JPS62119757A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS62119757A
JPS62119757A JP25871985A JP25871985A JPS62119757A JP S62119757 A JPS62119757 A JP S62119757A JP 25871985 A JP25871985 A JP 25871985A JP 25871985 A JP25871985 A JP 25871985A JP S62119757 A JPS62119757 A JP S62119757A
Authority
JP
Japan
Prior art keywords
sulfide
optical recording
film
recording layer
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25871985A
Other languages
Japanese (ja)
Inventor
Yoshiaki Suzuki
良明 鈴木
Hiroshi Komata
小俣 宏志
Ryuichi Yokoyama
隆一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25871985A priority Critical patent/JPS62119757A/en
Publication of JPS62119757A publication Critical patent/JPS62119757A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25708Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 13 elements (B, Al, Ga)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25716Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing sulfur
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of the titled medium without deteriorating the characteristic as a recording medium by forming a film consisting of the sulfide of at least one substance among calcium, magnesium, manganese, zirconium, and aluminum on the optical recording layer. CONSTITUTION:The film consisting of the sulfide of at least one substance among calcium, magnesium, manganese, zircinium, and aluminum is formed on one or both sides of the optical recording layer. Although every sulfide film is formed by vapor deposition, electron beam vapor deposition is especially appropriate. When glass is used for the substrate, an UV curing resin (2p) layer, etc., is formed between the sulfide film and the glass sheet with the object of forming an optical guide groove. When the sulfide film is formed in succession to the optical recording layer, a recording layer is formed by vapor deposition, sputtering, etc., and then a sulfide film is successively formed without turning off the vacuum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ビームにより記録・再生を行うことが可能
な光学的記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical recording medium on which recording and reproduction can be performed using a light beam.

〔従来の技術) 従来より、光ディスクに用いられる光学的記録媒体とし
ては、希土類−遷移金属の合金薄膜′非晶質から結晶質
への相転移を利用したカルコゲン化合物等の還元″i酸
化物薄膜、ヒートモード記録媒体、サーモプラスチック
記録媒体等が知られている0例えば、希土類−遷移金属
の合金薄膜で形成される光磁気記録媒体としてはMnB
1゜MnCuB1.tcjどの多結晶薄膜、GdCo。
[Prior Art] Conventionally, optical recording media used in optical discs include rare earth-transition metal alloy thin films, reduction of chalcogen compounds, etc. that utilize phase transition from amorphous to crystalline, and oxide thin films. , heat mode recording media, thermoplastic recording media, etc. 0For example, MnB is a magneto-optical recording medium formed of a rare earth-transition metal alloy thin film.
1°MnCuB1. tcj which polycrystalline thin film, GdCo.

GdFe、TbFe、DyFe、GdTbFe。GdFe, TbFe, DyFe, GdTbFe.

TbDyFe、などの非晶質薄膜、Gd IGなどの単
結晶薄膜などが知られている。
Amorphous thin films such as TbDyFe and single crystal thin films such as GdIG are known.

