the function of the nitride layer. Further, according to the method of the present invention, since the recording layer is nitrided to form the nitride layer, the formation of the nitride layer is easy in terms of cost and apparatus, and is very preferable in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電時間とHmax 、Pmax との関係のグラフFIG. 1 is a graph showing the relationship between discharge time and H max and P max.

【図2】窒素分圧とHmax 、Pmax との関係のグラフFIG. 2 is a graph showing the relationship between nitrogen partial pressure and H max and P max.

【図3】PN ×tとHmax 、Pmax との関係のグラフFIG. 3 is a graph showing the relationship between PN × t and H max and P max.

【符号の説明】[Explanation of symbols]

イ Pmax のグラフ ロ Hmax のグラフGraph of P max Graph of H max

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上にキュリー温度Tc1、室温での保
磁力HC1を持った光磁気記録層および、キュリー温度T
C2、室温での保磁力HC2を持った記録補助層がこの順に
形成され、Tc1、TC2、HC1、HC2がTc1<TC2、HC1
>HC2を満足する重ね書き可能な光磁気記録媒体であっ
て、記録層と記録補助層との間に記録層を形成後その表
面を窒化することによって、窒化層を形成したことを特
徴とする光磁気記録媒体。
1. A magneto-optical recording layer having a Curie temperature T c1 , a coercive force H C1 at room temperature, and a Curie temperature T c1 on a substrate.
C2, the recording auxiliary layer having a coercive force H C2 at room temperature are formed in this order, T c1, T C2, H C1, H C2 is T c1 <T C2, H C1
An overwritable magneto-optical recording medium satisfying> H C2 , wherein a nitride layer is formed by forming a recording layer between a recording layer and a recording auxiliary layer and then nitriding the surface. Magneto-optical recording medium.
【請求項2】 基板上にキュリー温度Tc1、室温での保
磁力HC1を持った光磁気記録層および、キュリー温度T
C2、室温での保磁力HC2を持った記録補助層がこの順に
形成され、Tc1、TC2、HC1、HC2がTc1<TC2、HC1
>HC2を満足する重ね書き可能な光磁気記録媒体におい
て、記録層の成膜後、記録補助層の成膜前に窒素を含有
したガスを放電させ記録層表面を、下記の条件で窒化す
ることを特徴とする光磁気記録媒体の製造方法。 【数1】0.6<PN ×t<2.0 PN :窒素の分圧(Pa ) t :放電時間 (秒)
2. A magneto-optical recording layer having a Curie temperature T c1 and a coercive force H C1 at room temperature and a Curie temperature T on a substrate.
C2, the recording auxiliary layer having a coercive force H C2 at room temperature are formed in this order, T c1, T C2, H C1, H C2 is T c1 <T C2, H C1
In an overwritable magneto-optical recording medium satisfying> H C2 , a nitrogen-containing gas is discharged after the recording layer is formed and before the recording auxiliary layer is formed, and the surface of the recording layer is nitrided under the following conditions. A method for manufacturing a magneto-optical recording medium characterized by the above. [Equation 1] 0.6 <PN × t <2.0 PN: Partial pressure of nitrogen (Pa) t: Discharge time (seconds)
JP16509592A 1992-06-23 1992-06-23 Magneto-optical recording medium and its production Pending JPH064918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16509592A JPH064918A (en) 1992-06-23 1992-06-23 Magneto-optical recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16509592A JPH064918A (en) 1992-06-23 1992-06-23 Magneto-optical recording medium and its production

Publications (1)

Publication Number Publication Date
JPH064918A true JPH064918A (en) 1994-01-14

Family

ID=15805795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16509592A Pending JPH064918A (en) 1992-06-23 1992-06-23 Magneto-optical recording medium and its production

Country Status (1)

Country Link
JP (1) JPH064918A (en)

Similar Documents

Publication Publication Date Title
US5379275A (en) Thermomagnetic recording method using a recording light power modulated according to the signal to be modulated
US5740133A (en) Magneto-optical recording medium capable of double mask readout
US4995024A (en) Magneto-optical recording element
US5233575A (en) Magneto-optical recording medium
JPH064918A (en) Magneto-optical recording medium and its production
US5710746A (en) Magneto-optical recording medium and reading method with magnetic layers of different coercivity
US6033538A (en) Magneto-optical recording medium production method
US5712833A (en) Durable magneto-optical disk having a rare earth-transition amorphous magneto-optical layer
JPH06251443A (en) Magneto-optical recording medium
JP2555127B2 (en) Magneto-optical recording medium
JPH076420A (en) Magneto-optical recording medium
KR100209584B1 (en) Magneto-optical disk
WO1991007748A1 (en) Magnetooptical recording medium
JP3074104B2 (en) Magneto-optical recording medium
JPH06131733A (en) Signal recording and reproducing method for magneto-optical recording medium
JPH07161082A (en) Magneto-optical recording medium and magneto-optical recording method
JPH0464940A (en) Magneto-optical recording medium
JPH01155534A (en) Production of magneto-optical recording medium
JP3057644B2 (en) Magneto-optical recording medium
JPH0512730A (en) Magneto-optical recording medium
JP3328988B2 (en) Magneto-optical recording medium
JPH06131734A (en) Signal recording and reproducing method for magneto-optical recording medium
JPH06333280A (en) Magneto-optical recording medium which enables overwriting
JPH0528554A (en) Magneto-optical recording medium
JPH10162441A (en) Magneto-optical recording medium