JP3218735B2 - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JP3218735B2 JP3218735B2 JP29692192A JP29692192A JP3218735B2 JP 3218735 B2 JP3218735 B2 JP 3218735B2 JP 29692192 A JP29692192 A JP 29692192A JP 29692192 A JP29692192 A JP 29692192A JP 3218735 B2 JP3218735 B2 JP 3218735B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic film
- magnetic
- film
- layer
- magneto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は書き換えが可能な光磁気
記録媒体のなかで、再生層の磁化状態を変化させながら
記録信号を読み取る光磁気記録媒体に係わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rewritable magneto-optical recording medium, and more particularly to a magneto-optical recording medium for reading a recording signal while changing a magnetization state of a reproducing layer.
【0002】[0002]
【従来の技術】光磁気記録媒体は書き換え可能な光記録
媒体であり、相変化型光記録媒体などと比較して繰り返
し消去/書き込み耐久性や消去比率に優れ、可搬型大容
量の記録媒体として注目されている。2. Description of the Related Art A magneto-optical recording medium is a rewritable optical recording medium, and has excellent repeated erasing / writing durability and erasing ratio as compared with a phase change type optical recording medium and the like, and is a portable large-capacity recording medium. Attention has been paid.
【0003】光磁気記録媒体は、レ−ザ−光照射による
局所加熱によって記録ビットを形成し、これをカ−効果
により読み出す記録再生方法が取られる。記録ビットの
間隔はレ−ザ−光照射パワ−、記録磁界の強度などの調
整でレ−ザ−スポット径よりもかなり小さくすることが
可能であるが、読みだしは再生時のレ−ザ波長、レンズ
の開口率などによって制約を受ける。The magneto-optical recording medium employs a recording / reproducing method in which recording bits are formed by local heating by laser light irradiation, and the recording bits are read out by the Kerr effect. The interval between recording bits can be made much smaller than the laser spot diameter by adjusting the laser light irradiation power, the intensity of the recording magnetic field, etc., but the reading is performed at the laser wavelength at the time of reproduction. And the aperture ratio of the lens.
【0004】このような再生時の制約から決まる記録密
度を越えて、読み出すための改善の試みが、例えば、特
開平3−93058号公報に開示され、再生前に初期化
磁石で再生層の磁化の向きを揃えた後、記録保持層の記
録ビットを再生層に転写しながら再生することにより再
生分解能を向上する技術が記述されている。[0004] An attempt to improve the readout beyond the recording density determined by such restrictions during reproduction is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 3-93058, and the magnetization of the reproduction layer is initialized by an initialization magnet before reproduction. A technique for improving reproduction resolution by reproducing the data while transferring the recording bits of the recording holding layer to the reproduction layer after aligning the orientations of the recording layers is described.
【0005】この方式は、再生光照射による温度上昇を
利用し、ビ−ムスポット内の高温領域にのみ再生時に記
録保持層の記録ビットを再生層に転写しながら再生する
ことによりビ−ムスポット内の他の領域には記録磁区が
現れないようにしたもので、再生時の符号間干渉を減少
させ、光の回折限界以下の周期の信号を再生可能とする
ものである。This method utilizes the temperature rise caused by the irradiation of the reproducing light, and reproduces the beam while transferring the recording bits of the recording holding layer to the reproducing layer only at the high temperature area in the beam spot. The recording magnetic domain is prevented from appearing in the other areas in FIG. 1 to reduce intersymbol interference during reproduction and to enable reproduction of a signal having a period equal to or less than the diffraction limit of light.
【0006】特開平3−93058号公報に開示された
技術は、浮き出し型MSR(Magnetically
induced Super Resolutio
n)あるいはRAD(Rear Aperture D
etection)と呼ばれるが、さらに特開平4−2
55946号公報やジャパニーズ ジャーナル オブア
プライド フィジクス(Japanese Journ
al of Applied Physics) Se
ries 6,Proc. Int. Symp. o
n Optical Memory,1991,pp.