これらの薄膜のうち、大面積の薄膜を室温近傍の温度で
製作する際の成膜性、信号を小さな光熱エネルギーも書
き込むための書き込み効率および書き込まれた信号をS
/N比よく読み出すための読み出し効率等を勘案して、
最近では前記非晶質薄膜が光熱磁気記録媒体として優れ
ていると考えられでいる。GdTbFeはカー回転角も
大きく、150℃前後のキューリ一点を持つので光熱磁
気記録媒体として適している。更に発明者等はカー回転
角を向上させる目的で研究した結果、GdTbFeCo
がカー回転角が充分に大きく、S/N比の良い読み出し
が可能な光磁気記録媒体であることを見い出した。
Among these thin films, the film forming efficiency when manufacturing a large-area thin film at a temperature near room temperature, the writing efficiency for writing a signal even with small photothermal energy, and the write signal S
Considering readout efficiency etc. to read out with good /N ratio,
Recently, the amorphous thin film is considered to be excellent as a photothermal magnetic recording medium. GdTbFe has a large Kerr rotation angle and a Curie point of around 150° C., so it is suitable as a photothermal magnetic recording medium. Furthermore, as a result of research aimed at improving the Kerr rotation angle, the inventors found that GdTbFeCo
It has been found that this is a magneto-optical recording medium that has a sufficiently large Kerr rotation angle and can be read with a good S/N ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、一般に前記GdTbFe等の光磁気記録
媒体をはじめとする磁気記録媒体に用いられる非晶質磁
牲体は、耐食性が悪いという欠点を持っでいる。すなわ
ち、大気、水蒸気に触れると酸化されて透明化するに至
る。またこの問題点は、光磁気記録媒体のみならず、前
記した光学的記録媒体の共通の課題である。
However, amorphous magnetic materials generally used in magnetic recording media, including magneto-optical recording media such as GdTbFe, have a drawback of poor corrosion resistance. That is, when it comes into contact with the atmosphere or water vapor, it becomes oxidized and becomes transparent. Furthermore, this problem is common not only to magneto-optical recording media but also to the optical recording media described above.

このような欠点を除くために、従来から、記録層の上に
、例えば透明物質の保護カバー、例えばSiO2、Si
Oの保護層を設けたり、ざらに不活牲ガスによって記録
層を封じ込めたエアーサンドイッチ構造や貼り合わせ構
造のディスク状記録媒体が提案されでいるが、実用上充
分な耐食性が得られなかった。
In order to eliminate such drawbacks, conventionally, a protective cover made of, for example, a transparent material, such as SiO2, Si
Disc-shaped recording media with an air sandwich structure or a laminated structure in which a protective layer of O is provided or the recording layer is roughly sealed with an inert gas have been proposed, but they have not been able to provide sufficient corrosion resistance for practical use.

本発明は上記問題点に鑑み成されたものであり、その目
的は、記録媒体としての特性を損なうことなく、耐食性
を向上せしめた光学的記録媒体を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide an optical recording medium with improved corrosion resistance without impairing the characteristics of the recording medium.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、基板上に光学的記録層を有して成
る光学的記録媒体において、該光学的記録層の片側又は
両側にカルシウム、マグネシウム、マンガン、ジルコニ
ウム、アルミニウムの内の少くとも1つの物質の硫化物
からなる膜を形成した光学記録媒体によって達成される
The above object of the present invention is to provide an optical recording medium having an optical recording layer on a substrate, in which at least one of calcium, magnesium, manganese, zirconium, and aluminum is added to one or both sides of the optical recording layer. This is achieved by using an optical recording medium formed with a film made of sulfides of two substances.

すなわち、本発明は光学的記録層の酸化を防止する効果
が、510z、SiOよつ大きい硫化カルシウム、硫化
マグネシウム、硫化マンカン、硫化ジルコニウム、硫化
アルミニウムを使用した光学的記録媒体を提供する。
That is, the present invention provides an optical recording medium using calcium sulfide, magnesium sulfide, mankan sulfide, zirconium sulfide, and aluminum sulfide, which have a greater effect of preventing oxidation of the optical recording layer than 510z and SiO.

前記の如き硫化物膜はいずれも蒸着法によって形成され
るが特に電子ビーム蒸着が適している。
The above-mentioned sulfide films can be formed by any vapor deposition method, but electron beam vapor deposition is particularly suitable.

また基板にガラスを用いる場合は、光学的案内溝形成の
目的で前記の酸化物膜とガラス板の間に、紫外線硬化型
樹脂(2P)層などを設ける。
When glass is used for the substrate, an ultraviolet curing resin (2P) layer or the like is provided between the oxide film and the glass plate for the purpose of forming optical guide grooves.

本発明において、光学的記録層に引き続いて硫化膜を形
成する場合には、記録層を蒸着、スパッタリングなどの
方法で形成した徒、真空を破ることなく連続して硫化膜
を形成するのが望ましい。
In the present invention, when forming a sulfide film subsequent to the optical recording layer, it is desirable to form the sulfide film continuously without breaking the vacuum after forming the recording layer by a method such as vapor deposition or sputtering. .

また基板上に硫化膜を形成し、その上(こ光字的記録層
を形成して更に硫化膜を形成する場合にも真空を破らず
に同一槽内で連続的に成膜したほうがよい。
Furthermore, when forming a sulfide film on a substrate, forming an optical recording layer thereon, and then forming a sulfide film, it is better to form the films continuously in the same bath without breaking the vacuum.

(実施例) 以下、実施例を挙げて本発明を更に具体的に説明するが
、本発明は下記の実施例に限らず、種々の応用が可能で
ある0例えば、光学的記録層は光磁気記録のみならず、
従来技術の説明の部分で述べたような、いかなる光学的
記録材料を用いてもかまわない、また、本発明に基づい
て構成された光学的記録媒体を、周知のエアーサンドイ
ッチ構造にしたり、或いはガラス板などと貼り合わせた
構造とする事により、更に耐腐食性を向上させることが
できる。
(Example) Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples, and various applications are possible. For example, the optical recording layer Not only records,
Any optical recording material may be used, as mentioned in the description of the prior art, and the optical recording medium constructed according to the present invention may be of a well-known air sandwich structure or of glass. Corrosion resistance can be further improved by creating a structure in which it is laminated with a plate or the like.

実施例1 RFスパッタ装置において、1インチ角の白板ガラスを
基板とし、100 mm中の鉄コバルト合金(Fe7.
Co 3)板の上に5mm角のガドリニウムテルビウム
合金(Gd5.Tb 、)の小片を均一にならべたもの
を複合ターゲットとしてスパッタリングを行ないGdT
bFeCoの4元系非晶貢磁粧膜からなる厚さ1000
人の光学的記録層を形成した。続いて、通常の真空蒸着
装置内で、2 x 10−’ Pa程度排気後、電子ビ
ーム蒸発源により硫化カルシウム(CaS) @蒸発さ
せ、前記記録層上に厚さ2000人の硫化カルシウム膜
を蒸着した。
Example 1 In an RF sputtering device, a 1-inch square white plate glass was used as a substrate, and a 100 mm thick iron-cobalt alloy (Fe7.
Co 3) GdT was sputtered using a composite target of 5 mm square small pieces of gadolinium terbium alloy (Gd5.Tb) evenly arranged on a plate.
1000mm thick made of bFeCo quaternary amorphous magnetic film
Formed a human optical recording layer. Subsequently, after evacuation to about 2 x 10-' Pa in a normal vacuum evaporation apparatus, calcium sulfide (CaS) was evaporated using an electron beam evaporation source, and a calcium sulfide film with a thickness of 2000 nm was evaporated on the recording layer. did.

実施例2 通常の真空蒸着装置において、実施例1のガラス板上に
紫外線硬化型樹脂(2P)(エポキシアクリレート)層
(10〜100μ)を形成した基板に真空槽内を2 x
 10−’ Pa程度排気後、電子ビーム蒸発源により
硫化カルシウム(CaS)を蒸発させ厚さ200人の硫
化カルシウム膜を蒸着した。その上に引き続いでRFス
パッタ装置において実施例1のものと同じFe、 Go
、 Gd、 Tbの複合ターゲットを用いてスパッタリ
ングを行ない厚さ1000人の記録層を形成した。ざら
に通常の真空蒸着装置内で、2 x 10−’ Pa程
度排気後、電子ビーム蒸発源により硫化カルシウム(C
aS) lFr蒸発させ前記記録層上に厚さ2000人
の硫化カルシウム膜を蒸着した。
Example 2 In a normal vacuum evaporation apparatus, a substrate in which an ultraviolet curable resin (2P) (epoxy acrylate) layer (10 to 100 μm) was formed on the glass plate of Example 1 was heated 2× in a vacuum chamber.
After evacuation to about 10-' Pa, calcium sulfide (CaS) was evaporated using an electron beam evaporation source to deposit a calcium sulfide film with a thickness of 200 mm. On top of that, the same Fe, Go
A recording layer with a thickness of 1000 layers was formed by sputtering using a composite target of , Gd, and Tb. Calcium sulfide (C
aS) A calcium sulfide film having a thickness of 2000 nm was deposited on the recording layer by evaporating lFr.

