JPH06187678A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH06187678A
JPH06187678A JP33832292A JP33832292A JPH06187678A JP H06187678 A JPH06187678 A JP H06187678A JP 33832292 A JP33832292 A JP 33832292A JP 33832292 A JP33832292 A JP 33832292A JP H06187678 A JPH06187678 A JP H06187678A
Authority
JP
Japan
Prior art keywords
magnetic layer
layer
magneto
magnetic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33832292A
Other languages
Japanese (ja)
Inventor
Hiroyuki Awano
博之 粟野
Toshio Niihara
敏夫 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP33832292A priority Critical patent/JPH06187678A/en
Publication of JPH06187678A publication Critical patent/JPH06187678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve cross talk due to heat in a magneto-optical disk for optical modulated overwriting using an exchange bonded film and to increase recording density by further laminating a nonmagnetic layer and a 3rd magnetic layer besides the 1st and 2nd magnetic layers of the disk. CONSTITUTION:A dielectric layer 2, a 1st magnetic layer 3 and a 2nd magnetic layer 4 are laminated on a substrate 1 to obtain a magneto-optical disk and information is reproduced by utilizing the fact that reflected light generated by irradiating the disk with laser light from the layer 3 side receives a magneto- optical effect. In this case, a nonmagnetic layer 5 and a 3rd magnetic layer 6 are further laminated on the layer 4 side and the magnetic layer 6 is protected with an oxidation preventing layer 7. Each of the three magnetic layers is made of an amorphous film of a rare earth metal transition metal such as Tb-Fe-Co, Gd-Dy-Fe-Co or Gd-Tb-Fe-Co. The rare earth metal content has been regulated to 15-40 atomic% so that the amorphous film acts as a perpendicularly hardened film. The thickness of the 3rd magnetic layer 6 is regulated to <=200nm because semiconductor laser has an output limit and the thickness of the nonmagnetic layer 5 is regulated to <=50nm so as to reduce a leakage magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光磁気記録媒体に係り、
特に、オーバーライト可能な光磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium,
In particular, it relates to an overwritable magneto-optical recording medium.

【0002】[0002]

【従来の技術】光磁気記録は、情報の記録・再生・消去
が可能な光記録である。これらの機能に付け加えて、近
年、オーバーライトができるようにした新しい光磁気記
録方式が提案されている。オーバーライトが可能な光磁
気記録方式は大きく二つに分けられる。すなわち、磁界
変調方式と光強度変調方式の二つである。両者の方式を
比較した場合、高速変調・高速記録が可能である点や、
二枚の光磁気記録媒体を張り合わせた構造をとることが
できる点などから、後者の方式の方が有利である。
2. Description of the Related Art Magneto-optical recording is optical recording capable of recording, reproducing and erasing information. In addition to these functions, a new magneto-optical recording system that enables overwriting has been proposed in recent years. Overwritable magneto-optical recording methods are roughly divided into two types. That is, there are two methods, a magnetic field modulation method and a light intensity modulation method. When comparing the two methods, the point that high speed modulation and high speed recording is possible,
The latter method is more advantageous because it can have a structure in which two magneto-optical recording media are bonded together.

【0003】光強度変調を実現させるためには、特開昭
62−175948号公報に記載されているような光磁気記録媒
体を用いる。つまり、磁性層としては、低いキュリー温
度と高い保磁力とを有する第一磁性層と、この磁性層に
較べて相対的に高いキュリー温度と低い保磁力を有する
第二磁性層とからなる交換結合した二層膜であり、レー
ザ光の強度を変調することによりオーバーライトが可能
な光磁気記録媒体である。
In order to realize the light intensity modulation, Japanese Patent Laid-Open No.
A magneto-optical recording medium as described in JP 62-175948 A is used. That is, as the magnetic layer, an exchange coupling composed of a first magnetic layer having a low Curie temperature and a high coercive force and a second magnetic layer having a relatively high Curie temperature and a low coercive force as compared with this magnetic layer. It is a two-layered film and is a magneto-optical recording medium that can be overwritten by modulating the intensity of laser light.

【0004】この交換結合を用いた光強度変調方式を図
4から図6を用いて説明する。図4に示すように、室温
Trにおいては第一磁性層3の保磁力12は、第二磁性
層4の保磁力13よりも大きく、また、第二磁性層のキ
ュリー温度Tc2 は第一磁性層のキュリー温度Tc1
りも高い。
A light intensity modulation method using this exchange coupling will be described with reference to FIGS. As shown in FIG. 4, at room temperature Tr, the coercive force 12 of the first magnetic layer 3 is larger than the coercive force 13 of the second magnetic layer 4, and the Curie temperature Tc 2 of the second magnetic layer is the first magnetic layer. It is higher than the Curie temperature Tc 1 of the layer.