203−210には、少なくとも再生層(第1磁性
層)、中間層(第2磁性層)、記録層(第3磁性層)の
3層の構造の再生方式が提案されている。この方式は、
ダブルマスクRADと呼ばれ、再生前に初期化磁石で再
生層の磁化の向きを揃えた後、中間層あるいは再生層と
中間層の間に設けられた再生補助層のキュリ−温度を越
える再生をすることにより、磁化が第3磁性層の方向を
むいた領域が、磁化が初期化磁界の方向を向いた領域
(マスク1)と磁化が読みだしバイアス磁界の方向を向
いた領域(マスク2)に挟まれ、マスク1とマスク2の
からの信号は時間変化のないDC成分となることから、
磁化が第3磁性層の方向をむいた領域からのみの信号が
検出されることにより、光の回折限界以下の周期の信号
を再生可能とするものである。磁化が第3磁性層の方向
をむいた領域が、RADよりダブルマスクRADの方が
狭くなるので解像度はさらに上がっている。[0006] The technique disclosed in Japanese Patent Application Laid-Open No. 3-93058 is a floating type MSR (Magnetically).
induced Super Resolution
n) or RAD (Rear Aperture D)
(Election).
No. 55946 and Japanese Journal of Applied Physics (Japanese Journal of Applied Physics)
al of Applied Physics) Se
ries 6, Proc. Int. Symp. o
n Optical Memory, 1991, pp. 146-64.
203-210 proposes a reproducing system having at least a three-layer structure including a reproducing layer (first magnetic layer), an intermediate layer (second magnetic layer), and a recording layer (third magnetic layer). This method is
This is called double mask RAD, and after the magnetization direction of the reproducing layer is aligned by an initialization magnet before reproducing, the reproducing exceeding the Curie temperature of the intermediate layer or the reproducing auxiliary layer provided between the reproducing layer and the intermediate layer is performed. As a result, the region where the magnetization is directed to the third magnetic layer is divided into a region where the magnetization is directed to the direction of the initialization magnetic field (mask 1) and a region where the magnetization is read and directed to the direction of the bias magnetic field (mask 2). , And the signals from the mask 1 and the mask 2 are DC components that do not change over time.
By detecting a signal only from a region where the magnetization is directed to the direction of the third magnetic layer, a signal having a period equal to or less than the diffraction limit of light can be reproduced. Since the area where the magnetization is directed to the third magnetic layer is smaller in the double mask RAD than in the RAD, the resolution is further improved.
【0007】[0007]
【発明が解決しようとする課題】特開平3−93058
号公報と特開平4−255946号公報の実施例では、
希土類遷移金属を主成分とした膜で全ての層が構成され
ている。4層構造が最も典型的な構造で再生層がGdF
eCo、再生補助層がTbFeCoAl、中間層がGd
FeCo、記録層がTbFeCoである。Problems to be Solved by the Invention
In the embodiments of Japanese Patent Laid-Open Publication No.
All layers are composed of a film containing a rare earth transition metal as a main component. The four-layer structure is the most typical structure and the reproducing layer is GdF
eCo, TbFeCoAl for the auxiliary reproduction layer, and Gd for the intermediate layer
FeCo, the recording layer is TbFeCo.
【0008】複雑な組成の磁性膜を積層していくとき、
各々の層に対して合金タ−ゲットを用いてスパッタする
と装置が簡単になり望ましいが、希土類遷移金属系の材
料では希土類遷移金属合金タ−ゲットの組成と膜の組成
が一致しなかったり、合金タ−ゲットの製法に特別な工
夫をする必要があったりと難しい。本発明が解決しよう
とする課題は、RADあるいはダブルマスクRADに使
える積層膜のうち希土類遷移金属のものを減らすことで
ある。When laminating magnetic films having complicated compositions,
It is desirable to sputter each layer using an alloy target, because the apparatus is simpler and desirable. However, in the case of rare earth transition metal based materials, the composition of the rare earth transition metal alloy target does not match the film composition, It is difficult or necessary to take special measures to make the target. The problem to be solved by the present invention is to reduce the number of rare-earth transition metal films among laminated films usable for RAD or double mask RAD.
【0009】[0009]
【課題を解決するための手段】本発明は、図1に示すよ
うに、透明基板上に互いに磁気的に結合した第1の磁性
膜と、第2の磁性膜と、第3の磁性膜とを有し、上記第
1、第2、第3の磁性膜のキュリ−温度をそれぞれTc
1、Tc2、Tc3とするとき、Tc3、Tc1>Tc
2>室温であり、第1の磁性膜および第3の磁性膜は垂
直磁化膜で、第2の磁性膜は、Fe、Co、Niの少な
くとも1元素と、Al、Si、Ge、Ti、V、Cr、
Mn、Zr、Nb、Mo、Hf、Ta、W、Cu、P
d、Ag、Pt、Auのすくなくとも1元素で構成され
る面内磁化膜であり、第1磁性層の磁区を変形させなが
ら再生することが可能な光磁気記録媒体である。According to the present invention, as shown in FIG. 1, a first magnetic film, a second magnetic film, and a third magnetic film magnetically coupled to each other on a transparent substrate. And the Curie temperatures of the first, second, and third magnetic films are set to Tc, respectively.
1, Tc2, Tc3, Tc3, Tc1> Tc
2> room temperature, the first magnetic film and the third magnetic film are perpendicular magnetization films, and the second magnetic film is made of at least one element of Fe, Co, Ni, and Al, Si, Ge, Ti, V , Cr,
Mn, Zr, Nb, Mo, Hf, Ta, W, Cu, P
It is an in-plane magnetized film composed of at least one element of d, Ag, Pt, and Au, and is a magneto-optical recording medium capable of reproducing while deforming the magnetic domain of the first magnetic layer.
【0010】第1の磁性膜は、室温で保磁力が大きく、
Tc2で保磁力が小さい垂直磁化膜であればよく、例え
ば補償組成付近のGdFeCo、GdTbFeCo、G
dDyFeCoなどがあげられる。また、再生層と再生
補助層の2層構造、例えばGdFeCo/TbFeなど
の2層構造でもよい。2層構造では保磁力の変化を再生
補助層のキュリ−温度で制御することができるので、組
成のばらつきによる第1の磁性膜の保磁力のばらつきを
減らすことができる。The first magnetic film has a large coercive force at room temperature,
Any perpendicular magnetization film having a small coercive force at Tc2 may be used. For example, GdFeCo, GdTbFeCo, Gd
dDyFeCo and the like. Further, a two-layer structure of a reproduction layer and a reproduction auxiliary layer, for example, a two-layer structure of GdFeCo / TbFe may be used. In the two-layer structure, the change in coercive force can be controlled by the Curie temperature of the auxiliary reproduction layer, so that the variation in coercive force of the first magnetic film due to the variation in composition can be reduced.
【0011】第3の磁性膜はTbFeCo、DyFeC
o、NdDyFeCoなど室温からTc2まで保磁力が
十分大きい垂直磁化膜であれば何でも良い。The third magnetic film is made of TbFeCo, DyFeC
Any material such as o and NdDyFeCo may be used as long as it has a sufficiently large coercive force from room temperature to Tc2.
【0012】第2の磁性膜は、第1の磁性膜に対する第
3の磁性膜の交換結合による有効磁界を制御して、初期
化を行うための外部磁界Hiniによる第1の磁性膜の
初期化状態を安定化させ、また、Hr(再生を行うため
の外部磁界)を印加した状態で、転写が始まる温度Tp
から第1磁性層が一様にHrの方向を向き始める温度T
rの範囲で、第3の磁性膜から第1の磁性膜へ磁化状態
の転写がおこるようにスイッチする働きも兼ねている。The second magnetic film controls an effective magnetic field due to exchange coupling of the third magnetic film to the first magnetic film, and initializes the first magnetic film by an external magnetic field Hini for initialization. The temperature Tp at which transfer is started in a state where the state is stabilized and Hr (an external magnetic field for performing reproduction) is applied.
From the temperature T at which the first magnetic layer starts to turn uniformly in the direction of Hr
In the range of r, it also has a function of switching the transfer of the magnetization state from the third magnetic film to the first magnetic film.