実施例3〜10 実施例1.2の硫化カルシウムに代えて各々硫化マグネ
シウム、硫化マンガン、硫化ジルコニウム、硫化アルミ
ニウムから成る保護si設けた光学的記録媒体を作成し
た。記録層としては、厚さ1000人のGdTbFeC
oの4元系非晶質磁性膜を用い、硫化膜は全て電子ビー
ム蒸着により形成した。
Examples 3 to 10 Optical recording media were prepared in which protective Si consisting of magnesium sulfide, manganese sulfide, zirconium sulfide, and aluminum sulfide was provided in place of calcium sulfide in Example 1.2. The recording layer is GdTbFeC with a thickness of 1000 nm.
All sulfide films were formed by electron beam evaporation using a quaternary amorphous magnetic film of 0.

実施例11 通常の真空蒸着装置において、真空槽内を2×10″P
a程度排気後、1イシチ角のポリメチルメタアクリレー
ト(PMMA)基板上に電子ビーム蒸発源により硫化カ
ルシウム(CaS)を蒸発させ厚さ200人の硫化カル
シウム膜を蒸着した。その上に引き続いでRFスパッタ
装置において実施例1のものと同じGd、 Tb、 F
e、 Goの複合クーゲットを用いてスパッタリングを
行ない厚さ1000人の記録層を形成した。ざらに通常
の真空蒸着装置内で、2×10−’Pa程度排気後、電
子ビーム蒸発源により硫化カルシウム(CaS)を蒸発
させ前記記録層上に厚さ2000人の硫化カルシウム膜
を蒸着した。
Example 11 In a normal vacuum evaporation device, the inside of the vacuum chamber is 2×10″P.
After evacuation to approximately 100 m², calcium sulfide (CaS) was evaporated onto a 1 square inch polymethyl methacrylate (PMMA) substrate using an electron beam evaporation source to deposit a calcium sulfide film with a thickness of 200 mm. On top of that, the same Gd, Tb, F as in Example 1 was subsequently applied in an RF sputtering apparatus.
A recording layer having a thickness of 1000 layers was formed by sputtering using a composite Couget of E and Go. After evacuation was approximately 2×10 −′ Pa in a conventional vacuum evaporation apparatus, calcium sulfide (CaS) was evaporated using an electron beam evaporation source to deposit a calcium sulfide film with a thickness of 2000 μm on the recording layer.

実施例12 通常の真空蒸着装置において、真空槽内を2×10″P
a程度排気後、1インチ角のポリカーボネイト(PC)
基板上に電子ビーム蒸発源により硫化カルシウム(C:
aS)を蒸発させ厚さ200人の硫化カルシウム膜を蒸
着した。その上に引き続いてRFスパッタ装置において
実施例1のものと同じGd。
Example 12 In a normal vacuum evaporation device, the inside of the vacuum chamber is 2×10″P.
After evacuation to a degree, 1 inch square polycarbonate (PC)
Calcium sulfide (C:
aS) was evaporated to deposit a calcium sulfide film with a thickness of 200 mm. On top of that, the same Gd as in Example 1 was applied in an RF sputtering apparatus.

Tb、 Fe、 Goの複合ターゲットを用いてスパッ
クリングを行ない厚さ1000人の記録層を形成した。
Spackling was performed using a composite target of Tb, Fe, and Go to form a recording layer with a thickness of 1,000 layers.

さらに通常の真空蒸着装置内で、2 x 10@Pa程
度排気後、電子ビーム蒸発源により硫化カルシウム(C
aS)を蒸発させ前記記録層上に厚ざ2000Aの硫化
カルシウム膜を蒸着した。
Furthermore, in a normal vacuum evaporation apparatus, after evacuation to about 2 x 10@Pa, calcium sulfide (C
aS) was evaporated, and a calcium sulfide film having a thickness of 2000 Å was deposited on the recording layer.

実施例13〜20 実施例11.12の硫化カルシウムlこ代えて各々硫化
マグネシウム、硫化マンガン、硫化ジルコニウム、硫化
アルミニウムから成る保護膜を設けた光学的記録媒体を
作成した。記録層としては、厚さ1000人のGdTb
FeCoの4元系非晶質磁性膜を用い、硫化膜は全て電
子ビーム蒸着により形成した。
Examples 13 to 20 Optical recording media were prepared by replacing the calcium sulfide in Examples 11 and 12 with protective films made of magnesium sulfide, manganese sulfide, zirconium sulfide, and aluminum sulfide, respectively. The recording layer is GdTb with a thickness of 1000 nm.
A quaternary amorphous magnetic film of FeCo was used, and all sulfide films were formed by electron beam evaporation.

実施例21 RFスパッタ装置において、1インチ角の白板ガラスを
基板とし、実施例1のものと同じGd。
Example 21 In an RF sputtering apparatus, a 1-inch square white plate glass was used as a substrate, and the same Gd as in Example 1 was used.

Tb、 Fe、 Goの複合ターゲットを用いてスパッ
タリングにより厚さ200人の記録層を形成した。続い
て通常の真空蒸着装置内で2×10→Pa程度排気後、
電子ビーム蒸発源により硫化カルシウム(CaS)を蒸
発させ、前記記録層上に厚さ1000人の硫化カルシウ
ム膜を蒸着した。ざらにこの上に反射膜としてAI膜を
500人形成し、最後にこの上に硫化カルシウムからな
る保護膜を2000人蒸着した。
A recording layer with a thickness of 200 nm was formed by sputtering using a composite target of Tb, Fe, and Go. Next, after evacuation of about 2 × 10 → Pa in a normal vacuum evaporation equipment,
Calcium sulfide (CaS) was evaporated using an electron beam evaporation source, and a calcium sulfide film having a thickness of 1000 nm was deposited on the recording layer. Roughly, 500 people formed an AI film as a reflective film on this, and finally, 2000 people deposited a protective film made of calcium sulfide on top of this.

実施例22 通常の真空蒸着装置において、実施例2と同じガラス板
上に紫外線硬化型樹脂(2P)(エポキシアクリレート
)層(10〜+0OU)を形成した基板の上に真空槽内
を2 X 10−’ Pa程度排気後、電子ビーム蒸発
源により硫化カルシウム(CaS)を蒸発させ厚さ20
0人の硫化カルシウム膜を蒸着した。
Example 22 In a normal vacuum evaporation apparatus, a 2×10 vacuum chamber was placed on the same glass plate as in Example 2, on which an ultraviolet curable resin (2P) (epoxy acrylate) layer (10 to +0OU) was formed. -' Pa After evacuation, calcium sulfide (CaS) is evaporated by an electron beam evaporation source to a thickness of 20
0 calcium sulfide films were deposited.

その上に引き続いてRFスパッタ装置において実施例1
のものと同じGd、 Tb、 Fe、 Goの複合ター
ゲットを用いてスパッタリングを行ない厚さ200人の
記録層を形成した。続いて通常の真空蒸着装置内で2×
10→Pa程度排気後、電子ビーム蒸発源により硫化カ
ルシウム(CaS)を蒸発させ、前記記録層上に厚さ+
000Aの硫化カルシウム膜を蒸着した。ざらにこの上
に反射膜としてA11lを500人形成し、最後にこの
上に硫化カルシウムからなる保護膜を200o人蒸着し
た。
Subsequently, Example 1 was prepared in an RF sputtering apparatus.
Sputtering was performed using the same composite target of Gd, Tb, Fe, and Go to form a recording layer with a thickness of 200 nm. Then, 2× in a normal vacuum evaporation equipment
After evacuation to about 10→Pa, calcium sulfide (CaS) is evaporated using an electron beam evaporation source to form a layer with a thickness of +
A 000A calcium sulfide film was deposited. Roughly 500 layers of A111 were formed on this as a reflective film, and finally, 200 layers of a protective film made of calcium sulfide was deposited on top of this.

実施例23−v30 実施例21.22の硫化カルシウムに代えで各々硫化マ
グネシウム、硫化マンガン、硫化ジルコニウム、硫化ア
ルミニウムから成る保護膜を設けた光学的記録媒体を作
成した。記録層としては、厚さ200人のGdTbFe
Coの4元系非晶質磁性膜を用い、硫化膜は全て電子ビ
ーム蒸着により形成した。
Example 23-v30 Optical recording media were prepared in which protective films were formed of magnesium sulfide, manganese sulfide, zirconium sulfide, and aluminum sulfide in place of calcium sulfide in Examples 21 and 22. The recording layer is GdTbFe with a thickness of 200 mm.
A quaternary amorphous magnetic film of Co was used, and all sulfide films were formed by electron beam evaporation.

実施例31 通常の真空蒸着装置において、真空槽内を2×10=P
a程度排気後、1インチ角のポリメチルメタアクリレー
ト(PMMA)基板上に電子ビーム蒸発源により硫化カ
ルシウム(CaS)を蒸発させ厚さ200人の硫化カル
シウム膜を蒸着した。その上に引き続いてRFスパッタ
装置において実施例1のものと同じGd、 Tb、 F
e、 Coの複合ターゲットを用いてスパッタリングを
行ない厚さ200人の記録層を形成した。続いて通常の
真空蒸着装置内で2×10″4Pa程度排気後、電子ビ
ーム蒸発源により硫化カルシウム(CaS)を蒸発させ
、前記記録層上に厚さ1000人の硫化カルシウム膜を
蒸着した。さらにこの上に反射膜としてAl膜を500
人形成し、最後にこの上に硫化カルシウムからなる保護
膜を2000人蒸着7た。
Example 31 In a normal vacuum evaporation apparatus, the inside of the vacuum chamber is 2×10=P
After evacuation to a depth of approximately 200 mm, calcium sulfide (CaS) was evaporated onto a 1 inch square polymethyl methacrylate (PMMA) substrate using an electron beam evaporation source to deposit a 200 mm thick calcium sulfide film. On top of that, the same Gd, Tb, F as in Example 1 was subsequently applied in an RF sputtering device.
A recording layer with a thickness of 200 mm was formed by sputtering using a composite target of e. Subsequently, after evacuation of approximately 2×10″4 Pa in a normal vacuum evaporation apparatus, calcium sulfide (CaS) was evaporated using an electron beam evaporation source, and a calcium sulfide film with a thickness of 1000 μm was evaporated on the recording layer. On top of this, a 500% Al film is applied as a reflective film.
Finally, a protective film made of calcium sulfide was deposited on top of the 2,000-layer film.

実施例32 通常の真空蒸着装置において、真空槽内を2×10″P
a程度排気後、1インチ角のポリカーボネイト(PC)
基板上に電子ビーム蒸発源により硫化カルシウム(Ca
b)を蒸発させ厚さ200人の硫化カルシウム膜を蒸着
した。その上に引き続いてRFスパッタ装置においで実
施例1のものと同じFe。
Example 32 In a normal vacuum evaporation apparatus, the inside of the vacuum chamber is 2×10″P.
After evacuation to a degree, 1 inch square polycarbonate (PC)
Calcium sulfide (Ca) is deposited on the substrate using an electron beam evaporation source.
b) was evaporated to deposit a 200 mm thick calcium sulfide film. On top of that, the same Fe as in Example 1 was subsequently applied in an RF sputtering apparatus.

Gd、 Tbの複合ターゲットを用いてスパッタリング
を行ない厚さ200人の記録層を形成した。続いて通常
の真空蒸着装置内で2 x 1O−4Pa程度排気復、
電子ビーム蒸発源により硫化カルシウム(CaS) %
蒸発させ、前記記録層上に厚さ+000への硫化カルシ
ウム膜を蒸着した。ざらにこの上に反IH膜としてAl
膜を500人形成し、最徒ζここの上(こ硫化カルシウ
ムからなる保護膜を2000人蒸着7た。
Sputtering was performed using a composite target of Gd and Tb to form a recording layer with a thickness of 200 mm. Next, the vacuum was evacuated to about 2 x 1O-4Pa in a normal vacuum evaporation equipment.
Calcium sulfide (CaS)% by electron beam evaporation source
After evaporation, a calcium sulfide film to a thickness of +000 was deposited on the recording layer. On top of this, Al is applied as an anti-IH film.
A protective film made of calcium sulfide was deposited on top of this layer by 2,000 people.

実施例33〜40 実施例31、−32の硫化カルシウムに代えて各々硫化
マグネシウム、硫化マンガン、硫化ジルコニウム、硫化
アルミニウムから成る保護膜を設けた光学的記録媒体を
作成した。光学的記録層としては厚ざ200AのGdT
bFeCoの4元系非晶質磁性膜を用い、硫化膜は全て
電子ビーム蒸着により形成した− 比較例1 2000人厚(7)CaS層の代わりft73000人
(7)Si0層を設(すた以外は、実施例1と同様にし
て光学的記録媒体を作成した。
Examples 33 to 40 Optical recording media were prepared in which protective films made of magnesium sulfide, manganese sulfide, zirconium sulfide, and aluminum sulfide were provided in place of calcium sulfide in Examples 31 and -32. The optical recording layer is GdT with a thickness of 200A.
A quaternary amorphous magnetic film of bFeCo was used, and all sulfide films were formed by electron beam evaporation. An optical recording medium was prepared in the same manner as in Example 1.

比較例2 2000人のCaS Rを設けながった以外は実施例7
と同様にして光学的記録媒体を作成した。
Comparative Example 2 Example 7 except that 2000 CaSRs were not established
An optical recording medium was prepared in the same manner as above.

比較例3 CaSの代わりにSiOを使用した以外は実施例21と
同様にして光学記録媒体を作成した。
Comparative Example 3 An optical recording medium was produced in the same manner as in Example 21 except that SiO was used instead of CaS.

比較例4 保護層及び反射層を設けない以外は実施例21と同様に
して光学的記録媒体を作成した。
Comparative Example 4 An optical recording medium was produced in the same manner as in Example 21 except that the protective layer and reflective layer were not provided.

耐腐食性試験 前述の実施例1〜40、比較例1〜4に従って作成した
光学的記録媒体ヲ70℃、85%RHの恒温恒湿槽に入
れで、耐腐食性試験を行った。そのうち実施例1と21
及び比較例1〜4の結果tM1図及び第2図に示す、第
1図、第2図において、横軸は試験時間〔単位は時間(
H)〕を示し、縦軸は保磁力Hcの変化を保磁力の初期
値Hcoに対する比で示した。ここで保磁力の低下が激
しい程、腐食が進行したことを示す、なお実施例2〜2
oの結果は実施例1とほぼ同様、又実施例22〜40の
結果は実施例21とは(よ同様であった。
Corrosion Resistance Test A corrosion resistance test was conducted by placing the optical recording media prepared according to Examples 1 to 40 and Comparative Examples 1 to 4 described above in a constant temperature and humidity chamber at 70° C. and 85% RH. Examples 1 and 21
and the results of Comparative Examples 1 to 4 are shown in tM1 diagram and Figure 2. In Figures 1 and 2, the horizontal axis is the test time [unit is time (
H)], and the vertical axis shows the change in coercive force Hc as a ratio of the coercive force to the initial value Hco. Here, the more the coercive force decreases, the more corrosion progresses.
The results of Example 1 were almost the same as those of Example 1, and the results of Examples 22 to 40 were (very similar) to Example 21.

第1図及び第2図かられかるように、硫化カルシウム、
硫化マグネシウム、硫化マンガン、硫化ジルコニウム、
硫化アルミニウムを保護層としで用いると光学的記録媒
体の耐腐食性を向上させることができる。
As can be seen from Figures 1 and 2, calcium sulfide,
Magnesium sulfide, manganese sulfide, zirconium sulfide,
The use of aluminum sulfide as a protective layer can improve the corrosion resistance of optical recording media.

〔発明の効果〕〔Effect of the invention〕

本発明により耐腐食性の優れた光学的記録媒体が得られ
た。
According to the present invention, an optical recording medium with excellent corrosion resistance was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、夫々本発明に基づく光学的記録媒
体の耐腐蝕性試験の結果を示す図である。 1:実施例1の保磁力曲線 2:比較例1の保磁力曲線 3:比較例2の保磁力曲線 4:実施例21の保゛磁力曲線 5:比較例3の保磁力曲線 6:比較例4の保磁力曲線
FIG. 1 and FIG. 2 are diagrams showing the results of a corrosion resistance test of an optical recording medium based on the present invention, respectively. 1: Coercive force curve of Example 1 2: Coercive force curve of Comparative example 1 3: Coercive force curve of Comparative example 2 4: Coercive force curve of Example 21 5: Coercive force curve of Comparative example 3 6: Comparative example Coercive force curve of 4

Claims (1)

【特許請求の範囲】[Claims] 基板上に光学的記録層を有して成る光学的記録媒体にお
いて、前記光学的記録層の片側又は両側にカルシウム、
マグネシウム、マンガン、ジルコニウム、アルミニウム
の内の少くとも1つの物質の硫化物からなる膜を形成し
たことを特徴とする光学的記録媒体。
In an optical recording medium comprising an optical recording layer on a substrate, calcium is provided on one or both sides of the optical recording layer.
An optical recording medium comprising a film formed of a sulfide of at least one substance selected from magnesium, manganese, zirconium, and aluminum.
JP25871985A 1985-11-20 1985-11-20 Optical recording medium Pending JPS62119757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25871985A JPS62119757A (en) 1985-11-20 1985-11-20 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25871985A JPS62119757A (en) 1985-11-20 1985-11-20 Optical recording medium

Publications (1)

Publication Number Publication Date
JPS62119757A true JPS62119757A (en) 1987-06-01

Family

ID=17324138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25871985A Pending JPS62119757A (en) 1985-11-20 1985-11-20 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS62119757A (en)

Similar Documents

Publication Publication Date Title
JPH0481817B2 (en)
JPS62219348A (en) Photomagnetic recording medium
JPS62175949A (en) Photomagnetic recording medium protected by compound oxide
JPS60219655A (en) Optical recording medium
JPS62119757A (en) Optical recording medium
JPH0550400B2 (en)
JPS62289948A (en) Magneto-optical recording medium
JPS62121943A (en) Optical recording medium
JPS62117157A (en) Optical recording medium
JP2766520B2 (en) Method for manufacturing magneto-optical recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPS6252743A (en) Optical recording medium
JPH051536B2 (en)
JPS6148151A (en) Optical recording medium
JPS62119756A (en) Optical recording medium
JPS6157053A (en) Optical recording medium
JPS6145441A (en) Optical recording medium
JPS60197965A (en) Magnetic recording medium
JPS61278061A (en) Photomagnetic recording medium
JPH0410132B2 (en)
JPS60205846A (en) Optical recording medium
JP2616120B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPS60197967A (en) Optical recording medium
JPH02108258A (en) Magneto-optical disk
JPS62209750A (en) Photomagnetic recording medium