【0005】まず、初期化動作について図5を用いて説
明する。図5において(a)は初期化前、(b)は初期
化後の説明図である。初期化磁石19によって発生する
磁界(初期化磁界)12により第二磁性層4の磁化10
を初期化磁界12の方向に揃える。ここで用いた希土類
遷移金属合金の磁化は希土類金属と遷移金属のモーメン
トが反対方向を向く性質があり、両者の差が磁化とな
る。そこでこの磁化を白抜きの矢印で示した。また、白
抜き矢印の中の矢印は遷移金属のモーメントの向きを示
してある。すなわち、遷移金属の磁気モーメントが希土
類金属の磁気モーメントよりも大きい場合には白抜き矢
印と遷移金属の矢印が同方向を向き、希土類金属の磁気
モーメントの方が補償組成よりも多い場合には、磁化と
遷移金属の磁気モーメントとは反対方向を向く。なお、
補償組成とは室温で希土類と遷移金属の磁気モーメント
の大きさが等しくなった場合の組成のことである。ここ
で初期化磁界12の大きさは、図5に示すように室温に
おける第二磁性層4の保磁力13よりも大きく、しかも
第一磁性層3の保磁力14よりも小さく設定してあるた
め、初期化磁界12が印加されても第一磁性層3の磁化
9の向きは変わらない。
First, the initialization operation will be described with reference to FIG. In FIG. 5, (a) is an explanatory diagram before initialization and (b) is an explanatory diagram after initialization. The magnetization 10 of the second magnetic layer 4 is generated by the magnetic field (initialization magnetic field) 12 generated by the initialization magnet 19.
Are aligned in the direction of the initialization magnetic field 12. The rare earth-transition metal alloy used here has a property that the moments of the rare earth metal and the transition metal are oriented in opposite directions, and the difference between them is the magnetization. Therefore, this magnetization is indicated by an outline arrow. Also, the arrow in the white arrow indicates the direction of the moment of the transition metal. That is, when the magnetic moment of the transition metal is larger than that of the rare earth metal, the white arrow and the arrow of the transition metal point in the same direction, and when the magnetic moment of the rare earth metal is larger than the compensating composition, The magnetization and the magnetic moment of the transition metal point in opposite directions. In addition,
The compensating composition is a composition when the magnetic moments of the rare earth and the transition metal become equal at room temperature. Here, the magnitude of the initialization magnetic field 12 is set to be larger than the coercive force 13 of the second magnetic layer 4 at room temperature and smaller than the coercive force 14 of the first magnetic layer 3 as shown in FIG. Even if the initializing magnetic field 12 is applied, the direction of the magnetization 9 of the first magnetic layer 3 does not change.

【0006】図6は記録動作、図7は消去動作をそれぞ
れ示す。情報を記録する際には、一定強度のバイアス磁
界のもとでレーザ光の強度を、高いレーザパワーレベル
(以後Phと記す)と低いレーザパワーレベル(以後P
1 と記す)との間で変調させる。図6(a)に示すように
レーザ光13は絞り込みレンズ8により絞り込まれ、磁
性膜上に照射される。
FIG. 6 shows a recording operation and FIG. 7 shows an erasing operation. When recording information, the intensity of the laser beam is adjusted to a high laser power level (hereinafter referred to as Ph) and a low laser power level (hereinafter referred to as P) under a constant bias magnetic field.
It is modulated between ( 1 ). As shown in FIG. 6A, the laser light 13 is narrowed down by the narrowing lens 8 and irradiated onto the magnetic film.

【0007】レーザ光強度がPhの時は、図6(a)に示
すようにレーザ光により照射される領域の温度は、第二
磁性層4のキュリー温度Tc2 近くになるため、第一磁
性層3の磁化9は消滅し、第二磁性層4の磁化10は永
久磁石14によって印加されるバイアス磁界15の方向
に向く。レーザ光の照射が終了し磁性膜が冷却する際に
は、図6(b)に示すように、第一磁性層の磁化9もバイ
アス磁界15の方向に発生する。
When the laser light intensity is Ph, the temperature of the region irradiated with the laser light is close to the Curie temperature Tc 2 of the second magnetic layer 4 as shown in FIG. The magnetization 9 of the layer 3 disappears and the magnetization 10 of the second magnetic layer 4 points in the direction of the bias field 15 applied by the permanent magnet 14. When the irradiation of the laser beam is finished and the magnetic film is cooled, the magnetization 9 of the first magnetic layer is also generated in the direction of the bias magnetic field 15 as shown in FIG. 6B.

【0008】一方、レーザ光強度がP1 のときは、図7
(a)に示すように、レーザ光により照射される領域の温
度は、第一磁性層3のキュリー温度Tc1 近くになる。
このため、第二磁性層4の保磁力10は、バイアス磁界
15よりも大きいから磁化の反転は起こらない。レーザ
光の照射が終了し磁性膜が冷却する際には、第一磁性層
3の磁化9は第二磁性層4の磁化10とバイアス磁界1
5よりも大きな交換結合力を有しているため、第一磁性
層3の磁化9もバイアス磁界15とは逆方向に向く。
On the other hand, when the laser light intensity is P 1 , as shown in FIG.
As shown in (a), the temperature of the region irradiated with the laser light is close to the Curie temperature Tc 1 of the first magnetic layer 3.
Therefore, since the coercive force 10 of the second magnetic layer 4 is larger than the bias magnetic field 15, the reversal of magnetization does not occur. When the irradiation of the laser beam is finished and the magnetic film is cooled, the magnetization 9 of the first magnetic layer 3 is changed to the magnetization 10 of the second magnetic layer 4 and the bias magnetic field 1.
Since it has an exchange coupling force larger than 5, the magnetization 9 of the first magnetic layer 3 also faces in the direction opposite to the bias magnetic field 15.

【0009】[0009]

【発明が解決しようとする課題】光磁気記録において、
記録密度を上げるためには狭トラック化やマーク間隔を
詰めることが必要となる。上記従来技術における光変調
オーバーライト方式では、記録を高レベルレーザパワー
で行い、消去を低レベルレーザパワーで行う。したがっ
て、記録マークを狭ピッチで記録する時には記録したマ
ークの外側の温度が上がり、隣のマーク部分が消去温度
に達して消去されてしまう危険性がある。これを熱クロ
ストークと呼ぶが、これが記録密度を大きく制限してい
る。
DISCLOSURE OF THE INVENTION In magneto-optical recording,
To increase the recording density, it is necessary to narrow the track and reduce the mark interval. In the above-mentioned optical modulation overwrite method in the prior art, recording is performed with high level laser power and erasing is performed with low level laser power. Therefore, when the recording marks are recorded at a narrow pitch, there is a risk that the temperature outside the recorded marks rises and the adjacent mark portion reaches the erasing temperature and is erased. This is called thermal crosstalk, which greatly limits the recording density.

【0010】本発明の目的は、交換結合した二層膜を用
いることにより必然的に生じる熱クロストークの問題を
改善した光磁気記録媒体を提供することにある。
An object of the present invention is to provide a magneto-optical recording medium in which the problem of thermal crosstalk which is inevitably caused by using an exchange-coupled bilayer film is improved.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は以下の特徴を有する。
In order to achieve the above object, the present invention has the following features.

【0012】(1)基板上に少なくとも第一磁性層と第
二磁性層を積層した二層の磁性層を有し、該第一磁性層
の側からレーザ光を照射し、その反射光が磁気光学効果
を受けることを利用して、情報を再生する光磁気記録媒
体において、第二磁性層側に非磁性層を設け、更にその
上に第三磁性層を設けたことを特徴とする。
(1) A substrate has a two-layer magnetic layer in which at least a first magnetic layer and a second magnetic layer are laminated, laser light is irradiated from the side of the first magnetic layer, and the reflected light is magnetic. A magneto-optical recording medium for reproducing information by utilizing the optical effect is characterized in that a non-magnetic layer is provided on the second magnetic layer side, and a third magnetic layer is further provided thereon.

【0013】(2)(1)において、上記第一磁性層と
第二磁性層はどちらも希土類金属と遷移金属からなる合
金で、第一磁性層の希土類元素が補償組成よりも少な
く、第二磁性層の希土類元素が補償組成よりも多いこと
を特徴とする。
(2) In (1), both the first magnetic layer and the second magnetic layer are alloys composed of a rare earth metal and a transition metal, and the rare earth element of the first magnetic layer is less than the compensating composition. It is characterized in that the magnetic layer contains more rare earth elements than the compensation composition.

【0014】(3)(1)または(2)において、上記
第三磁性層の膜厚は200nm以下である。
(3) In (1) or (2), the thickness of the third magnetic layer is 200 nm or less.

【0015】(4)(1),(2)または(3)におい
て、上記非磁性層の膜厚は50nm以下である。
(4) In (1), (2) or (3), the thickness of the nonmagnetic layer is 50 nm or less.

【0016】(5)(1)から(4)において、上記第
一磁性層の第二磁性層と接する面と逆の面の上に、誘電
体層を配置し、第三磁性層の非磁性層と接する反対側に
酸化防止層を設けたことを特徴とする。
(5) In (1) to (4), a dielectric layer is arranged on the surface of the first magnetic layer opposite to the surface in contact with the second magnetic layer, and the nonmagnetic layer of the third magnetic layer is arranged. An antioxidant layer is provided on the opposite side in contact with the layer.

【0017】(6)(1)から(5)のいずれかにおい
て、上記第三磁性層は、希土類金属と遷移金属とからな
る合金であることを特徴とする。
(6) In any one of (1) to (5), the third magnetic layer is an alloy composed of a rare earth metal and a transition metal.

【0018】(7)(6)の光磁気記録媒体において、
上記第三磁性層の希土類元素の組成は15から40原子
%の範囲である。
(7) In the magneto-optical recording medium of (6),
The rare earth element composition of the third magnetic layer is in the range of 15 to 40 atomic%.

【0019】(8)(1)から(7)のいずれかに記載
の光磁気記録媒体において、上記第三磁性層の希土類遷
移金属合金の補償温度が100から160度の範囲であ
り、かつキュリー温度が200度以上、更にこの時の第
三磁性層の磁化方向は室温で初期化された第二磁性層の
磁化方向と同方向であることを特徴とする。
(8) In the magneto-optical recording medium described in any one of (1) to (7), the compensation temperature of the rare earth-transition metal alloy of the third magnetic layer is in the range of 100 to 160 degrees and Curie. The magnetization direction of the third magnetic layer at a temperature of 200 ° C. or higher is the same as the magnetization direction of the second magnetic layer initialized at room temperature.

【0020】(9)(1)から(6)のいずれかにおい
て、上記第三磁性層の希土類元素が補償組成よりも多い
場合、補償温度は50度から100度の範囲であり、か
つキュリー温度は200度よりも低い温度、更に室温で
第三磁性層の磁化方向は初期化された第二磁性層の磁化
方向と反対方向である。
(9) In any one of (1) to (6), when the rare earth element in the third magnetic layer is more than the compensation composition, the compensation temperature is in the range of 50 to 100 degrees and the Curie temperature is Is lower than 200 degrees, and at room temperature, the magnetization direction of the third magnetic layer is opposite to the magnetization direction of the initialized second magnetic layer.

【0021】(10)(1)から(6)において、上記
第三磁性層の希土類元素が補償組成よりも少ない場合、
第三磁性層のキュリー温度は200度よりも低く、かつ
室温で第三磁性層の磁化方向は初期化された第二磁性層
の磁化方向と同方向である。
(10) In (1) to (6), when the rare earth element in the third magnetic layer is less than the compensating composition,
The Curie temperature of the third magnetic layer is lower than 200 degrees, and at room temperature, the magnetization direction of the third magnetic layer is the same as that of the initialized second magnetic layer.

【0022】(11)(4)に記載の上記非磁性層の製
造方法において、(5)に記載の誘電体層を用いるかま
たは第一,第二,第三磁性層を窒化処理などで非磁性化
したものを用いる。
(11) In the method for producing a non-magnetic layer described in (4), the dielectric layer described in (5) is used, or the first, second and third magnetic layers are non-nitrided. Use a magnetized one.

【0023】本発明において、上記第一磁性層,第二磁
性層あるいは第三磁性層としては、希土類と遷移金属と
からなる非晶質膜を用いるのが良い。たとえばTb−F
e−Co,Gd−Dy−Fe−Co,Gd−Tb−Fe
−Co合金等が用いられる。これらの合金が垂直磁化膜
となるためには希土類金属の割合が15〜40at%で
あることが好ましい。
In the present invention, as the first magnetic layer, the second magnetic layer or the third magnetic layer, it is preferable to use an amorphous film made of a rare earth and a transition metal. For example, Tb-F
e-Co, Gd-Dy-Fe-Co, Gd-Tb-Fe
-Co alloy or the like is used. In order for these alloys to form a perpendicularly magnetized film, the proportion of rare earth metal is preferably 15 to 40 at%.

【0024】光磁気記録に用いる半導体レーザには出力
に限界があるため記録膜の厚さにも限界が存在する。し
たがって、第三磁性層の厚みは200nm以下が好まし
い。また、非磁性層の膜厚が厚い場合には第三磁性層の
漏洩磁界が第一,第二磁性層に大きく減衰するため、非
磁性層の膜厚を50nm以下にすることが必要である。
Since the semiconductor laser used for magneto-optical recording has a limit in output, there is also a limit in the thickness of the recording film. Therefore, the thickness of the third magnetic layer is preferably 200 nm or less. Further, when the thickness of the non-magnetic layer is large, the leakage magnetic field of the third magnetic layer is greatly attenuated in the first and second magnetic layers, so it is necessary to set the thickness of the non-magnetic layer to 50 nm or less. .

【0025】第三磁性層は酸化しやすい金属で構成され
ているため酸化防止層を設ける必要がある。
Since the third magnetic layer is composed of a metal that is easily oxidized, it is necessary to provide an antioxidation layer.

【0026】[0026]

【作用】記録マーク同士が接近している場合の記録用高
レーザパワー照射時の第三磁性層の漏洩磁界分布と膜全
体の温度分布を図2に示す。この場合、第三磁性層は補
償組成以上に希土類金属を含んでいる。ここで、記録マ
ーク16の消去温度を140度,第三磁性層の補償温度
を150度とした場合を考えてみる。このようにレーザ
照射部分17に隣接する記録マーク16のエッジ部分1
8の温度は消去温度140度に達しており、第三磁性層
がない場合にはこの部分は消去される。しかし、第三磁
性層がある場合には、第三磁性層の補償温度が150度
であるため漏洩磁界が記録マークのエッジ部分に集中す
る。この漏洩磁界の方向は記録マークの消去を妨げる方
向に作用するため消去は起こらない。すなわち、実効的
に消去温度が高くなって熱クロストークを改善したこと
になる。使用が考えられている半導体レーザの出力には
限界があり、また、記録膜の耐久性から本方式における
消去温度はだいたい100度から160度程度と考えら
れるため、第三磁性層の補償温度もこの温度の範囲内に
あることが好ましい。したがって、このときの第三磁性
層のキュリー温度は補償温度以上であるので200度以
上となる。
FIG. 2 shows the leakage magnetic field distribution of the third magnetic layer and the temperature distribution of the entire film when the recording high laser power is irradiated when the recording marks are close to each other. In this case, the third magnetic layer contains a rare earth metal in excess of the compensating composition. Here, consider a case where the erasing temperature of the recording mark 16 is 140 degrees and the compensation temperature of the third magnetic layer is 150 degrees. Thus, the edge portion 1 of the recording mark 16 adjacent to the laser irradiation portion 17
The temperature of 8 has reached the erasing temperature of 140 degrees, and this portion is erased when there is no third magnetic layer. However, when the third magnetic layer is present, the leakage magnetic field concentrates on the edge portion of the recording mark because the compensation temperature of the third magnetic layer is 150 degrees. The direction of this leakage magnetic field acts in a direction that hinders the erasure of the recording mark, so erasure does not occur. That is, the erasing temperature is effectively increased and the thermal crosstalk is improved. There is a limit to the output of the semiconductor laser that is considered to be used, and since the erasing temperature in this method is considered to be approximately 100 to 160 degrees due to the durability of the recording film, the compensation temperature of the third magnetic layer also It is preferably within this temperature range. Therefore, the Curie temperature of the third magnetic layer at this time is equal to or higher than the compensation temperature and is equal to or higher than 200 degrees.

【0027】また、上記の条件以外にも熱クロストーク
を防ぐ第三磁性層の磁気特性が考えられる。例えば、第
三磁性層のキュリー温度を記録マークの消去温度付近に
設定する方法である。記録マークの消去温度を140
度,第三磁性層のキュリー温度を150度とした場合に
記録用高レーザパワーを照射した時の第三磁性層の作る
漏洩磁界分布と膜全体の温度分布を図3に示す。このと
きの第三磁性層の希土類組成は補償組成よりも希土類金
属が多くても少なくてもどちらでもよい。レーザ照射部
分17に隣接する記録マーク16のエッジ部分18の温
度は消去温度に達しており、第三磁性層がない場合には
この部分は消去される。しかし、第三磁性層がある場合
には、第三磁性層の漏洩磁界が記録マーク16のエッジ
部分18に集中する。この漏洩磁界の方向は記録マーク
の消去を妨げる方向であり、消去は起こらない。
In addition to the above conditions, the magnetic characteristics of the third magnetic layer for preventing thermal crosstalk can be considered. For example, it is a method of setting the Curie temperature of the third magnetic layer near the erasing temperature of the recording mark. The erase temperature of the recording mark is set to 140
FIG. 3 shows the leakage magnetic field distribution formed by the third magnetic layer and the temperature distribution of the entire film when the high laser power for recording is irradiated when the Curie temperature of the third magnetic layer is 150 degrees. At this time, the rare earth composition of the third magnetic layer may be either larger or smaller than the compensation composition. The temperature of the edge portion 18 of the recording mark 16 adjacent to the laser irradiation portion 17 has reached the erasing temperature, and this portion is erased when there is no third magnetic layer. However, when there is the third magnetic layer, the leakage magnetic field of the third magnetic layer is concentrated on the edge portion 18 of the recording mark 16. The direction of this leakage magnetic field is a direction that hinders the erasure of the recording mark, and the erasure does not occur.

【0028】[0028]

【実施例】【Example】

〈実施例1〉図1に本発明の一実施例のディスク断面を
示す。このディスクは基板1上にスパッタ法により各層
を成膜して作成した。作成条件は以下の通りである。到
達真空度5×10-7Torr以下、スパッタガスにはArを
用い、ガス圧は5mTorrとし、投入電力は200W、ス
パッタリングレートは0.1〜0.2nm/secとした。
希土類遷移金属合金は、第一磁性層3にTbFeCo合
金を,第二磁性層4にTbDyFeCo合金を用いた。ま
た、第三磁性層6にはGdTbFeCo合金を用いた。
それぞれの膜厚は30,90,200nmである。ま
た、誘電体層2,非磁性層5,酸化防止層7にはSiN
を用い、それぞれの膜厚は65,15,20nmとし
た。記録マークの消去温度が140度であったため、第
三磁性層6の補償温度を150度とした。
<Embodiment 1> FIG. 1 shows a cross section of a disk according to an embodiment of the present invention. This disk was formed by depositing each layer on the substrate 1 by the sputtering method. The creation conditions are as follows. The ultimate vacuum was 5 × 10 −7 Torr or less, Ar was used as the sputtering gas, the gas pressure was 5 mTorr, the input power was 200 W, and the sputtering rate was 0.1 to 0.2 nm / sec.
As the rare earth transition metal alloy, a TbFeCo alloy was used for the first magnetic layer 3 and a TbDyFeCo alloy was used for the second magnetic layer 4. A GdTbFeCo alloy was used for the third magnetic layer 6.
The respective film thicknesses are 30, 90 and 200 nm. Further, the dielectric layer 2, the non-magnetic layer 5 and the antioxidant layer 7 are made of SiN.
And the respective film thicknesses were set to 65, 15, and 20 nm. Since the erasing temperature of the recording mark was 140 degrees, the compensation temperature of the third magnetic layer 6 was set to 150 degrees.

【0029】その結果、第三磁性層6を設けたことによ
る熱クロストークは20%程度改善された。これは、記
録密度20%の向上に相当する。
As a result, the thermal crosstalk due to the provision of the third magnetic layer 6 was improved by about 20%. This corresponds to an increase in recording density of 20%.

【0030】〈実施例2〉本実施例でも、ディスクを実
施例1と同様の条件で作製した。ただし、今度は第三磁
性層6のキュリー温度を150度とした。その結果、第
三磁性層6を設けたことによる熱クロストークは12%
程度改善された。これは、記録密度12%の向上に相当
する。
Example 2 In this example as well, a disk was produced under the same conditions as in Example 1. However, the Curie temperature of the third magnetic layer 6 was set to 150 degrees this time. As a result, the thermal crosstalk due to the provision of the third magnetic layer 6 is 12%.
The degree was improved. This corresponds to an increase in recording density of 12%.

【0031】[0031]

【発明の効果】本発明によれば、交換結合膜を用いた光
変調オーバーライト光磁気ディスクにおいて、熱クロス
トークを改善される。これにより記録密度を大幅に向上
させることができる。
According to the present invention, thermal crosstalk is improved in a light modulation overwrite magneto-optical disk using an exchange coupling film. This can significantly improve the recording density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の光磁気ディスクの断面図。FIG. 1 is a sectional view of a magneto-optical disk according to an embodiment of the present invention.

【図2】本発明による光磁気ディスクに記録されたマー
クが接近している場合のディスクの断面図および第三磁
性層の漏洩磁界分布図。
FIG. 2 is a cross-sectional view of a disc and a leakage magnetic field distribution diagram of a third magnetic layer when marks recorded on the magneto-optical disc according to the present invention are close to each other.

【図3】本発明による光磁気ディスクに記録マークが接
近している場合のディスクの断面図および第三磁性層の
漏洩磁界分布図。
FIG. 3 is a sectional view of a disk and a leakage magnetic field distribution map of a third magnetic layer when a recording mark is close to the magneto-optical disk according to the present invention.

【図4】第一磁性層と第二磁性層の保磁力(Hc)の温
度依存性の特性図。
FIG. 4 is a characteristic diagram of temperature dependence of coercive force (Hc) of the first magnetic layer and the second magnetic layer.

【図5】初期前後の第一磁性層と第二磁性層の磁化状態
を示した断面図。
FIG. 5 is a cross-sectional view showing the magnetization states of the first magnetic layer and the second magnetic layer before and after the initial stage.

【図6】記録時における第一磁性層と第二磁性層の磁化
状態を示した断面図。
FIG. 6 is a cross-sectional view showing magnetization states of a first magnetic layer and a second magnetic layer during recording.

【図7】消去時における第一磁性層と第二磁性層の磁化
状態を示した断面図。
FIG. 7 is a cross-sectional view showing the magnetization states of the first magnetic layer and the second magnetic layer during erasing.

【符号の説明】[Explanation of symbols]

1…基板、2…誘電体層、3…第一磁性層、4…第二磁
性層、5…非磁性層、6…第三磁性層、7…酸化防止
層。
1 ... Substrate, 2 ... Dielectric layer, 3 ... First magnetic layer, 4 ... Second magnetic layer, 5 ... Non-magnetic layer, 6 ... Third magnetic layer, 7 ... Antioxidant layer.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基板上に少なくとも第一磁性層と第二磁性
層を積層し、上記第一磁性層の側からレーザ光を照射
し、その反射光が磁気光学効果を受けることを利用し
て、情報を再生する光磁気記録媒体において、上記第二
磁性層側に非磁性層を設け、更にその上に第三磁性層を
設けたことを特徴とする光磁気記録媒体。
1. A method in which at least a first magnetic layer and a second magnetic layer are laminated on a substrate, laser light is irradiated from the side of the first magnetic layer, and the reflected light receives a magneto-optical effect is utilized. A magneto-optical recording medium for reproducing information, wherein a non-magnetic layer is provided on the second magnetic layer side, and a third magnetic layer is further provided thereon.
【請求項2】請求項1において、上記第一磁性層と上記
第二磁性層はどちらも希土類金属と遷移金属からなる合
金で、前記第一磁性層の希土類元素が補償組成よりも少
なく、上記第二磁性層の希土類元素が補償組成よりも多
い光磁気記録媒体。
2. The first magnetic layer and the second magnetic layer according to claim 1, wherein both the first magnetic layer and the second magnetic layer are alloys composed of a rare earth metal and a transition metal, and the rare earth element of the first magnetic layer is less than the compensation composition. A magneto-optical recording medium in which the rare earth element in the second magnetic layer is larger than the compensation composition.
【請求項3】請求項1または2において、上記第三磁性
層の膜厚は200nm以下である光磁気記録媒体。
3. The magneto-optical recording medium according to claim 1, wherein the third magnetic layer has a thickness of 200 nm or less.
【請求項4】請求項1,2または3において、上記非磁
性層の膜厚は50nm以下である光磁気記録媒体。
4. The magneto-optical recording medium according to claim 1, wherein the thickness of the nonmagnetic layer is 50 nm or less.
【請求項5】請求項1,2,3または4において、上記
第一磁性層の上記第二磁性層と接する面と逆の面の上
に、誘電体層を配置し、上記第三磁性層の非磁性層と接
する反対側に酸化防止層を設けた光磁気記録媒体。
5. The dielectric layer according to claim 1, 2, 3 or 4, wherein a dielectric layer is disposed on a surface of the first magnetic layer opposite to a surface in contact with the second magnetic layer. A magneto-optical recording medium having an anti-oxidation layer on the side opposite to the non-magnetic layer.
【請求項6】請求項1,2,3,4または5において、
上記第三磁性層は、希土類金属と遷移金属とからなる合
金である光磁気記録媒体。
6. The method according to claim 1, 2, 3, 4 or 5.
The magneto-optical recording medium, wherein the third magnetic layer is an alloy composed of a rare earth metal and a transition metal.
【請求項7】請求項6において、上記第三磁性層の希土
類元素の組成は15から40原子%の範囲である光磁気
記録媒体。
7. The magneto-optical recording medium according to claim 6, wherein the composition of the rare earth element in the third magnetic layer is in the range of 15 to 40 atomic%.
【請求項8】請求項1,2,3,4,5,6または7に
おいて、上記第三磁性層の希土類遷移金属合金の補償温
度が100から160度の範囲であり、かつキュリー温
度が200度以上、更にこの時の上記第三磁性層の磁化
方向は室温で初期化された上記第二磁性層の磁化方向と
同方向である光磁気記録媒体。
8. The compensation temperature of the rare earth-transition metal alloy of the third magnetic layer according to claim 1, 2, 3, 4, 5, 6 or 7, and the Curie temperature is 200. A magneto-optical recording medium in which the magnetization direction of the third magnetic layer at this time is the same as that of the second magnetic layer initialized at room temperature.
【請求項9】請求項1,2,3,4,5または6におい
て、上記第三磁性層の希土類元素が補償組成よりも多い
場合、補償温度は50度から100度の範囲であり、か
つキュリー温度は200度よりも低い温度、更に室温で
上記第三磁性層の磁化方向は初期化された上記第二磁性
層の磁化方向と反対方向であることを特徴とする光磁気
記録媒体。
9. The compensation temperature according to claim 1, 2, 3, 4, 5 or 6, when the rare earth element of the third magnetic layer is more than the compensation composition, the compensation temperature is in the range of 50 to 100 degrees, and The Curie temperature is lower than 200 degrees, and at room temperature, the magnetization direction of the third magnetic layer is opposite to the initialized magnetization direction of the second magnetic layer.
【請求項10】請求項1,2,3,4,5または6にお
いて、上記第三磁性層の希土類元素が補償組成よりも少
なく、上記第三磁性層のキュリー温度が200度よりも
低く、かつ室温で上記第三磁性層の磁化方向は初期化さ
れた上記第二磁性層の磁化方向と同方向である光磁気記
録媒体。
10. The method according to claim 1, 2, 3, 4, 5, or 6, wherein the rare earth element in the third magnetic layer is less than the compensation composition, and the Curie temperature of the third magnetic layer is lower than 200 degrees. A magneto-optical recording medium in which the magnetization direction of the third magnetic layer is the same as that of the initialized second magnetic layer at room temperature.
【請求項11】請求項4において、請求項5に記載の上
記誘電体層を用いるかまたは上記第一,第二,第三磁性
膜を窒化処理などで非磁性化したものを用いる光磁気記
録媒体。
11. A magneto-optical recording device according to claim 4, wherein the dielectric layer according to claim 5 is used or the first, second and third magnetic films are demagnetized by nitriding treatment or the like. Medium.
JP33832292A 1992-12-18 1992-12-18 Magneto-optical recording medium Pending JPH06187678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33832292A JPH06187678A (en) 1992-12-18 1992-12-18 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33832292A JPH06187678A (en) 1992-12-18 1992-12-18 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH06187678A true JPH06187678A (en) 1994-07-08

Family

ID=18317055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33832292A Pending JPH06187678A (en) 1992-12-18 1992-12-18 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH06187678A (en)

Similar Documents

Publication Publication Date Title
US6020079A (en) Magneto-optical recording medium and reproducing method for information recorded on the medium
JP2910250B2 (en) Magneto-optical recording medium
KR100238874B1 (en) Method of reproduction from magneto-optical recording medium
US5175714A (en) Method of magneto-optically recording/erasing information and magneto-optical information storage medium including recording and bias layers satisfying certain conditions
JP2809991B2 (en) Magneto-optical recording medium and method of reproducing information recorded on the medium
US5966350A (en) Magneto-optical recording medium and method of reading the same
JP3519293B2 (en) Magneto-optical recording medium, reproducing method of magneto-optical recording medium, magneto-optical recording and reproducing apparatus
US5462811A (en) Magneto-optical recording media and mangeto-optical device using the media
US5487046A (en) Magneto-optical recording medium having two magnetic layers with the same curie temperature
JP2766198B2 (en) Magneto-optical recording medium
JPH06187678A (en) Magneto-optical recording medium
JP3424806B2 (en) Method of reproducing information recorded on magneto-optical recording medium
JP3162168B2 (en) Magneto-optical recording medium
JP3079308B2 (en) Magneto-optical recording medium
JP2782957B2 (en) Magneto-optical recording medium
JP2941486B2 (en) Magneto-optical recording medium
JP3516865B2 (en) Magneto-optical recording medium and reproducing apparatus
JPH04313833A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method using this medium
JP3328989B2 (en) Magneto-optical recording medium
JP2815034B2 (en) Method for manufacturing magneto-optical recording medium
JP2913875B2 (en) Magneto-optical recording medium and recording / reproducing method thereof
JPH08147776A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method
JPH08241544A (en) Magneto-optical medium
JPS63237242A (en) Magneto-optical recording system
JPH06131733A (en) Signal recording and reproducing method for magneto-optical recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010626