JP3328989B2 - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JP3328989B2
JP3328989B2 JP06178093A JP6178093A JP3328989B2 JP 3328989 B2 JP3328989 B2 JP 3328989B2 JP 06178093 A JP06178093 A JP 06178093A JP 6178093 A JP6178093 A JP 6178093A JP 3328989 B2 JP3328989 B2 JP 3328989B2
Authority
JP
Japan
Prior art keywords
magnetic
film
layer
recording
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06178093A
Other languages
Japanese (ja)
Other versions
JPH06274952A (en
Inventor
俊雄 稲生
小弥太 高橋
昭夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP06178093A priority Critical patent/JP3328989B2/en
Publication of JPH06274952A publication Critical patent/JPH06274952A/en
Application granted granted Critical
Publication of JP3328989B2 publication Critical patent/JP3328989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は書き換えが可能な光磁気
記録媒体のなかで、再生層の磁化状態を変化させながら
記録信号を読み取る光磁気記録媒体に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rewritable magneto-optical recording medium, and more particularly to a magneto-optical recording medium for reading a recording signal while changing a magnetization state of a reproducing layer.

【0002】[0002]

【従来の技術】光磁気記録媒体は書き換え可能な光記録
媒体であり、相変化型光記録媒体などと比較して繰り返
し消去/書き込み耐久性や消去比率に優れ、可搬型大容
量の記録媒体として注目されている。
2. Description of the Related Art A magneto-optical recording medium is a rewritable optical recording medium, and has excellent repeated erasing / writing durability and erasing ratio as compared with a phase change type optical recording medium and the like, and is a portable large-capacity recording medium. Attention has been paid.

【0003】光磁気記録媒体は、レ−ザ−光照射による
局所加熱によって記録ビットを形成し、これをカ−効果
により読み出す記録再生方法が取られる。記録ビットの
間隔はレ−ザ−光照射パワ−、記録磁界の強度などの調
整でレ−ザ−スポット径よりもかなり小さくすることが
可能であるが、読みだしは再生時のレ−ザ波長、レンズ
の開口数などによって制約を受ける。つまり、再生光学
系のレ−ザ−波長λと対物レンズの開口数N.A.が決
まると検出限界となるビット周期f(=λ/2・N.
A.)が決まる。
The magneto-optical recording medium employs a recording / reproducing method in which recording bits are formed by local heating by laser light irradiation, and the recording bits are read out by the Kerr effect. The interval between recording bits can be made much smaller than the laser spot diameter by adjusting the laser light irradiation power, the intensity of the recording magnetic field, etc., but the reading is performed at the laser wavelength at the time of reproduction. And the numerical aperture of the lens. That is, the laser wavelength λ of the reproducing optical system and the numerical aperture N.P. A. Is determined, the bit period f (= λ / 2 · N.
A. ) Is decided.

【0004】したがって、光ディスクで高密度化を図る
ためには、再生光学系のレ−ザ−波長を短くしたり、対
物レンズの開口数を大きくするというのが基本的な考え
方である。しかしながら、現状の技術ではレ−ザ−波長
や対物レンズの開口数の改善にも限度があるため他の方
法で記録密度を改善する技術が開発されている。
Therefore, in order to increase the density of an optical disc, the basic idea is to shorten the laser wavelength of the reproducing optical system or increase the numerical aperture of the objective lens. However, with the current technology, there is a limit to the improvement of the laser wavelength and the numerical aperture of the objective lens. Therefore, a technology for improving the recording density by another method has been developed.

【0005】このような高密度化の方法のひとつとし
て、例えば特開平1−143041号公報、特開平1−
143042号公報において情報ビット(磁区)を再生
時に部分的に拡大、縮小もしくは消滅させることによ
り、再生分解能を向上させる方式(MSRディスク)が
提案されている。この方式は、記録磁性層を再生層、中
間層、記録層からなる交換結合多層膜とし、再生時にお
いて再生光ビ−ムで加熱された再生層の磁区を温度の高
い部分で拡大、縮小あるいは消去することにより、再生
時の情報ビット間の干渉を減少させ、光の回折限界以上
の周期の信号を再生可能とするものである。
As one of the methods for such high density, for example, Japanese Patent Application Laid-Open No. 1-143041,
Japanese Patent Publication No. 143042 proposes a system (MSR disk) in which information bits (magnetic domains) are partially enlarged, reduced, or eliminated during reproduction to improve reproduction resolution. In this method, the recording magnetic layer is an exchange-coupling multilayer film composed of a reproducing layer, an intermediate layer, and a recording layer, and the magnetic domain of the reproducing layer heated by the reproducing light beam at the time of reproduction is enlarged, reduced, or expanded at a high temperature portion. By erasing, interference between information bits during reproduction is reduced, and a signal having a period equal to or longer than the diffraction limit of light can be reproduced.

【0006】[0006]

【発明が解決しようとする課題】MSRディスクとは、
上述したように再生時に再生光ビ−ムによって加熱され
た再生層の磁区を温度の高い部分で拡大、縮小あるいは
消去することによりビ−ムスポット内に光学的マスクを
施し検出域を狭くして空間分解能を向上させ記録密度を
増加させたものである。
The MSR disk is
As described above, the magnetic domain of the reproducing layer heated by the reproducing light beam at the time of reproducing is enlarged, reduced or erased at a high temperature portion to apply an optical mask in the beam spot to narrow the detection area. The spatial resolution is improved and the recording density is increased.

【0007】MSRディスクはFAD(Front A
perture Detection)方式とRAD
(Rear Aperture Detection)
方式の2種類に大別される。FAD方式では、ビ−ムス
ポット内の加熱部分が再生磁界の方向にDC消磁される
ことにより光学的マスクとして作用する。これに対し
て、RAD方式では、あらかじめ初期化磁石により再生
層をDC消磁しておきビ−ムスポット内の加熱部分のみ
を検出域とするものである。
[0007] The MSR disk is a FAD (Front A).
Percentage Detection) and RAD
(Rear Aperture Detection)
The method is roughly divided into two types. In the FAD system, a heated portion in the beam spot is demagnetized in the direction of the reproducing magnetic field to act as an optical mask. On the other hand, in the RAD method, the reproducing layer is DC-demagnetized by the initialization magnet in advance, and only the heated portion in the beam spot is set as the detection area.

【0008】両方式ともにビ−ムスポット内の検出域に
おいて記録層の記録磁区が中間層を通じて交換結合力に
より再生層へ転写され情報が読み出される。
In both types, in the detection area within the beam spot, the recording magnetic domain of the recording layer is transferred to the reproducing layer by the exchange coupling force through the intermediate layer and the information is read.

【0009】中間層は、再生層と記録層の間の交換結合
力を制御したり、あるいは、中間層のキュリ−温度以上
で再生層と記録層の交換力を断ち切ることにより再生層
のマスクを発生させる役割を果たす。
The intermediate layer controls the exchange coupling force between the reproducing layer and the recording layer, or cuts off the exchange force between the reproducing layer and the recording layer at a temperature higher than the Curie temperature of the intermediate layer to mask the reproducing layer. It plays a role in generating.

【0010】中間層のキュリ−温度は、例えば特開平4
−229432号公報において60℃以上200℃以下
が好ましいとされているが、本発明者らが実験したとこ
ろ、中間層のキュリ−温度を下げていくと徐々にC/N
が下がり、あるところで急激にC/Nが下がる現象がみ
られた。C/Nを良くするために中間層のキュリ−温度
を高くするとMSRを起こすための再生パワ−が高くな
り再生パワ−のマ−ジンが狭くなり、実用的ではなくな
る。
The Curie temperature of the intermediate layer is, for example, as disclosed in
Japanese Patent No. 229432 discloses that the temperature is preferably 60 ° C. or more and 200 ° C. or less. However, according to experiments performed by the present inventors, as the Curie temperature of the intermediate layer was lowered, the C / N ratio gradually decreased.
And the C / N suddenly dropped at a certain point. If the Curie temperature of the intermediate layer is increased in order to improve C / N, the reproduction power for causing MSR is increased, and the margin of the reproduction power becomes narrow, which is not practical.

【0011】中間層のキュリ−温度の低下にともないC
/Nが低下する原因としては、キュリ−温度の低下にと
もない再生層と記録保持層の間の交換結合が弱くなるこ
とやいわゆるマスク領域と環境温度の差が小さくなるた
め熱的な揺らぎの影響が大きくなることなどがあげられ
る。
As the Curie temperature of the intermediate layer decreases, C
The reason for the decrease in / N is that the exchange coupling between the reproducing layer and the recording holding layer is weakened as the Curie temperature is lowered, and that the difference between the so-called mask area and the environmental temperature is reduced, and the influence of thermal fluctuations. And the like.

【0012】本発明者らは、再生層の成膜前に下地層の
エッチングを行うなどして磁性層の垂直磁気異方性を向
上させる手段で再生層と記録保持層の交換結合を強くす
ることを試みたが、交換結合は強くなったもののマスク
領域を通過後の記録保持層から再生層への良好な転写が
行われなくなり逆にC/Nが劣化することが判明した。
The present inventors strengthen the exchange coupling between the reproducing layer and the recording holding layer by means for improving the perpendicular magnetic anisotropy of the magnetic layer by etching the underlying layer before forming the reproducing layer. It was found that, although the exchange coupling was strengthened, good transfer from the recording holding layer to the reproducing layer after passing through the mask area was not performed, and C / N deteriorated.

【0013】本発明が解決しようとする課題は、記録保
持層から再生層への転写性を従来より高める構造を見い
だすことにより解像度の高いMSR媒体を生産性良く得
ることを可能にすることである。
An object of the present invention is to make it possible to obtain a high-resolution MSR medium with high productivity by finding a structure that enhances the transferability from the recording holding layer to the reproducing layer as compared with the related art. .

【0014】[0014]

【課題を解決するための手段】本発明者らは上述のよう
な現状に鑑み、鋭意検討を重ねた結果、再生層の形成前
(基板側)に、面内磁化膜を付加することにより記録層
から再生層へ安定に再現性良く記録磁区が転写され、ま
た、中間層のキュリ−温度の許容量も広くなる事実を見
出し、本発明を完成するに至った。
Means for Solving the Problems In view of the above-mentioned situation, the present inventors have made intensive studies, and as a result, before forming a reproducing layer (substrate side), recording was performed by adding an in-plane magnetized film. The present inventors have found that the recording magnetic domain is transferred from the layer to the reproducing layer stably with good reproducibility, and that the allowable amount of the Curie temperature of the intermediate layer is widened. Thus, the present invention has been completed.

【0015】すなわち本発明は、透明基板上に互いに磁
気的に結合した第1の磁性膜と、第2の磁性膜と、第3
の磁性膜とを有し、上記第1、第2、第3の磁性膜のキ
ュリ−温度をそれぞれTc1、Tc2、Tc3とすると
き、Tc3、Tc1>Tc2>室温であり、第1磁性層
の磁区を変形させながら再生することが可能な光磁気記
録媒体において、第1の磁性膜の形成前に面内磁化膜を
付加することを特徴とする光磁気記録媒体に関する。
That is, the present invention provides a first magnetic film, a second magnetic film, and a third magnetic film magnetically coupled to each other on a transparent substrate.
When the Curie temperatures of the first, second, and third magnetic films are Tc1, Tc2, and Tc3, respectively, Tc3, Tc1>Tc2> room temperature, and the first magnetic layer The present invention relates to a magneto-optical recording medium capable of reproducing while deforming magnetic domains, wherein an in-plane magnetized film is added before forming a first magnetic film.

【0016】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0017】本発明の光磁気記録媒体の磁性層は、例え
ば図1に示すような多層膜構造をとる。第1磁性膜、第
2磁性膜および第3磁性膜はそれぞれ互いに磁気的に結
合しており、それぞれのキュリ−温度をTc1、Tc2
およびTc3とすると、Tc1、Tc2>Tc3であ
る。また、第1、第3の磁性膜は垂直磁化膜であり、さ
らに、第1磁性膜の形成前(基板側)に面内磁化膜を付
加させる。
The magnetic layer of the magneto-optical recording medium of the present invention has a multilayer structure as shown in FIG. 1, for example. The first magnetic film, the second magnetic film, and the third magnetic film are magnetically coupled to each other, and their respective Curie temperatures are set to Tc1 and Tc2.
And Tc3, Tc1, Tc2> Tc3. The first and third magnetic films are perpendicular magnetic films, and an in-plane magnetic film is added before forming the first magnetic film (on the substrate side).

【0018】第1の磁性膜は、室温で保磁力が大きく、
Tc2で保磁力が小さい垂直磁化膜であればよく、例え
ば補償組成付近のGdFeCo、GdTbFeCo、G
dDyFeCoなどがあげられる。また、必要に応じて
耐蝕性を高めるためにCr、Ti、Ta等をや短波長レ
−ザ−に対応するためにNd等を添加したものも使用す
ることができる。
The first magnetic film has a large coercive force at room temperature,
Any perpendicular magnetization film having a small coercive force at Tc2 may be used. For example, GdFeCo, GdTbFeCo, Gd
dDyFeCo and the like. If necessary, a material to which Cr, Ti, Ta or the like is added to increase the corrosion resistance or Nd or the like is added to correspond to a short wavelength laser can be used.

【0019】面内磁化膜の付加方法はどんなものでもよ
いが、例えば、第1の磁性膜の成長初期時に希土類元素
の比率を変化させることにより面内磁化膜を形成した
り、また、反応性ガスをスパッタガス中に混入し反応性
スパッタすることにより面内磁化膜を形成したり、ある
いは、Fe、Co、Ni等の強磁性金属を含む合金薄膜
を面内磁化膜として使用することができる。面内磁化膜
の飽和磁化の大きさは特に限定されないが、好ましく
は、200〜600emu/ccである。
The method of adding the in-plane magnetized film may be any method. For example, the in-plane magnetized film is formed by changing the ratio of the rare earth element at the initial stage of the growth of the first magnetic film, A gas can be mixed into a sputtering gas to form an in-plane magnetized film by reactive sputtering, or an alloy thin film containing a ferromagnetic metal such as Fe, Co, or Ni can be used as the in-plane magnetized film. . The magnitude of the saturation magnetization of the in-plane magnetization film is not particularly limited, but is preferably 200 to 600 emu / cc.

【0020】第1の磁性層の厚みは200〜600オン
グストロ−ムが好ましい。また、付加される面内磁化膜
の厚みは10〜300オングストロ−ムが好ましい。
The thickness of the first magnetic layer is preferably from 200 to 600 angstroms. Further, the thickness of the added in-plane magnetic film is preferably from 10 to 300 angstroms.

【0021】第2の磁性層はTc3,Tc1>Tc2>
室温を満足するような磁性薄膜なら特に限定されない
が、好ましくは、100℃<Tc2<200℃、磁化<
100emu/ccである。第2の磁性層の厚みは50
〜200オングストロ−ムが好ましい。
The second magnetic layer is composed of Tc3, Tc1>Tc2>
There is no particular limitation on a magnetic thin film that satisfies room temperature, but preferably, 100 ° C <Tc2 <200 ° C, magnetization <
100 emu / cc. The thickness of the second magnetic layer is 50
~ 200 Å is preferred.

【0022】第3の磁性層は、室温からTc2の間の温
度で保磁力が十分に大きい垂直磁化膜であればなんでも
良く、例えばTbFeCo、DyFeCo、NdDyF
eCoなどがあげられる。この層の厚みは200〜80
0オングストロ−ムが好ましい。
The third magnetic layer may be any perpendicular magnetic film having a sufficiently large coercive force at a temperature between room temperature and Tc2. For example, TbFeCo, DyFeCo, NdDyF
eCo and the like. The thickness of this layer is 200-80
0 Å is preferred.

【0023】第1磁性層に面内磁化膜を付加することに
よって転写性が再現性良く安定になる理由については現
在検討中で詳細は不明であるが、第1磁性層表面に面内
磁化膜が存在することにより、第1磁性層中での磁壁エ
ネルギ−が減少し、この層の中で磁区が安定に存在でき
るためと考えられる。しかしながらこのような推測は、
なんら本発明に影響を与えるものではない。
The reason why the transferability is stabilized with good reproducibility by adding an in-plane magnetic film to the first magnetic layer is currently under study and the details are unknown, but the in-plane magnetic film is provided on the surface of the first magnetic layer. This is presumably because the presence of reduces the domain wall energy in the first magnetic layer and allows the magnetic domain to exist stably in this layer. However, such a guess is
It does not affect the present invention at all.

【0024】本発明の光磁気記録媒体の構造は、上述の
透明基板上に互いに磁気的に結合した第1の磁性膜、第
2の磁性膜及び第3の磁性膜、さらに第1の磁性膜に付
加された面内磁化膜から構成されれば特に限定されず、
透明基板と磁性膜との間に窒化ケイ素などの誘電体膜を
はさんだり、磁性膜の上に保護膜やAlなどの金属膜を
積層していてもよい。
The structure of the magneto-optical recording medium of the present invention comprises a first magnetic film, a second magnetic film, a third magnetic film, and a first magnetic film which are magnetically coupled to each other on the transparent substrate. It is not particularly limited as long as it is constituted by the in-plane magnetized film added to
A dielectric film such as silicon nitride may be interposed between the transparent substrate and the magnetic film, or a protective film or a metal film such as Al may be laminated on the magnetic film.

【0025】また、第3の磁性膜については、さらに光
変調オ−バ−ライトなどの機能を付加する為に2〜5層
膜で構成されていてもよい。
The third magnetic film may be composed of two to five layers in order to further add a function such as light modulation overwrite.

【0026】透明基板は、使用するレ−ザ−の波長領域
において十分透明であり、機械特性などの媒体基板とし
ての特性が満たされれば、ガラス、ポリカ−ボネ−ト、
アモルファスポリオレフィンなど特に限定されない。
The transparent substrate is sufficiently transparent in the wavelength region of the laser to be used, and if the characteristics of the medium substrate such as mechanical characteristics are satisfied, glass, polycarbonate,
It is not particularly limited, such as amorphous polyolefin.

【0027】透明基板と磁性膜の間に誘電体膜がある場
合は、できるだけ緻密になる条件で誘電体の成膜を行っ
たり、誘電体成膜後にエッチングを行ったりすることに
よって再生層と記録保持層の交換結合力を増加させた場
合も転写性を犠牲にすることがないのでC/Nの向上を
させることができる。
If there is a dielectric film between the transparent substrate and the magnetic film, the dielectric film is formed under conditions that are as dense as possible, or etching is performed after the dielectric film is formed, so that the recording layer and the recording layer are recorded. Even when the exchange coupling force of the holding layer is increased, the transferability is not sacrificed, so that the C / N can be improved.

【0028】[0028]

【実施例】【Example】

実施例1 図2に示すような光磁気記録媒体を製造した。ポリカ−
ボネ−ト基板1上に、窒化ケイ素からなる誘電体層2
(膜厚:800オングストローム)を成膜後アルゴンガ
ス中でエッチングを行い、その後GdFeCoからなる
面内磁化膜3(膜厚:40オングストローム、磁化:3
50emu/cc(室温)、キュリー温度:350℃以
上)、GdFeCoからなる第1の磁性膜4(膜厚:3
00オングストローム、磁化:20emu/cc(室
温)、Tc1:340℃)、TbFeCoSiからなる
第2の磁性膜5(膜厚:100オングストローム、保磁
力:3kOe、Tc2:140℃)、TbFeCoから
なる第3の磁性膜6(膜厚:400オングストローム、
保磁力:>12kOe、Tc3:260℃)、さらに窒
化ケイ素層7(膜厚:800オングストローム)、アル
ミニウム層8(膜厚:200オングストローム)を形成
した。比較例として、面内磁化膜3を除いた試料も製造
した。
Example 1 A magneto-optical recording medium as shown in FIG. 2 was manufactured. Polycarbonate
A dielectric layer 2 made of silicon nitride on a bone substrate 1
(Film thickness: 800 angstroms), and after etching in an argon gas, in-plane magnetized film 3 of GdFeCo (film thickness: 40 angstroms, magnetization: 3)
50 emu / cc (room temperature), Curie temperature: 350 ° C. or higher), first magnetic film 4 made of GdFeCo (thickness: 3)
A second magnetic film 5 made of TbFeCoSi (thickness: 100 angstroms, coercive force: 3 kOe, Tc2: 140 ° C.), and a third made of TbFeCo. Magnetic film 6 (thickness: 400 Å,
Coercive force:> 12 kOe, Tc3: 260 ° C.), and a silicon nitride layer 7 (film thickness: 800 Å) and an aluminum layer 8 (film thickness: 200 Å) were formed. As a comparative example, a sample without the in-plane magnetized film 3 was also manufactured.

【0029】次に、この光磁気記録媒体を記録再生装置
にセットして、線速度5.5m/secで回転させなが
ら780nmの波長のレ−ザ−ビ−ムを33%のデュ−
ティ−において7.1MHzで変調させながら5.7m
Wのレ−ザ−パワ−で記録を行なった。記録時のバイア
ス磁界は250Oeであった。
Next, this magneto-optical recording medium is set in a recording / reproducing apparatus, and while rotating at a linear velocity of 5.5 m / sec, a laser beam having a wavelength of 780 nm is applied to a 33% duty.
5.7m while modulating at 7.1MHz at the tee
Recording was performed with W laser power. The bias magnetic field at the time of recording was 250 Oe.

【0030】消去方向に300Oeのバイアス磁界(H
r)をかけながらレ−ザ−パワ−を1.6mWで再生す
るとC/Nの値は46.5dBとなった。
A bias magnetic field of 300 Oe (H
When the laser power was reproduced at 1.6 mW while applying r), the value of C / N became 46.5 dB.

【0031】比較例において同様の条件でC/Nを測定
すると、39dBとなり良好なC/Nが得られなかっ
た。
When the C / N was measured under the same conditions in the comparative example, it was 39 dB, and a good C / N was not obtained.

【0032】両記録媒体に1.4μmの記録磁区を数多
く書き込み、基板側から780nmの光を当ててカ−効
果を90℃で測定した。第3の磁性膜6の記録磁区が消
えない範囲で第1の磁性膜4の記録磁区を消去するまで
磁界をかけた後、磁界を下げたところゼロ磁界において
面内磁化膜3がある試料では第3の磁性膜6の記録磁区
が第1の磁性膜4に転写されていることが確認され、面
内磁化膜3がない比較例においてはゼロ磁界において転
写がおこらず、さらに記録方向に磁界を5kOeかけて
転写がおこった。
Many recording magnetic domains of 1.4 μm were written on both recording media, and the Carr effect was measured at 90 ° C. by irradiating 780 nm light from the substrate side. After applying a magnetic field until the recording magnetic domain of the first magnetic film 4 is erased within a range where the recording magnetic domain of the third magnetic film 6 does not disappear, the magnetic field is lowered. It was confirmed that the recording magnetic domain of the third magnetic film 6 was transferred to the first magnetic film 4, and in the comparative example having no in-plane magnetization film 3, no transfer was performed at zero magnetic field, and the magnetic field was further reduced in the recording direction. Was transferred over 5 kOe.

【0033】したがって、両記録媒体のC/Nの差は、
消去方向に300Oeのバイアス磁界(Hr)をかけな
がらレ−ザ−パワ−を1.6mWで照射したときに、比
較例において第2の磁性膜5のキュリ−温度を越えた領
域が室温に戻っても完全にはもとに戻らないことに原因
があることが明らかになり、本発明の効果がはっきりし
た。
Therefore, the difference in C / N between the two recording media is
When the laser power was irradiated at 1.6 mW while applying a bias magnetic field (Hr) of 300 Oe in the erasing direction, the region of the second magnetic film 5 exceeding the Curie temperature in the comparative example returned to room temperature. However, it was clear that the cause was not completely restored, and the effect of the present invention became clear.

【0034】実施例2 実施例1と同じように図2に示すような光磁気記録媒体
を製造した。ただし、誘電体層2(膜厚:800オング
ストローム)を成膜後のアルゴンガス中でのエッチング
工程を省いた。その後GdFeCoからなる面内磁化膜
3(膜厚:25オングストローム、磁化:330emu
/cc(室温)、キュリー温度:350℃以上)、Gd
FeCoからなる第1の磁性膜4(膜厚:300オング
ストローム、磁化:20emu/cc(室温)、Tc
1:340℃)、TbFeCoSiからなる第2の磁性
膜5(膜厚:100オングストローム、保磁力:5kO
e、Tc2:110℃)、TbFeCoからなる第3の
磁性膜6(膜厚:400オングストローム、保磁力:>
12kOe、Tc3:260℃)、さらに窒化ケイ素層
7(膜厚:800オングストローム)、アルミニウム層
8(膜厚:200オングストローム)を形成した。実施
例1と同様に比較のために、面内磁化膜3を除いた比較
例も製造した。
Example 2 A magneto-optical recording medium as shown in FIG. 2 was manufactured in the same manner as in Example 1. However, the etching step in argon gas after forming the dielectric layer 2 (thickness: 800 Å) was omitted. Thereafter, the in-plane magnetic film 3 made of GdFeCo (film thickness: 25 Å, magnetization: 330 emu)
/ Cc (room temperature), Curie temperature: 350 ° C or higher), Gd
First magnetic film 4 made of FeCo (thickness: 300 angstroms, magnetization: 20 emu / cc (room temperature), Tc
1: 340 ° C.), second magnetic film 5 made of TbFeCoSi (film thickness: 100 Å, coercive force: 5 kO)
e, Tc2: 110 ° C.), third magnetic film 6 made of TbFeCo (thickness: 400 Å, coercive force:>
12 kOe, Tc3: 260 ° C.), a silicon nitride layer 7 (film thickness: 800 Å), and an aluminum layer 8 (film thickness: 200 Å). As in Example 1, for comparison, a comparative example in which the in-plane magnetized film 3 was omitted was also manufactured.

【0035】次に、この光磁気記録媒体を記録再生装置
にセットして、線速度5.5m/secで回転させなが
ら780nmの波長のレ−ザ−ビ−ムを33%のデュ−
ティ−において7.1MHzで変調させながら5.5m
Wのレ−ザ−パワ−で記録を行なった。記録時のバイア
ス磁界は250Oeであった。
Next, this magneto-optical recording medium is set in a recording / reproducing apparatus, and while rotating at a linear velocity of 5.5 m / sec, a laser beam having a wavelength of 780 nm is applied to a 33% duty.
5.5m while modulating at 7.1MHz at the tee
Recording was performed with W laser power. The bias magnetic field at the time of recording was 250 Oe.

【0036】消去方向に300Oeのバイアス磁界(H
r)をかけながらレ−ザ−パワ−を1.5mWで再生す
るとC/Nの値は45dBとなった。
In the erase direction, a bias magnetic field (H
When the laser power was reproduced at 1.5 mW while applying r), the value of C / N became 45 dB.

【0037】比較例において同様の条件でC/Nを測定
すると32dBとなり良好なC/Nが得られなかった。
When the C / N was measured under the same conditions in the comparative example, it was 32 dB, and a good C / N was not obtained.

【0038】両記録媒体に1.4μmの記録磁区を数多
く書き込み、基板側から780nmの光を当ててカ−効
果を80℃で測定した。第3の磁性膜6の記録磁区が消
えない範囲で第1の磁性膜4の記録磁区を消去するまで
磁界をかけた後、磁界を下げたところゼロ磁界において
面内磁化膜3がある試料では第3の磁性膜6の記録磁区
が第1の磁性膜4に転写されていることが確認され、面
内磁化膜3がない比較例においてはゼロ磁界において転
写がおこらず、さらに記録方向に磁界を4kOeかけて
転写がおこった。
A large number of 1.4 μm recording magnetic domains were written on both recording media, and the Carr effect was measured at 80 ° C. by irradiating 780 nm light from the substrate side. After applying a magnetic field until the recording magnetic domain of the first magnetic film 4 is erased within a range where the recording magnetic domain of the third magnetic film 6 does not disappear, the magnetic field is lowered. It was confirmed that the recording magnetic domain of the third magnetic film 6 was transferred to the first magnetic film 4, and in the comparative example having no in-plane magnetization film 3, no transfer was performed at zero magnetic field, and the magnetic field was further reduced in the recording direction. Was transferred over 4 kOe.

【0039】以上の説明より、面内磁化膜の付加が転写
性を向上させることが明らかになった。実施例2におい
て中間層のキュリ−温度を130℃以上に設定すると面
内磁化膜3がなくても良好な転写性は得られるが、実施
例2では中間層である第2の磁性膜5のキュリ−温度を
110℃と低く設定したので再生パワ−1.2〜2.5
mWで40dB以上のC/Nが得られ、記録層が消去さ
れ始めるパワ−2.8mWに対してかなり大きな再生パ
ワ−マ−ジンが得られた。
From the above description, it has been clarified that the addition of the in-plane magnetic film improves transferability. In the second embodiment, when the Curie temperature of the intermediate layer is set to 130 ° C. or higher, good transferability can be obtained without the in-plane magnetized film 3. However, in the second embodiment, the second magnetic film 5 as the intermediate layer can be obtained. Curing temperature is set as low as 110 ° C, so regeneration power is 1.2 ~ 2.5
A C / N of 40 dB or more was obtained at mW, and a considerably large reproducing power margin was obtained with respect to a power of -2.8 mW at which the recording layer began to be erased.

【0040】[0040]

【発明の効果】本発明の光磁気記録媒体に設けた面内磁
化膜は、第1の磁性層の良好な垂直磁気異方性を保った
まま記録磁区の磁壁エネルギ−を下げるため、中間層で
ある第2の磁性膜のキュリ−温度が低くても良好な転写
性と交換結合力を与えることができる。従って、第2の
磁性膜のキュリ−温度をかなり広い範囲で選択すること
ができるようになるので十分な再生パワ−マ−ジンを得
ることができ、第3の磁性膜のキュリ−温度を無理に高
くして繰り返し記録耐久性を悪化させることもなくな
る。さらに、また、第4の磁性膜を2〜5層膜として光
変調オ−バ−ライト機能を付加した場合も無理のない媒
体設計が可能となる。
The in-plane magnetized film provided on the magneto-optical recording medium of the present invention reduces the domain wall energy of the recording magnetic domain while maintaining good perpendicular magnetic anisotropy of the first magnetic layer. Even if the Curie temperature of the second magnetic film is low, good transferability and exchange coupling force can be provided. Therefore, the curable temperature of the second magnetic film can be selected in a considerably wide range, so that a sufficient reproducing power margin can be obtained, and the curable temperature of the third magnetic film cannot be controlled. And the recording durability is not deteriorated repeatedly. Further, when the fourth magnetic film is a two- to five-layer film to add a light modulation overwrite function, a reasonable medium design is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光磁気記録媒体の構造の一例を示す
断面図である。
FIG. 1 is a sectional view showing an example of the structure of a magneto-optical recording medium according to the present invention.

【図2】 本発明の光磁気記録媒体の構造の一例を示す
断面図である。
FIG. 2 is a sectional view showing an example of the structure of the magneto-optical recording medium of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明基板上に互いに磁気的に結合した第
1の磁性膜と、第2の磁性膜と、第3の磁性膜とを有
し、上記第1、第2、第3の磁性膜のキュリ−温度をそ
れぞれTc1、Tc2、Tc3とするとき、Tc3、T
c1>Tc2>室温であり、第1磁性層の磁区を変形さ
せながら再生することが可能な光磁気記録媒体におい
て、第1の磁性膜の形成前に面内磁化膜を付加すること
を特徴とする光磁気記録媒体。
A first magnetic film, a second magnetic film, and a third magnetic film magnetically coupled to each other on a transparent substrate, wherein the first, second, and third magnetic films are provided; When the Curie temperatures of the films are Tc1, Tc2, and Tc3, respectively, Tc3, Tc3
In a magneto-optical recording medium which satisfies c1>Tc2> room temperature and is capable of reproducing while deforming a magnetic domain of the first magnetic layer, an in-plane magnetic film is added before forming the first magnetic film. Magneto-optical recording medium.
JP06178093A 1993-03-22 1993-03-22 Magneto-optical recording medium Expired - Fee Related JP3328989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06178093A JP3328989B2 (en) 1993-03-22 1993-03-22 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06178093A JP3328989B2 (en) 1993-03-22 1993-03-22 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH06274952A JPH06274952A (en) 1994-09-30
JP3328989B2 true JP3328989B2 (en) 2002-09-30

Family

ID=13180955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06178093A Expired - Fee Related JP3328989B2 (en) 1993-03-22 1993-03-22 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP3328989B2 (en)

Also Published As

Publication number Publication date
JPH06274952A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
JP2910250B2 (en) Magneto-optical recording medium
JPH07244877A (en) Magneto-optic recording medium and method for reproducing data recorded in the medium
JP3477384B2 (en) Magneto-optical recording medium
JP2809991B2 (en) Magneto-optical recording medium and method of reproducing information recorded on the medium
US7161876B2 (en) Magneto-optical recording medium, and method for recording information in a recording layer
WO1997022969A1 (en) Magneto-optic recording medium and reproduction method thereof
JP3554083B2 (en) Magneto-optical recording medium and method of recording information on the medium
JP3354726B2 (en) Magneto-optical recording medium and reproducing method
EP0668585B1 (en) Information recording method and system using a magneto-optical medium
JP3328989B2 (en) Magneto-optical recording medium
JP3412879B2 (en) Magneto-optical recording medium
JP2766198B2 (en) Magneto-optical recording medium
JP3210178B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
JP3424806B2 (en) Method of reproducing information recorded on magneto-optical recording medium
JPH03242845A (en) Magneto-optical recording method
JP3218735B2 (en) Magneto-optical recording medium
JP3390713B2 (en) Magneto-optical recording medium
JP3666057B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording medium used therefor
KR100531274B1 (en) Optical magnetic disk
JP3542155B2 (en) Magneto-optical recording medium and magneto-optical recording / reproducing device
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
KR100531275B1 (en) Optical magnetic disk
JP3592399B2 (en) Magneto-optical recording medium
JP2985641B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH0778362A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees