JPH06131733A - Signal recording and reproducing method for magneto-optical recording medium - Google Patents

Signal recording and reproducing method for magneto-optical recording medium

Info

Publication number
JPH06131733A
JPH06131733A JP28021192A JP28021192A JPH06131733A JP H06131733 A JPH06131733 A JP H06131733A JP 28021192 A JP28021192 A JP 28021192A JP 28021192 A JP28021192 A JP 28021192A JP H06131733 A JPH06131733 A JP H06131733A
Authority
JP
Japan
Prior art keywords
layer
recording
magneto
recording layer
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28021192A
Other languages
Japanese (ja)
Inventor
Toshifumi Kawano
敏史 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP28021192A priority Critical patent/JPH06131733A/en
Publication of JPH06131733A publication Critical patent/JPH06131733A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make optical modulation overwriting possible and to obtain an ultra- resolution effect by impressing a magnetic field to an auxiliary recording layer and a magneto-optical recording layer to direct the sub-lattice magnetizations of these layers to the same direction at the time of reproducing and executing reproducing by irradiation of the recording layer and the auxiliary recording layer with reproducing light of the intensity at which these layers attain the specific ultimate temps. CONSTITUTION:The recording layer is formed by using TbFe, etc., having a relatively low Curie temp. and large coercive force. The auxiliary recording layer is formed by using TbFeCo, etc., having the relatively high Curie temp. and the coercive force larger than the coercive force of the recording layer. The stabilizing magnetic field is impressed to the auxiliary recording layer and the recording layer to direct the sub-lattice magnetizations of these layers to the same direction at the time of reproducing. The reproducing is executed by irradiating these layers in this state with the reproducing light of the intensity at which the max. ultimate temp. of the recording layer exceeds its Curie temp. and that the max. ultimate temp. of the auxiliary recording layer is below its Curie temp. As a result, the optical modulation overwriting is made possible and the ultra-resolution effect is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光磁気記録媒体の記録再
生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording / reproducing method for a magneto-optical recording medium.

【0002】[0002]

【従来の技術】光磁気記録媒体は、高密度、低コストの
書換え可能な情報記録媒体として実用化されている。特
に希土類と遷移金属のアモルファス合金の記録層を用い
た媒体は非常に優れた特性を示している。光磁気記録媒
体の残された大きな欠点として、重ね書き(オーバーラ
イト)ができないことがある。すなわち従来の光磁気記
録媒体は記録する前に消去のプロセスが必要であるた
め、1回の記録に2回転を要してデーターの転送速度を
低下させていた。
2. Description of the Related Art Magneto-optical recording media have been put to practical use as high-density, low-cost rewritable information recording media. In particular, a medium using a recording layer of an amorphous alloy of rare earth and a transition metal shows extremely excellent characteristics. The remaining major drawback of the magneto-optical recording medium is that overwrite cannot be performed. That is, since the conventional magneto-optical recording medium needs an erasing process before recording, one rotation requires two rotations to reduce the data transfer rate.

【0003】近年、光磁気記録媒体においてこの重ね書
きを行う方法としていくつか提唱されている。このうち
特に有望な方法として多層膜を用いた光変調オーバーラ
イト法がある。この方法は第34回応用物理学関係連合
講演会予稿集28PZL−3(1987)で論じられて
いるもので、低キュリー 温度と高保磁力を持った垂直
磁化層(光磁気記録層)と該記録層に対し相対的に高い
キュリー温度と低い保磁力を持った垂直磁化層(記録補
助層)から成る。オーバーライトの手段は初めに記録補
助層の磁化の向きをそろえるのに充分でかつ光磁気記録
層に影響をあたえない大きさの初期化磁界(Hini)を
印加した後バイアス磁界(Hb)を印加しながら高パワ
ー(PH)および低パワー(PL)の2値に変調された光
ビームを照射する。PL照射のときには記録補助層の反
転はなく光磁気記録層は記録補助層との交換結合により
安定化する方向に向きPH照射のときには記録補助層
が、バイアス磁界(Hb)によって反転をおこし、それ
に従って光磁気記録層もPLの場合と逆方向を向きこの
2値の変調によりオーバーライトが可能となる。
In recent years, several methods have been proposed as a method for performing this overwriting in a magneto-optical recording medium. Among them, a particularly promising method is a light modulation overwrite method using a multilayer film. This method is discussed in Proceedings of the 34th Joint Lecture on Applied Physics 28PZL-3 (1987), which is a perpendicular magnetization layer (magneto-optical recording layer) having a low Curie temperature and a high coercive force and the recording. It is composed of a perpendicular magnetization layer (recording auxiliary layer) having a high Curie temperature and a low coercive force relatively to the layer. The overwriting means first applies an initializing magnetic field (Hini) of a magnitude sufficient to align the magnetization directions of the recording auxiliary layer and does not affect the magneto-optical recording layer, and then applies a bias magnetic field (Hb). On the other hand, a binary modulated light beam of high power (PH) and low power (PL) is emitted. When the PL irradiation is performed, the recording auxiliary layer is not inverted, and the magneto-optical recording layer is oriented in a direction to be stabilized by exchange coupling with the recording auxiliary layer. When the PH irradiation is performed, the recording auxiliary layer is inverted by the bias magnetic field (Hb). Accordingly, the magneto-optical recording layer faces in the opposite direction to the case of PL, and the binary modulation enables overwriting.

【0004】こういった2層の磁性層による媒体の他
に、記録補助層の次に初期化の役割をはたす層を設け、
初期化磁石を省略した3層または4層の構造等も提案さ
れている。上記いずれの方法においても、光磁気記録層
と記録補助層との間の交換結合力が特性に大きく影響す
ることが知られており、この交換結合力の制御のため
に、GdFeCo等の垂直磁気異方性が小さい材料によ
る中間層が設けることも行われている。
In addition to such a medium having two magnetic layers, a layer which plays a role of initialization is provided next to the recording auxiliary layer,
A three-layer or four-layer structure without the initializing magnet has also been proposed. In any of the above methods, it is known that the exchange coupling force between the magneto-optical recording layer and the recording auxiliary layer greatly affects the characteristics. To control this exchange coupling force, the perpendicular magnetic field of GdFeCo or the like is used. An intermediate layer made of a material having small anisotropy is also provided.

【0005】一方、近年、交換結合多層膜を用い、再生
光の回折限界より小さい記録を再生する、いわゆる超解
像効果を得る方法が開発された。媒体としては、低保磁
力と高キュリー温度を持った再生層、低キュリー温度を
持った制御層、高保磁力と高キュリー温度を持った記録
層の3層が交換結合した媒体を用いる。再生磁界を印加
しながら再生光により加熱したとき、媒体の高温部で、
交換結合が切れる。このため、再生層が再生磁界の方向
を向き記録ビットが消去される。従って、低温部のみが
再生され、結果的に再生範囲が狭くなるため、再生光を
絞った場合と同じ効果が得られ、高密度の記録ビットの
再生を行うことができる。消去された記録ビットは、媒
体温度が低くなり交換結合が回復したときに、記録層か
ら転写されることにより復活する。
On the other hand, in recent years, a method for obtaining a so-called super-resolution effect has been developed in which an exchange coupling multilayer film is used to reproduce a recording smaller than the diffraction limit of reproduction light. As the medium, a medium in which three layers of a reproducing layer having a low coercive force and a high Curie temperature, a control layer having a low Curie temperature, and a recording layer having a high coercive force and a high Curie temperature are exchange-coupled is used. When heated by reproducing light while applying a reproducing magnetic field, at the high temperature part of the medium,
Exchange coupling breaks. Therefore, the reproducing layer faces the direction of the reproducing magnetic field and the recorded bits are erased. Therefore, only the low temperature portion is reproduced, and the reproduction range is narrowed as a result, so that the same effect as when the reproduction light is narrowed down can be obtained, and high density recording bits can be reproduced. The erased recording bit is restored by being transferred from the recording layer when the medium temperature becomes low and the exchange coupling is restored.

【0006】[0006]

【発明が解決しようとする課題】以上のように、光変調
オーバーライトと超解像技術は、それぞれ非常に優れた
特徴を持っている。しかしながら、両者を同時に兼ね備
えた、すなわち、光変調オーバーライトが可能で超解像
効果を得られるような方法はこれまでに存在しなかっ
た。超解像効果を得る媒体でのオーバーライト方法とし
ては磁界変調方式が提案されているが、この方式では、
2枚を貼合わせた媒体に使用できない、ゴミに弱い等の
欠点があった。
As described above, the light modulation overwrite and the super-resolution technique have very excellent characteristics. However, there has not been a method that has both of them at the same time, that is, a method capable of performing light modulation overwriting and obtaining a super-resolution effect has not existed so far. A magnetic field modulation method has been proposed as an overwrite method for a medium that obtains a super-resolution effect.
It had the drawbacks that it could not be used for the medium in which two sheets were pasted together, and it was weak against dust.

【0007】[0007]

【課題を解決するための手段】本発明者等は上記課題を
解決すべく検討を行った結果、光変調オーバーライト媒
体の再生方法を工夫することにより、同時に超解像効果
が得られることを見いだした。本発明の要旨は、基板上
に少なくともキュリー温度TC1、室温での保磁力HC1を
持った光磁気記録層および、キュリー温度TC2、室温で
の保磁力HC2を持った記録補助層がこの順に成膜され、
前記TC1、TC2、HC1、HC2 が TC1<TC2 、HC1>HC2 を満足し、少なくとも記録補助層の磁化を一方向に揃え
る工程と記録信号により、記録光を高パワーと低パワー
に変調して記録を行う工程を経て重ね書きを行うことが
可能である光磁気記録媒体において、以下の方法で信号
の再生を行うことを特徴とする光磁気記録媒体の信号記
録再生方法 (a)書き込み時に記録補助層が揃えられる磁化方向と
反対の方向に磁場を印加することで、記録補助層の副格
子磁化が記録層の副格子磁化と同一方向を向くようにな
し、(b)さらに、記録層の最高到達温度TMmaxが、T
Mmax>TC1であり、記録補助層の最高到達温度TAmaxが
TAmax<TC2となる強度の再生光を媒体に照射し再生を
おこなう。
Means for Solving the Problems As a result of studies made by the present inventors to solve the above-mentioned problems, it has been found that a super-resolution effect can be obtained at the same time by devising a reproducing method of an optical modulation overwrite medium. I found it. The gist of the present invention is that a magneto-optical recording layer having a Curie temperature TC1 and a coercive force HC1 at room temperature and a recording auxiliary layer having a Curie temperature TC2 and a coercive force HC2 at room temperature are formed in this order on a substrate. Is
The above-mentioned TC1, TC2, HC1, HC2 satisfy TC1 <TC2, HC1> HC2, and the recording light is modulated into a high power and a low power by at least the step of aligning the magnetization of the recording auxiliary layer in one direction and recording. A signal recording / reproducing method for a magneto-optical recording medium, which is characterized in that a signal is reproduced by the following method in a magneto-optical recording medium capable of performing overwriting through the step of performing (a) recording assistance during writing. By applying a magnetic field in a direction opposite to the magnetization direction in which the layers are aligned, the sub-lattice magnetization of the recording auxiliary layer is oriented in the same direction as the sub-lattice magnetization of the recording layer. Ultimate temperature TMmax is T
Mmax> TC1, and the maximum reaching temperature TAmax of the recording auxiliary layer is TAmax <TC2.

【0008】ここで、HC1、HC2は全て交換結合を行っ
ていない単層の場合の保磁力を示している。以下、本発
明を詳細に説明する。本発明に用いられる媒体の基板と
してはガラスやアクリル樹脂、ポリカーボネート樹脂等
のプラスチック等の透明基板が挙げられる。基板の厚み
は1.2mm程度が一般的である。
Here, HC1 and HC2 all represent coercive force in the case of a single layer without exchange coupling. Hereinafter, the present invention will be described in detail. Examples of the substrate of the medium used in the present invention include transparent substrates such as glass and plastics such as acrylic resin and polycarbonate resin. The substrate generally has a thickness of about 1.2 mm.

【0009】本発明では基板上に光磁気記録層及び記録
補助層を設ける。光磁気記録層としては相対的にキュリ
ー温度TC1 が低く保磁力HC1が大きいものが用いられ
る。例えばTbFe、TbFeCo、DyFe、DyF
eCo、TbDyFeCo等が挙げられる。TC1として
は120℃以上200℃以下のものが好ましく、またH
C1としては10kOe以上のものが好ましい。膜厚は3
0〜100nm程度が好ましい。
In the present invention, a magneto-optical recording layer and a recording auxiliary layer are provided on the substrate. As the magneto-optical recording layer, one having a relatively low Curie temperature TC1 and a large coercive force HC1 is used. For example, TbFe, TbFeCo, DyFe, DyF
Examples thereof include eCo and TbDyFeCo. TC1 is preferably 120 ° C or higher and 200 ° C or lower, and H
C1 is preferably 10 kOe or more. Film thickness is 3
About 0 to 100 nm is preferable.

【0010】記録補助層としては相対的にキュリー温度
TC2が高く保磁力HC2がHC1より小さいものが用いられ
る。例えばTbFeCo、DyFeCo、DyCo、T
bDyFeCo、TbCo、GdDyFe、GdDyF
eCo、GdTbFe、GdTbFeCo等が挙げられ
る。TC2としては180℃以上250℃以下のものが好
ましいが当然TC1より大きい必要がある。
As the auxiliary recording layer, one having a relatively high Curie temperature TC2 and a coercive force HC2 smaller than HC1 is used. For example, TbFeCo, DyFeCo, DyCo, T
bDyFeCo, TbCo, GdDyFe, GdDyF
Examples thereof include eCo, GdTbFe, GdTbFeCo and the like. It is preferable that TC2 is not less than 180 ° C. and not more than 250 ° C., but naturally it must be larger than TC1.

【0011】またHC2としては小さい方が初期化磁界
(Hini)を低減させるために好ましいが、光磁気記録
層との交換結合のため、記録補助層は実効的バイアス磁
界を受けるので、初期化した状態を安定に存在させるた
めにはある程度の大きさのHC2が必要である。HC2 と
しては一般的に1kOe以上4kOe以下程度のものが
好ましい。記録補助層の膜厚は50nm以上150nm
以下が好ましい。
A smaller value of HC2 is preferable for reducing the initializing magnetic field (Hini), but the auxiliary recording layer is subjected to an effective bias magnetic field due to exchange coupling with the magneto-optical recording layer, so it was initialized. In order for the state to exist stably, a certain amount of HC2 is required. It is generally preferable that HC2 is about 1 kOe or more and 4 kOe or less. The film thickness of the recording auxiliary layer is 50 nm or more and 150 nm
The following are preferred.

【0012】光磁気記録層と記録補助層との間に交換結
合力を低減させる中間層を挿入してもよい。中間層とし
ては交換結合力を1/3〜2/3程度に低減させるもの
が好適に用いられ、具体的には、垂直磁気異方性の小さ
いGdFeCo等を1nm〜20nm程度の厚さで設け
るのが好ましい。中間層としては光磁気記録層あるいは
記録補助層を酸化あるいは窒化した層を用いることも可
能である。
An intermediate layer for reducing the exchange coupling force may be inserted between the magneto-optical recording layer and the recording auxiliary layer. As the intermediate layer, one that reduces the exchange coupling force to about 1/3 to 2/3 is preferably used, and specifically, GdFeCo or the like having small perpendicular magnetic anisotropy is provided with a thickness of about 1 nm to 20 nm. Is preferred. As the intermediate layer, it is also possible to use a layer obtained by oxidizing or nitriding the magneto-optical recording layer or the recording auxiliary layer.

【0013】初期化磁界を用いない媒体を作製するに
は、記録補助層に続いて、制御層、初期化層を設ける。
制御層としては、光磁気記録層のキュリー温度と同等
か、もしくはそれより低いキュリー温度のものが好まし
い。制御層としては通常100〜150℃程度のキュリ
ー温度のものが用いられる。初期化層としては光磁気記
録層、記録補助層のいずれよりもキュリー温度が高いも
のが好ましい。初期化層としては通常300℃以上のキ
ュリー温度のものが用いられる。膜厚としては、制御層
が5〜30nm、初期層が10〜50nm程度が好まし
く用いられる。
In order to manufacture a medium that does not use an initializing magnetic field, a control layer and an initializing layer are provided after the recording auxiliary layer.
The control layer preferably has a Curie temperature equal to or lower than the Curie temperature of the magneto-optical recording layer. As the control layer, one having a Curie temperature of about 100 to 150 ° C. is usually used. The initialization layer is preferably one having a higher Curie temperature than either the magneto-optical recording layer or the recording auxiliary layer. As the initialization layer, one having a Curie temperature of 300 ° C. or higher is usually used. The thickness of the control layer is preferably 5 to 30 nm, and the thickness of the initial layer is preferably 10 to 50 nm.

【0014】磁性層に用いられる希土類と遷移金属の合
金は非常に酸化され易いため磁性層の両側に保護膜を設
けるのはこの発明の好ましい形態である。保護層として
はSiN、AlN、TaO、TiO、ZnS等が好まし
く用いられる。保護層の膜厚としては50〜200nm
程度が好ましい。基板と磁性層の間の保護層は干渉効果
により反射率を低下させる干渉層としての役目も持って
いる。基板上に各層を形成する方法としてはスパッタリ
ング、電子ビーム蒸着、CVD法等が用いられるが、ス
パッタリング法を用いた場合、異方性の高い良質な膜が
得られるので特に好ましい。
Since the alloy of rare earth and transition metal used in the magnetic layer is very easily oxidized, it is a preferred embodiment of the present invention to provide protective films on both sides of the magnetic layer. As the protective layer, SiN, AlN, TaO, TiO, ZnS or the like is preferably used. The thickness of the protective layer is 50 to 200 nm
A degree is preferable. The protective layer between the substrate and the magnetic layer also serves as an interference layer that lowers the reflectance due to the interference effect. As a method of forming each layer on the substrate, sputtering, electron beam vapor deposition, CVD method or the like is used, and the use of the sputtering method is particularly preferable because a high-quality film having high anisotropy can be obtained.

【0015】上記のごとき媒体で重ね書きをする場合、
従来の技術として述べたように、記録補助層を同一方向
に初期化する必要がある。このとき、記録が行われてい
る光磁気記録層と副格子磁化方向が異なる場合、両者の
間に磁壁を生じる。本発明においては、再生時に安定化
磁場を印加する。安定化磁場の方向は記録補助層の初期
化と逆方向である。すなわち、磁壁を消滅させる方向で
あるから、1kOe以下の小さな磁場で磁壁が無くな
り、2つの層の副格子磁化が同一方向を向く。従って、
結果的に記録補助層に、記録ビットが転写されることに
なる。安定化磁場の印加手段は、記録磁場のものと同一
でもよいし、別に設けても良い。
When overwriting with the above medium,
As described in the related art, it is necessary to initialize the recording auxiliary layer in the same direction. At this time, if the sub-lattice magnetization direction is different from that of the magneto-optical recording layer in which recording is performed, a domain wall is generated between the two. In the present invention, a stabilizing magnetic field is applied during reproduction. The direction of the stabilizing magnetic field is opposite to that of the initialization of the recording auxiliary layer. That is, since it is a direction to extinguish the domain wall, the domain wall disappears in a small magnetic field of 1 kOe or less, and the sublattice magnetizations of the two layers face the same direction. Therefore,
As a result, the recording bit is transferred to the recording auxiliary layer. The stabilizing magnetic field applying means may be the same as the recording magnetic field applying means, or may be provided separately.

【0016】この状態で、さらに、光磁気記録層の最高
到達温度TMmaxが、TMmax>TC1であり、記録補助層の
最高到達温度TAmaxがTAmax<TC2となる強度の再生光
を媒体に照射し再生をおこなう。光磁気記録層の最高到
達温度TMmaxと記録補助層の最高到達温度TAmaxは記録
層側から再生光をあてた場合の各層の厚さ等の影響によ
り、記録層と記録補助層との間に生ずる温度差を利用す
る。通常記録層と記録補助層との間には10〜20℃程
度の温度差が生じている。
In this state, further, the maximum reaching temperature TMmax of the magneto-optical recording layer is TMmax> TC1 and the maximum reaching temperature TAmax of the recording auxiliary layer is TAmax <TC2. Perform. The maximum reached temperature TMmax of the magneto-optical recording layer and the maximum reached temperature TAmax of the recording auxiliary layer occur between the recording layer and the recording auxiliary layer due to the influence of the thickness of each layer when reproducing light is applied from the recording layer side. Take advantage of the temperature difference. Usually, a temperature difference of about 10 to 20 ° C. occurs between the recording layer and the recording auxiliary layer.

【0017】このようにすると光磁気記録層の高温部で
は、ビットが消滅して光磁気信号が無くなる。再生信号
は、低温部からのみ得られることになるので、実質的に
再生光のスポット径が小さくなったのと等しく、高い解
像度が得られる。媒体の温度が冷えて、光磁気記録層の
磁化が回復すると、記録補助層との交換結合力によって
記録ビットが光磁気記録層に転写される。
In this way, the bits disappear and the magneto-optical signal disappears in the high temperature portion of the magneto-optical recording layer. Since the reproduction signal is obtained only from the low temperature part, it is substantially the same as the spot diameter of the reproduction light being reduced, and high resolution can be obtained. When the temperature of the medium is cooled and the magnetization of the magneto-optical recording layer is recovered, the recording bit is transferred to the magneto-optical recording layer by the exchange coupling force with the recording auxiliary layer.

【0018】すなわち本発明では、再生する度に記録が
光磁気記録層→記録補助層→光磁気記録層と言うように
2回の転写を受ける。光変調オーバーライトの技術で示
されたようにこういった交換結合による転写は、非常に
信頼性の高いプロセスであり繰り返し再生にも充分耐え
るものである。再生から、記録に移る場合は、再生パワ
ーを下げて安定化磁界を切ってから、記録磁界を印加す
れば、通常の光変調オーバーライトが行える。
That is, according to the present invention, each time reproduction is performed, recording is transferred twice, that is, magneto-optical recording layer → recording auxiliary layer → magneto-optical recording layer. As shown in the technique of light modulation overwrite, such transfer coupling by transfer coupling is a highly reliable process and sufficiently endures repeated reproduction. When moving from reproduction to recording, normal optical modulation overwrite can be performed by lowering the reproduction power to cut the stabilizing magnetic field and then applying the recording magnetic field.

【0019】この場合、高温部のマスクされる部分は、
信号が無くなるのであり、磁化が再生磁場により一方向
に揃う従来技術よりは超解像効果が小さい。しかし、本
発明の方式は、最低2層の磁性層により実現できるもの
で、プロセスの単純化、コストの低減の点から大きな意
味がある。しかもーバーライトが可能であるという大き
なメリットもある。。
In this case, the masked portion of the high temperature portion is
Since there is no signal, the super-resolution effect is smaller than in the prior art in which the magnetization is aligned in one direction by the reproducing magnetic field. However, the method of the present invention can be realized by at least two magnetic layers, and has great significance in terms of process simplification and cost reduction. Moreover, there is also a big merit that it can be over-lit. .

【0020】[0020]

【実施例】以下に実施例をもって本発明をさらに詳細に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。 実施例1 ポリカーボネート基板上に、スパッタリングによりSi
Nからなる厚さ80nmの保護層、Tb21(Fe93Co
7)79(数値は成分割合、以下同じ)からなる厚さ35
nmの光磁気記録層、Gd28(Fe93Co7)からなる
厚さ10nmの中間層、Dy28(Fe60Co40)からな
る厚さ80nmの記録補助層を設けた。光磁気記録層の
保磁力は12kOe、キュリー温度は180℃。記録補
助層の保磁力は1.8kOeキュリー温度は280℃で
あった。最後にSi3N4の保護層を厚さ80nm成膜し
た。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist. Example 1 Si is sputtered on a polycarbonate substrate.
An 80 nm thick protective layer of N, Tb21 (Fe93Co
7) Thickness 35 consisting of 79 (values are component ratios, the same applies below)
a magneto-optical recording layer having a thickness of 10 nm, an intermediate layer having a thickness of 10 nm made of Gd28 (Fe93Co7), and a recording auxiliary layer having a thickness of 80 nm made of Dy28 (Fe60Co40). The coercive force of the magneto-optical recording layer is 12 kOe and the Curie temperature is 180 ° C. The coercive force of the recording auxiliary layer was 1.8 kOe and the Curie temperature was 280 ° C. Finally, a Si3N4 protective layer was formed to a thickness of 80 nm.

【0021】このようにして得られたディスクは、線速
11.3m/sで回転させたとき、初期化磁場3kO
e、記録磁場300(Oe)、PH=9mW、PL=4m
Wでオーバーライトが可能であった。ディスクを線速1
1.3m/sで回転させ記録を行った後、800(O
e)の安定化磁場を印加した状態で、実施例として、再
生パワーPrが2.8mWの場合を、また比較例として
1mWの場合の再生信号のビット長依存性を測定した結
果を第1図に示す。Prが2.8mWの場合は、Prが
1mWの場合と比べ短ビット長において特性の改善が見
られ、超解像効果がえられていることがわかる。
The disk thus obtained had an initializing magnetic field of 3 kO when rotated at a linear velocity of 11.3 m / s.
e, recording magnetic field 300 (Oe), PH = 9 mW, PL = 4 m
Overwriting was possible with W. Disk speed 1
After rotating at 1.3 m / s for recording, 800 (O
FIG. 1 shows the results of measuring the bit length dependence of the reproduced signal when the reproducing power Pr is 2.8 mW as an example and 1 mW as a comparative example with the stabilizing magnetic field of e) applied. Shown in. When Pr is 2.8 mW, the characteristics are improved in a short bit length as compared with the case where Pr is 1 mW, and it can be seen that the super-resolution effect is obtained.

【0022】なお、安定化磁場を印加しないときは、P
rが1mWの場合違いは生じなかったが、Prが2.8
mWでは記録が消滅して再生が行えなかった。 実施例2 記録補助層までを実施例1と同様に作製した。その後、
Tb18(Fe97Co3)82からなる厚さ20nmの制御
層及びTb23Co77からなる厚さ30nmの初期化層を
成膜した。制御層の保磁力は6kOe、キュリー温度は
140℃であり、初期化層の保磁力は22kOe、キュ
リー温度は400℃以上であった。初期化層の上には実
施例1と同様に厚さ80nmのSi3N4の保護層を成膜
した。
When no stabilizing magnetic field is applied, P
There was no difference when r was 1 mW, but Pr was 2.8.
In mW, the recording disappeared and the reproduction could not be performed. Example 2 Up to the recording auxiliary layer was manufactured in the same manner as in Example 1. afterwards,
A 20 nm-thick control layer made of Tb18 (Fe97Co3) 82 and a 30 nm-thick initialization layer made of Tb23Co77 were formed. The coercive force of the control layer was 6 kOe and the Curie temperature was 140 ° C., and the coercive force of the initialization layer was 22 kOe and the Curie temperature was 400 ° C. or higher. A protective layer of Si3N4 having a thickness of 80 nm was formed on the initializing layer as in Example 1.

【0023】このようにして得られたディスクは、線速
5.7m/sで回転させたとき、記録磁場300(O
e)、PH=9mW、PL=3.5mWでオーバーライト
が可能であった。初期化磁場は不要であった。ディスク
を線速5.7m/sで回転させ記録を行った後、800
(Oe)の安定化磁場を印加した状態で、実施例とし
て、再生パワーPrが2.8mWの場合を、また比較例
として1mWの場合の再生信号のビット長依存性を測定
した結果、実施例1とほぼ同様の結果がえられ、Prが
2.8mWの場合、Prが1mWの場合と比べビット長
0.5μmにおいて、約10dBのCNRの改善が見ら
れ、超解像効果がえられていることがわかった。なお、
安定化磁場を印加しないときは、Prが1mWの場合違
いは生じなかったが、Prが2.8mWでは記録が消滅
して再生が行えなかった。
The disk thus obtained has a recording magnetic field of 300 (O) when rotated at a linear velocity of 5.7 m / s.
e), PH = 9 mW, PL = 3.5 mW, overwriting was possible. No initialization magnetic field was needed. After rotating the disc at a linear velocity of 5.7 m / s for recording, 800
With the stabilizing magnetic field of (Oe) applied, the bit length dependence of the reproduced signal was measured when the reproducing power Pr was 2.8 mW as an example and when it was 1 mW as a comparative example. A result similar to that of 1 was obtained, and when Pr was 2.8 mW, an improvement in CNR of about 10 dB was observed at a bit length of 0.5 μm compared with the case where Pr was 1 mW, and a super-resolution effect was obtained. I found out that In addition,
When the stabilizing magnetic field was not applied, there was no difference when Pr was 1 mW, but when Pr was 2.8 mW, recording disappeared and reproduction could not be performed.

【0024】[0024]

【発明の効果】発明による光磁気記録媒体の再生方法を
用いると、光変調オーバーライトが可能で、しかも超解
像効果を得ることができる。
When the reproducing method of the magneto-optical recording medium according to the present invention is used, the optical modulation overwriting is possible and the super-resolution effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1における超解像効果を示すグラフFIG. 1 is a graph showing a super-resolution effect in Example 1.

【符号の説明】[Explanation of symbols]

1:Prが2.8mWの場合(本発明)のグラフ 2:Prが1mWの場合のグラフ 1: Graph when Pr is 2.8 mW (present invention) 2: Graph when Pr is 1 mW

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に少なくともキュリー温度TC1、室
温での保磁力HC1を持った光磁気記録層および、キュリ
ー温度TC2、室温での保磁力HC2を持った記録補助層が
この順に成膜され、前記TC1、TC2、HC1、HC2が TC1<TC2 、HC1>HC2 を満足し、少なくとも記録補助層の磁化を一方向に揃え
る工程と、記録光を高パワーと低パワーに変調して記録
を行う工程を経て重ね書きを行うことが可能である光磁
気記録媒体において、以下の方法で信号の再生を行うこ
とを特徴とする光磁気記録媒体の信号記録再生方法 (a)書き込み時に記録補助層が揃えられる磁化方向と
反対の方向に磁場を印加することで、記録補助層の副格
子磁化が記録層の副格子磁化と同一方向を向くようにな
し、(b)さらに、光磁気記録層の最高到達温度TMmax
が、TMmax>TC1であり、かつ記録補助層の最高到達温
度TAmaxがTAmax<TC2となる強度の再生光を媒体に照
射し再生をおこなう。
1. A magneto-optical recording layer having a Curie temperature TC1 and a coercive force HC1 at room temperature, and a recording auxiliary layer having a Curie temperature TC2 and a coercive force HC2 at room temperature are formed in this order on a substrate. , TC1, TC2, HC1, and HC2 satisfy TC1 <TC2 and HC1> HC2, and at least the step of aligning the magnetization of the recording auxiliary layer in one direction and recording by modulating recording light to high power and low power are performed. A signal recording / reproducing method for a magneto-optical recording medium, which is characterized in that a signal is reproduced by the following method in a magneto-optical recording medium capable of performing overwriting through the steps. By applying a magnetic field in a direction opposite to the aligned magnetization direction, the sub-lattice magnetization of the recording auxiliary layer is oriented in the same direction as the sub-lattice magnetization of the recording layer. Ultimate temperature TMmax
, TMmax> TC1 and the maximum attainable temperature TAmax of the recording auxiliary layer is TAmax <TC2.
【請求項2】光磁気記録層と記録補助層の間に、そのど
ちらの層よりも低い垂直磁気異方性を有する中間層を設
けた媒体を用いることを特徴とする請求項1に記載の光
磁気記録媒体の信号記録再生方法。
2. A medium having an intermediate layer provided between a magneto-optical recording layer and a recording auxiliary layer and having a perpendicular magnetic anisotropy lower than that of either layer is used. Signal recording / reproducing method for magneto-optical recording medium.
【請求項3】記録補助層の光磁気記録層に面した側と反
対側に、光磁気記録層のキュリー温度と同等もしくはそ
れより低いキュリー温度を有する制御層と、記録補助層
と光磁気記録層のどちらの層よりも高いキュリー温度を
有する初期化層を設けた媒体を用いることを特徴とする
請求項1に記載の光磁気記録媒体の信号記録再生方法。
3. A control layer having a Curie temperature equal to or lower than the Curie temperature of the magneto-optical recording layer on the side of the recording auxiliary layer opposite to the side facing the magneto-optical recording layer, the recording auxiliary layer and the magneto-optical recording. 2. The signal recording / reproducing method for a magneto-optical recording medium according to claim 1, wherein a medium provided with an initialization layer having a Curie temperature higher than either of the layers is used.
JP28021192A 1992-10-19 1992-10-19 Signal recording and reproducing method for magneto-optical recording medium Pending JPH06131733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28021192A JPH06131733A (en) 1992-10-19 1992-10-19 Signal recording and reproducing method for magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28021192A JPH06131733A (en) 1992-10-19 1992-10-19 Signal recording and reproducing method for magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH06131733A true JPH06131733A (en) 1994-05-13

Family

ID=17621866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28021192A Pending JPH06131733A (en) 1992-10-19 1992-10-19 Signal recording and reproducing method for magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH06131733A (en)

Similar Documents

Publication Publication Date Title
US5210724A (en) Optomagnetic recording method and apparatus which precludes an interface magnetic wall within block magnetic wall
JP3452451B2 (en) Magneto-optical recording medium and magneto-optical recording method
JPH0542062B2 (en)
US5768218A (en) Magneto-optical recording medium having a plurality of magnetic layers
US5774430A (en) Optical modulation overwritable magnetooptical recording medium
JPH0896430A (en) Magneto-optical recording medium and reproducing method
JPH06131733A (en) Signal recording and reproducing method for magneto-optical recording medium
US5822282A (en) Magneto-optical recording medium having a plurality of magnetic layers for use in light modulation technique
JPH06251443A (en) Magneto-optical recording medium
JPH06131734A (en) Signal recording and reproducing method for magneto-optical recording medium
JPH10134437A (en) Production of magneto-optical recording medium
JPH04219642A (en) Magneto-optical recording medium and method thereof
JP3666057B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording medium used therefor
JP2782957B2 (en) Magneto-optical recording medium
JP2800444B2 (en) Magneto-optical recording medium and recording / reproducing method thereof
JPH0714230A (en) Magneto-optical recording medium and its reproduction method
JP2913875B2 (en) Magneto-optical recording medium and recording / reproducing method thereof
JP3592399B2 (en) Magneto-optical recording medium
JPH06309710A (en) Magneto-optical recording medium
JPH08147776A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method
JPH07141709A (en) Magneto-optical recording medium
JPH0773526A (en) Production of magneto-optical recording medium
JPH0528554A (en) Magneto-optical recording medium
JPH064918A (en) Magneto-optical recording medium and its production
JPH06187678A (en) Magneto-optical recording medium