【0013】このような働きをする第2の磁性膜として
は、Tc3,Tc1>Tc2>室温を満たす面内磁性膜
で、Fe、Co、Niの少なくとも1元素とAl、S
i、Ge、Ti、V、Cr、Mn、Zr、Nb、Mo、
Hf、Ta、W、Cu、Pd、Ag、Pt、Auのすく
なくとも1元素で構成される薄膜が好ましい。Al、S
i、Ge、Ti、V、Cr、Mn、Zr、Nb、Mo、
Hf、Ta、W、Cu、Pd、Ag、Pt、Auはキュ
リ−温度、飽和磁化を制御するために含まれている。こ
のような組成では希土類金属を含まないので、スパッタ
リング法で成膜する時、タ−ゲットと薄膜の組成の対応
がよく、耐蝕性にも優れるので扱いやすいという特徴が
ある。As the second magnetic film having such a function, an in-plane magnetic film satisfying Tc3, Tc1>Tc2> room temperature, and at least one element of Fe, Co and Ni and Al and S
i, Ge, Ti, V, Cr, Mn, Zr, Nb, Mo,
A thin film composed of at least one element of Hf, Ta, W, Cu, Pd, Ag, Pt, and Au is preferable. Al, S
i, Ge, Ti, V, Cr, Mn, Zr, Nb, Mo,
Hf, Ta, W, Cu, Pd, Ag, Pt, and Au are included for controlling the Curie temperature and the saturation magnetization. Since such a composition does not contain a rare earth metal, it has a feature that when forming a film by a sputtering method, the composition of the target and the thin film is good, and the film is easy to handle because it has excellent corrosion resistance.
【0014】本発明の光磁気記録媒体の再生方法の一例
を図2に示す。光磁気記録媒体を回転させながら、ヘッ
ドから離れた位置において、初期化のための外部磁界H
iniを印加し、第1の磁性膜の磁化を一定の方向へそ
ろえる。その後、Hiniと反対方向の、再生を行うた
めの外部磁界Hrを印加しながら、Tp以上の温度範囲
に磁性層がなるようなパワ−でレ−ザ−ビ−ムを照射す
ることにより、第1の磁性膜に第3の磁性膜の記録状態
が転写され再生される。レ−ザ−スポットのなかで転写
された領域以外は、第1の磁性膜の磁化は一定方向へそ
ろっている(第1のマスク)ので、転写された領域のみ
の信号が検出され、符号間干渉を減少させ、光の回折限
界以下の周期の信号を再生できる。また、第1の磁性膜
の温度がTr以上の領域にあるところでは、第1の磁性
膜の方向がHrの方向に向き(第2のマスク2)、第1
の磁性膜に第3の磁性膜の記録状態が転写された領域が
拡がりすぎて符号間干渉を起こすことを防ぐ。このよう
にして、第1磁性層の磁区を変形させながら、光磁気記
録媒体の情報を再生する。FIG. 2 shows an example of a reproducing method for a magneto-optical recording medium according to the present invention. While rotating the magneto-optical recording medium, an external magnetic field H for initialization is provided at a position away from the head.
ini is applied to align the magnetization of the first magnetic film in a certain direction. Thereafter, while applying an external magnetic field Hr for reproduction in a direction opposite to the direction of Hini, the laser beam is irradiated with a power such that the magnetic layer is formed in a temperature range of Tp or more, so that the laser beam is irradiated. The recorded state of the third magnetic film is transferred to and reproduced from the first magnetic film. Since the magnetization of the first magnetic film is aligned in a fixed direction (first mask) in the laser spot other than the transferred area (first mask), the signal of only the transferred area is detected and the code Interference can be reduced, and a signal having a period less than the diffraction limit of light can be reproduced. Further, where the temperature of the first magnetic film is in the region equal to or higher than Tr, the direction of the first magnetic film is oriented in the direction of Hr (second mask 2).
This prevents the area where the recording state of the third magnetic film is transferred onto the magnetic film from becoming too wide and causing intersymbol interference. Thus, information on the magneto-optical recording medium is reproduced while the magnetic domains of the first magnetic layer are deformed.
【0015】なお、初期化を行うための外部磁界Hin
i(室温)は、第1の磁性膜の保磁力をHc1、上記第
3の磁性膜の保磁力をHc3、上記第1の磁性膜に対し
て上記第2の磁性膜を介して上記第3の磁性膜からの交
換結合による有効磁界をHw1、上記第3の磁性膜に対
して上記第2の磁性膜を介して上記第1の磁性膜からの
交換結合による有効磁界をHw3とすると、 Hc1+Hw1<Hini<Hc3−Hw3 なる関係を有する。Note that an external magnetic field Hin for initialization is provided.
i (room temperature) is Hc1 for the coercive force of the first magnetic film, Hc3 for the coercive force of the third magnetic film, and the third coercive force with respect to the first magnetic film via the second magnetic film. Hc1 + Hw1 where Hw1 is the effective magnetic field due to exchange coupling from the first magnetic film and Hw3 is the effective magnetic field due to exchange coupling from the first magnetic film to the third magnetic film via the second magnetic film. <Hini <Hc3-Hw3.
【0016】また、再生を行うための外部磁界HrはT
p〜Trの温度範囲で、 Hc1−Hw1<Hr<Hc1+Hw1 なる関係を有し、更にHc3は、Hrよりも十分大き
い。An external magnetic field Hr for performing reproduction is T
In the temperature range of p to Tr, the relationship Hc1−Hw1 <Hr <Hc1 + Hw1 is satisfied, and Hc3 is sufficiently larger than Hr.
【0017】本発明の光磁気記録媒体の構造は、上述の
透明基板上に互いに磁気的に結合した第1の磁性膜と、
第2の磁性膜と、第3の磁性膜で構成されれば特に限定
されず、透明基板と磁性膜の間に誘電体膜をはさんだ
り、磁性膜の上に保護膜や反射膜を積層していても良
い。透明基板は、使用するレ−ザ−の波長領域において
十分透明であり、機械特性などの媒体基板としての特性
が満たされれば、ガラス、ポリカ−ボネ−ト、アモルフ
ァスポリオレフィンなど特に限定されない。The structure of the magneto-optical recording medium of the present invention comprises a first magnetic film magnetically coupled to the above-mentioned transparent substrate,
There is no particular limitation so long as it is composed of the second magnetic film and the third magnetic film. A dielectric film is sandwiched between the transparent substrate and the magnetic film, and a protective film and a reflective film are laminated on the magnetic film. May be. The transparent substrate is not particularly limited to glass, polycarbonate, amorphous polyolefin and the like as long as the transparent substrate is sufficiently transparent in the wavelength region of the laser to be used and satisfies the characteristics of a medium substrate such as mechanical characteristics.
【0018】本発明の光磁気記録媒体の磁性膜の膜厚は
第1の磁性膜はレ−ザ−光の大部分が第1の磁性膜で吸
収される膜厚で、150オングストローム以上800オ
ングストローム以下が好ましく、第2の磁性膜はTc2
以上で第1の磁性膜と第3の磁性膜の交換結合力を断ち
切れる膜厚で、20オングストローム以上300オング
ストローム以下が好ましく、第3の磁性膜は、記録が保
持されるのに十分な膜厚で、200オングストローム以
上1000オングストローム以下が好ましい。The thickness of the magnetic film of the magneto-optical recording medium of the present invention is such that the first magnetic film is a film in which most of the laser light is absorbed by the first magnetic film, and is 150 to 800 Å. The second magnetic film is preferably made of Tc2
The thickness which can cut off the exchange coupling force between the first magnetic film and the third magnetic film is preferably 20 Å or more and 300 Å or less, and the third magnetic film is a film which is enough to hold the recording. The thickness is preferably 200 to 1000 Å.
【0019】[0019]
実施例1 図3に示すような光磁気媒体を作成した。ポリカ−ボネ
−ト基板1上に、窒化ケイ素からなる誘電体層2(膜
厚:800オングストローム)、GdDyFeCoから
なる第1の磁性膜3(膜厚:300オングストローム、
Hc1:2kOe(室温)、Hc1:0.2kOe(1
50℃)、Tc1:330℃)、(Fe92Co8)57S
i43からなる第2の磁性膜4(膜厚:80オングストロ
ーム、Tc2:150℃)、TbFeCoからなる第3
の磁性膜5(膜厚:500オングストローム、Hc3:
>12kOe、Tc3:260℃)、さらに保護層とし
て窒化ケイ素層6(膜厚:800オングストローム)を
形成した。Example 1 A magneto-optical medium as shown in FIG. 3 was produced. A dielectric layer 2 (thickness: 800 Å) made of silicon nitride and a first magnetic film 3 (thickness: 300 Å) made of GdDyFeCo are formed on a polycarbonate substrate 1.
Hc1: 2 kOe (room temperature), Hc1: 0.2 kOe (1
50 ° C.), Tc1: 330 ° C.), (Fe 92 Co 8 ) 57 S
second magnetic film made of i 43 4 (thickness: 80 Å, Tc2: 150 ℃), third composed of TbFeCo
Magnetic film 5 (thickness: 500 angstroms, Hc3:
> 12 kOe, Tc3: 260 ° C.), and a silicon nitride layer 6 (film thickness: 800 Å) was formed as a protective layer.
【0020】次に、この光磁気媒体を記録再生装置にセ
ットして、3kOeの初期化磁界(Hini)発生部
を、線速度7.3m/secで通過させながら780n
mの波長のレ−ザ−ビ−ムを33%のデュ−ティ−で9
MHzで変調させながら8mWのレ−ザ−パワ−で記録
を行なった。記録時のバイアス磁界は300Oeで初期
化磁界(Hini)と反対方向にかけた。Next, this magneto-optical medium is set in a recording / reproducing apparatus, and a 780-n initializing magnetic field (Hini) generating section of 3 kOe is passed at a linear velocity of 7.3 m / sec.
The laser beam having a wavelength of m is 9% at a duty of 33%.
Recording was performed with a laser power of 8 mW while modulating at MHz. The bias magnetic field at the time of recording was 300 Oe and was applied in the direction opposite to the initialization magnetic field (Hini).
【0021】バイアス磁界(Hr)を300Oeとして
レ−ザ−パワ−をあげて2.0mWで再生するとC/N
の値は42dB、さらに3mWで再生すると46dBと
なった。When the bias magnetic field (Hr) is set to 300 Oe and the laser power is increased to reproduce at 2.0 mW, C / N
Was 42 dB, and 46 dB when reproduced at 3 mW.
【0022】また、第2の磁性膜4をTcが150℃付
近になるようにNi95Cr5、Co12Pt88、Fe57A
l43などと換えてもほとんど同様の効果がえられた。Further, the second magnetic film 4 is made of Ni 95 Cr 5 , Co 12 Pt 88 and Fe 57 A so that Tc is around 150 ° C.
almost the same effect can be replaced with, such as l 43 was obtained.
【0023】比較例1 実施例1において(Fe92Co8)57Si43からなる第
2の磁性膜4を除いた他は、すべて同様にして得られた
光磁気記録媒体を、2.0mWで再生するとC/Nの値
は23dBであった。COMPARATIVE EXAMPLE 1 A magneto-optical recording medium obtained in the same manner as in Example 1 except that the second magnetic film 4 made of (Fe 92 Co 8 ) 57 Si 43 was used was changed to 2.0 mW. Upon reproduction, the value of C / N was 23 dB.
【0024】比較例2 実施例1において第2の磁性膜を(Fe92Co8)72S
i28(Tc2:500℃)としたところ、2.0mWで
再生するとC/Nの値は33dB、3.0mWで再生す
ると35dBとなり、良好なC/Nが得られなかった。
これは、第3の磁性膜から第1の磁性膜への転写が良好
に行われなかったためと考えられる。Comparative Example 2 In Example 1, the second magnetic film was made of (Fe 92 Co 8 ) 72 S
When i 28 (Tc2: 500 ° C.), the C / N value was 33 dB when reproduced at 2.0 mW, and 35 dB when reproduced at 3.0 mW, and a good C / N was not obtained.
This is probably because the transfer from the third magnetic film to the first magnetic film was not performed well.
【0025】実施例2 ポリカ−ボネ−ト基板上に窒化ケイ素からなる誘電体層
(膜厚:800オングストローム)、GdFeCoから
なる第1の磁性膜(膜厚:300オングストローム、H
c1:0.3kOe(室温)、Hc1:0.1kOe
(150℃)、Tc1:330℃)、TbFeCoSi
からなる再生補助層(膜厚:100オングストローム、
Hcs:4.0kOe(室温)、Tcs:140℃)、
(Fe92Co8)59Si41からなる第2の磁性膜4(膜
厚:80オングストローム、Tc2:190℃)、Tb
FeCoからなる第3の磁性膜5(膜厚:500オング
ストローム、Hc3:>12kOe、Tc3:260
℃)、さらに保護層として窒化ケイ素層6(膜厚:80
0オングストローム)を形成した。Example 2 A dielectric layer (thickness: 800 angstroms) made of silicon nitride and a first magnetic film made of GdFeCo (thickness: 300 angstroms, H) were formed on a polycarbonate substrate.
c1: 0.3 kOe (room temperature), Hc1: 0.1 kOe
(150 ° C.), Tc1: 330 ° C.), TbFeCoSi
Reproduction assisting layer (film thickness: 100 Å,
Hcs: 4.0 kOe (room temperature), Tcs: 140 ° C.),
A second magnetic film 4 (film thickness: 80 angstroms, Tc2: 190 ° C.) of (Fe 92 Co 8 ) 59 Si 41 , Tb
Third magnetic film 5 made of FeCo (thickness: 500 Å, Hc3:> 12 kOe, Tc3: 260
° C) and a silicon nitride layer 6 (film thickness: 80
0 angstroms).
【0026】実施例1と同様の条件で記録を行い、バイ
アス磁界を300Oeとしてレ−ザ−パワ−をあげて
2.0mWで再生すると、C/Nの値は43dB、さら
に3mWで再生すると47dBとなった。Recording is performed under the same conditions as in Example 1, and when the bias magnetic field is set to 300 Oe and the laser power is increased to reproduce at 2.0 mW, the C / N value is 43 dB, and when the reproduction is performed at 3 mW, 47 dB. It became.
【0027】[0027]
【発明の効果】本発明の光磁気記録媒体では、光磁気記
録媒体の再生分解能の向上をはかることができる。第2
磁性層に希土類を含まない材料が使用されるので、スパ
ッタリング法で成膜する時タ−ゲットと薄膜の組成の対
応が良く、耐蝕性にも優れる。According to the magneto-optical recording medium of the present invention, the reproduction resolution of the magneto-optical recording medium can be improved. Second
Since a material containing no rare earth is used for the magnetic layer, the composition of the target and the thin film when forming a film by the sputtering method is good, and the corrosion resistance is also excellent.
【図1】 本発明の光磁気記録媒体の構造の一例を示す
断面図である。FIG. 1 is a sectional view showing an example of the structure of a magneto-optical recording medium according to the present invention.
【図2】 本発明の光磁気記録媒体の再生方法を示す図
である。FIG. 2 is a diagram showing a reproducing method of the magneto-optical recording medium of the present invention.
【図3】 本発明の光磁気記録媒体の構造の一例を示す
断面図である。FIG. 3 is a sectional view showing an example of the structure of the magneto-optical recording medium of the present invention.
Claims (1)
1の磁性膜と、第2の磁性膜と、第3の磁性膜とを有
し、光磁気記録媒体を回転させながら、ヘッドから離れ
た位置において、初期化のための外部磁界Hiniを印
加して、上記第1の磁性膜の磁化を一定の方向へそろえ
た後、再生を行うための外部磁界Hrを印加しながら、
Tp以上の温度範囲に磁性層がなるようなパワーでレー
ザービームを照射することにより、第1の磁性膜に第3
の磁性膜の記録状態を転写して再生を行う光磁気記録媒
体であって、上記第1の磁性膜および上記第3の磁性膜
は垂直磁化膜であり、上記第2の磁性膜はFe、Co、
Niのすくなくとも1元素とAl、Si、Ge、Ti、
V、Cr、Mn、Zr、Nb、Mo、Hf、Ta、W、
Cu、Pd、Ag、Pt、Auのすくなくとも1元素で
構成される面内磁化膜であり、上記第1、第2、第3の
磁性膜のキュリ−温度をそれぞれTc1、Tc2、Tc
3とするとき、Tc3、Tc1>Tc2>室温であり、
上記第1の磁性膜の保磁力をHc1、上記第3の磁性膜
の保磁力をHc3、上記第1の磁性膜に対して上記第2
の磁性膜を介して上記第3の磁性膜からの交換結合によ
る有効磁界をHw1、上記第3の磁性膜に対して上記第
2の磁性膜を介して上記第1の磁性膜からの交換結合に
よる有効磁界をHw3とするとき、Hc1+Hw1<H
ini<Hc3−Hw3なる関係を有し、かつ、所定の
温度範囲Tp〜Tr(Tp<Tr)で、Hc1−Hw1
<Hr<Hc1+Hw1なる関係を有することを特徴と
する光磁気記録媒体。And 1. A first magnetic film magnetically coupled to each other on a transparent substrate, a second magnetic layer, and a third magnetic film, while rotating the magneto-optical recording medium, from the head Away
The external magnetic field Hini for initialization
In addition, the magnetization of the first magnetic film is aligned in a certain direction.
After that, while applying an external magnetic field Hr for performing reproduction,
With a power such that the magnetic layer is formed in a temperature range above Tp
By irradiating the first magnetic film with the third beam,
Magneto-optical recording medium that reproduces the recorded state of the magnetic film
A body, the first magnetic layer and the third magnetic film is a perpendicular magnetization film, the second magnetic film is Fe, Co,
At least one element of Ni and Al, Si, Ge, Ti,
V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W,
An in-plane magnetized film composed of at least one element of Cu, Pd, Ag, Pt, and Au ;
The Curie temperature of the magnetic film is set to Tc1, Tc2, Tc, respectively.
3, when Tc3, Tc1>Tc2> room temperature,
The coercive force of the first magnetic film is Hc1, and the third magnetic film is
The coercive force of Hc3 and the second magnetic film with respect to the first magnetic film.
Through the exchange coupling from the third magnetic film through the magnetic film of
The effective magnetic field is Hw1 and the third magnetic film is
Exchange coupling from the first magnetic film through the second magnetic film
Assuming that the effective magnetic field is Hw3, Hc1 + Hw1 <H
ini <Hc3−Hw3, and a predetermined
In the temperature range Tp to Tr (Tp <Tr), Hc1−Hw1
<Hr <Hc1 + Hw1
Magneto-optical recording medium .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29692192A JP3218735B2 (en) | 1992-11-06 | 1992-11-06 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29692192A JP3218735B2 (en) | 1992-11-06 | 1992-11-06 | Magneto-optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06150413A JPH06150413A (en) | 1994-05-31 |
JP3218735B2 true JP3218735B2 (en) | 2001-10-15 |
Family
ID=17839904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29692192A Expired - Fee Related JP3218735B2 (en) | 1992-11-06 | 1992-11-06 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3218735B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3088619B2 (en) * | 1994-01-17 | 2000-09-18 | 富士通株式会社 | Magneto-optical recording medium and method of reproducing information recorded on the medium |
-
1992
- 1992-11-06 JP JP29692192A patent/JP3218735B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06150413A (en) | 1994-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2910250B2 (en) | Magneto-optical recording medium | |
JP3230388B2 (en) | Magneto-optical recording medium and method of reproducing information recorded on the medium | |
US5503924A (en) | Exchange-coupled magnetooptical recording medium with first layer having smaller vertical orientation saturation magnetization than in-plane orientation saturation magnetization of second layer | |
JP3218735B2 (en) | Magneto-optical recording medium | |
JPH0542062B2 (en) | ||
JP2766198B2 (en) | Magneto-optical recording medium | |
JP3162168B2 (en) | Magneto-optical recording medium | |
JP3328989B2 (en) | Magneto-optical recording medium | |
JP2929918B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JP3328988B2 (en) | Magneto-optical recording medium | |
JPH05342677A (en) | Magneto-optical recording and reproducing method | |
JP2959646B2 (en) | Magneto-optical recording medium and magneto-optical recording method | |
JP3075048B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JP3000385B2 (en) | Magneto-optical recording method | |
JP3355759B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH1125533A (en) | Magneto-optical recording medium | |
JP3592399B2 (en) | Magneto-optical recording medium | |
JPH10162441A (en) | Magneto-optical recording medium | |
JPH06187683A (en) | Magneto-optical recording medium | |
JPH0423247A (en) | Magneto-optical recording medium | |
JPH0536147A (en) | Magneto-optical recording method | |
JPH05342662A (en) | Magneto-optical recording medium | |
JPH1125532A (en) | Magneto-optical recording medium | |
JPH05234160A (en) | Magneto-optical recording medium | |
JPH05325288A (en) | Magneto-optical recording method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |