JPH0237545A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH0237545A
JPH0237545A JP18684988A JP18684988A JPH0237545A JP H0237545 A JPH0237545 A JP H0237545A JP 18684988 A JP18684988 A JP 18684988A JP 18684988 A JP18684988 A JP 18684988A JP H0237545 A JPH0237545 A JP H0237545A
Authority
JP
Japan
Prior art keywords
magneto
layer
recording medium
optical recording
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18684988A
Other languages
Japanese (ja)
Inventor
Takashi Ishizaki
多嘉之 石崎
Kiyoshi Chiba
潔 千葉
Masato Sugiyama
杉山 征人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP18684988A priority Critical patent/JPH0237545A/en
Publication of JPH0237545A publication Critical patent/JPH0237545A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably form a composite film having a compsn. in which an oxygen content is well compounded with one evaporating source by gradually increasing the electric power for film formation form low to high electric power in forming a dielectric layer consisting of an oxide and nitride on a substrate. CONSTITUTION:Low electric power sputtering is executed in a gaseous mixture atmosphere composed of N2 and Ar after evacuation to a prescribed degree of vacuum at the time of forming the dielectric layer 22 consisting of an AlN film by a reactive sputtering method on the polycarbonate substrate 21. The substrate 21 having the high oxygen content and the aluminum nitride layer 22a having the good adhesiveness to the substrate 21 are formed in this way. The oxidation is suppressed and the aluminum nitride layer 22b having a high nitrogen content is formed when the electric power for the film formation is gradually increased. An intermediate layer 22c in which the oxygen concn. decrease gradually in thus formed between the layers 22a and 22b. The recording layer 23 and a protective layer 24 are provided on the layer 22. The stable film formation is stably executed with the one evaporating source in this way and the recording medium having the high reliability is obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、レーザー光等を用いて情報の記録再生を行な
う光磁気記録媒体の製造方法に関し、更に詳しくはその
保護層に用いられる誘電体膜の成膜方法に特徴を有する
光磁気記録媒体の製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a magneto-optical recording medium for recording and reproducing information using laser light or the like, and more specifically to a method for manufacturing a magneto-optical recording medium for recording and reproducing information using a laser beam or the like. The present invention relates to a method for manufacturing a magneto-optical recording medium characterized by a method for forming a film.

〈従来の技術〉 光記録媒体は、高密度、大容盪記録が可能な媒体として
近年注目をあびている。
<Prior Art> Optical recording media have attracted attention in recent years as a medium capable of high-density, large-volume recording.

例えば光磁気記録媒体もその一つである。光磁気記録媒
体の記録層に用いられる磁性材料には、Gd Fe 、
 Tb Fe 、 Tb Fe Co 、 Qd Tb
Fe  、  Tb  Co  、  Nd  oy 
 Fe  Co  、  Nd  FeGd Co等、
希土類と遷移金属の非晶質磁性合金膜が有望視されてい
る。
For example, magneto-optical recording media are one of them. Magnetic materials used for the recording layer of magneto-optical recording media include GdFe,
TbFe, TbFeCo, QdTb
Fe, TbCo, Ndoy
FeCo, NdFeGdCo, etc.
Amorphous magnetic alloy films of rare earths and transition metals are seen as promising.

しかしTb等の希土類は耐蝕性に劣る為、記録層成膜後
の酸化を防止する必要がある。この酸化防止法としては
記録層の上下にAJIN、s+ o。
However, since rare earth elements such as Tb have poor corrosion resistance, it is necessary to prevent oxidation after forming the recording layer. As a method for preventing this oxidation, AJIN and s+o are applied above and below the recording layer.

Sf Oz 、S! 3N4 、Ti N等の透11保
11層を設けたり、記録層に窒化、炭化、水素化、フッ
化処理を施したり、あるいはpt 、1.Al等を添加
した磁性材料を用いることが有効であることが報告され
ている。
Sf Oz, S! 3N4, TiN, or the like, or the recording layer is subjected to nitriding, carbonizing, hydrogenating, or fluoriding treatment, or pt, 1. It has been reported that it is effective to use a magnetic material to which Al or the like is added.

上記の内、記録層に各種処理を施したり、各種金属を添
加したりする方法は、成膜初期の段階でカー回転角等の
低下が見られ、今後更に検討の余地がある。
Among the methods described above, the method of subjecting the recording layer to various treatments or adding various metals causes a decrease in the Kerr rotation angle etc. at the initial stage of film formation, and there is room for further study in the future.

一方保護層を設ける方法は耐蝕性が良く、膜厚。On the other hand, the method of providing a protective layer has good corrosion resistance and a thin film.

屈折率の最適化を図ることによってカー回転角のエンハ
ンスメント効果もあり、成膜後の記録層の酸化防止法と
しては有力な手段である。
Optimization of the refractive index also has the effect of enhancing the Kerr rotation angle, and is an effective method for preventing oxidation of the recording layer after film formation.

ところが、保護層を設けた光磁気記録媒体の耐候試験等
の経時変化に対する特性変化を調べている内に、5tO
z等の酸化物系の膜は初期特性は良好であっても時間の
経過とともに保磁力、カー回転角に異常が生じた。この
原因は、酸化物系の膜からの遊離酸素の発生にあるもの
と推定される。
However, while investigating the changes in characteristics of magneto-optical recording media with a protective layer over time, such as during weather tests, it was discovered that 5tO
Although the initial characteristics of oxide-based films such as z were good, abnormalities occurred in coercive force and Kerr rotation angle over time. The cause of this is presumed to be the generation of free oxygen from the oxide film.

また非酸化物系のSi N、AfN、Zn S等を保護
層として用いた場合、基板との密着性が悪く、また密着
性は良好であっても亀裂が発生するなど更に検討の余地
があった。
Furthermore, when non-oxide-based materials such as SiN, AfN, ZnS, etc. are used as a protective layer, the adhesion to the substrate is poor, and even if the adhesion is good, cracks may occur, leaving room for further study. Ta.

そこで考え出されたのが基板側は密着性の良好な酸化膜
、媒体側は耐蝕性の良い窒化膜という複合膜であり、記
録再生特性の安定した高信頼性の光記録媒体が実現され
ることが報告されている(特開昭62〜298037号
公報)。
Therefore, a composite film was devised, consisting of an oxide film with good adhesion on the substrate side and a nitride film with good corrosion resistance on the medium side, which realized a highly reliable optical recording medium with stable recording and reproducing characteristics. It has been reported (Japanese Unexamined Patent Publication No. 62-298037).

〈発明が解決しようとする問題点〉 しかしながら、従来の方法ではかかる複合膜を作成する
はに二元の蒸着装置を用いたり、成膜最中にガスを交換
するなど、コスト的にもまた安定成膜の面からみても不
利な状況にあった。
<Problems to be Solved by the Invention> However, conventional methods for creating such composite films require the use of dual evaporation equipment, gas exchange during film formation, etc., which are not stable in terms of cost. The situation was disadvantageous from the viewpoint of film formation as well.

本発明は上記の問題に鑑み、一つの蒸発元で安定した複
合膜(光磁気記録媒体に最適な誘電体層all)の保護
層の成膜を可能にした光磁気記録媒体の製造方法を提供
するものである。
In view of the above problems, the present invention provides a method for manufacturing a magneto-optical recording medium that makes it possible to form a protective layer of a stable composite film (all dielectric layers ideal for magneto-optical recording media) using a single evaporation source. It is something to do.

〈問題を解決する為の手段〉 上記目的は以下の本発明により達成される。すなわち、
本発明は、高分子基板上に誘電体層、希土類−遷移金属
の非晶質合金膜よりなる記録層が順次形成され、該誘電
体層はその酸素含有量が基板側で高くて記録側で低い誘
電体からなる光磁気記録媒体の該誘電体層の形成に際し
、蒸発源の一つの反応性気相薄膜形成法を用い、所定の
到達真空度に排気後、所定の反応性ガスを導入して該反
応ガス雰囲気下で膜形成電力を前記酸素含有量になるよ
うに調整しつつ前記誘電体膜を形成することを特徴とす
る光磁気記録媒体の製造方法である。
<Means for solving the problem> The above object is achieved by the present invention as described below. That is,
In the present invention, a dielectric layer and a recording layer made of an amorphous rare earth-transition metal alloy film are sequentially formed on a polymer substrate, and the dielectric layer has a high oxygen content on the substrate side and a recording layer on the recording side. When forming the dielectric layer of a magneto-optical recording medium made of a low dielectric material, a reactive vapor phase thin film formation method with one evaporation source is used, and after evacuation to a predetermined ultimate vacuum, a predetermined reactive gas is introduced. The method of manufacturing a magneto-optical recording medium is characterized in that the dielectric film is formed in the reactive gas atmosphere while adjusting the film-forming power so that the oxygen content becomes the same.

本発明は、誘電体膜の膜組成の形成電力依存性に着目し
てなされたものである。即ち例えば窒素雰囲気中で反応
性スパッタを行なう場合、低電力で成膜した膜はチャン
バー及び基板等に含まれる残留ガスによって酸化が激し
く酸素含有lの多い基板接着性の良い膜になる。これを
基板側に用いる。一方、高電力で成膜した膜は選択酸化
が抑えられ、窒素含有量の多い膜が形成され。これを記
録層側に用いるものである。
The present invention was made by focusing on the dependence of the film composition of a dielectric film on the formation power. That is, when performing reactive sputtering in a nitrogen atmosphere, for example, a film formed with low power is severely oxidized by residual gas contained in the chamber, substrate, etc., resulting in a film with good substrate adhesion and high oxygen content. This is used on the substrate side. On the other hand, selective oxidation is suppressed in films formed using high power, resulting in a film with a high nitrogen content. This is used for the recording layer side.

膜形成電力は膜形成方法、チャンバーの容積。The film formation power depends on the film formation method and chamber volume.

基板の前処理法、真空系の排気速度等により変動がある
ので特に限定されるものではないが、例えばRFマグネ
トロンスパッタ層を用い、到達真空度が2 X 10’
 T orrに排気後窒素ガスを導入して成膜する場合
、低電力側では本来は電力が低い程酸化が進んでよいの
だが成膜速度とのかねあいも考慮に入れて、1.2W/
m程度、高電力側では電力が高い程、膜の酸素含有量が
減り窒化が進むがターゲットからの輻射熱が基板に及ぼ
す影響を考え、12W/cIi程度が好ましい。なお、
膜の酸素含有量は排気後の残留ガス量換言すれば排気の
際の到達真空度で左右される。この点到達真空度は10
6 T orr以下が実用面からは好ましい。
Although there is no particular limitation as it varies depending on the pretreatment method of the substrate, the pumping speed of the vacuum system, etc., for example, an RF magnetron sputtered layer is used and the ultimate vacuum degree is 2 x 10'.
When forming a film by introducing nitrogen gas into the Torr after exhausting it, on the low power side, the lower the power, the better the oxidation progresses, but taking into consideration the relationship with the film forming speed, the
On the high power side, the higher the power, the lower the oxygen content of the film and the more nitriding progresses, but considering the influence of radiant heat from the target on the substrate, it is preferably about 12 W/cIi. In addition,
The oxygen content of the film depends on the amount of gas remaining after evacuation, in other words, the degree of vacuum achieved during evacuation. The degree of vacuum reached at this point is 10
6 T orr or less is preferable from a practical standpoint.

ところで、本発明における薄膜形成法は、上述のスパッ
タリング法に代表される気相中から基板上にIIIを堆
積させる気相薄膜形成法であれば特に限定されず、スパ
ッタリング法の他真空蒸着法。
By the way, the thin film forming method in the present invention is not particularly limited as long as it is a vapor phase thin film forming method in which III is deposited on the substrate from the gas phase, as typified by the above-mentioned sputtering method, and vacuum evaporation methods may be used in addition to the sputtering method.

EB法、CVD法、ECR法等の公知の気相薄膜形成法
も適用できる。なお反応性とはこれら気相薄膜形成法に
おいて、所定の反応ガスを導入して反応させつつ所定化
合物薄膜を形成することを云う。
Known vapor phase thin film forming methods such as the EB method, CVD method, and ECR method can also be applied. Note that reactivity refers to the formation of a predetermined compound thin film while introducing a predetermined reactive gas and causing a reaction in these vapor phase thin film forming methods.

又、その蒸発源は後述する誘電体層を構成するSi 、
AfL、Ti 、In、Si A又等の金属、半金属あ
るいはこれ−らの合金単体からなるものでも、これらの
窒化物、炭化物、フッ化物、硫化物等誘電体層の構成に
応じた化合物の焼成体であってもよい。そしてその膜形
成に用いる反応性ガスは誘電体層の構成に応じた反応性
ガス例えば窒化物であれば窒素ガスを含んだものであれ
ばよい。
Moreover, the evaporation source is Si constituting the dielectric layer, which will be described later.
Even if it is made of metals such as AfL, Ti, In, Si A, semimetals, or alloys thereof, compounds such as nitrides, carbides, fluorides, sulfides, etc., depending on the composition of the dielectric layer. It may be a fired body. The reactive gas used for forming the film may be a reactive gas depending on the structure of the dielectric layer, such as a nitride containing nitrogen gas.

ところで、本発明が適用される光磁気記録媒体は基板上
に誘電体層、記録層を形成したものであればよく、更に
その上に金属層、保護層、更に保護平板等必要に応じて
設けてもよいことは云うまでもない。
Incidentally, the magneto-optical recording medium to which the present invention is applied may be one in which a dielectric layer and a recording layer are formed on a substrate, and a metal layer, a protective layer, a protective flat plate, etc. may be further provided thereon as necessary. Needless to say, it is okay.

又その誘電体層は、基板側の酸素含有量が高く、記録層
側の酸素含有層が低く形成された誘電体であればよい。
The dielectric layer may be a dielectric material having a high oxygen content on the substrate side and a low oxygen content layer on the recording layer side.

誘電体としては公知の金属、半金属。Well-known metals and semimetals are used as dielectrics.

又はこれらの合金の窒化物、炭化物、フッ化物。or nitrides, carbides, and fluorides of these alloys.

硫化物等が挙げられる。又金属、半金属又はこれらの合
金の例としてはSi 、Al、Si Alの窒化物が耐
久性面及びエンハンス効果面から好ましく適用される。
Examples include sulfides. As examples of metals, semimetals, and alloys thereof, Si, Al, and SiAl nitrides are preferably used from the viewpoint of durability and enhancement effect.

酸素は主として上述の誘電体を構成する金属、半金属又
はこれら合金の酸化物の形で含まれるが、その含まれる
形態は特に限定されない。又その層厚方向の含有lの変
化パターンも特に限定されないが、少なくとも変化部分
ではステップ状ではなく漸減させることが層全体の特性
上好ましい。なお酸素含有量は基板側では大きいほど良
いが少なくとも10数原子%以上、記録層側では小さい
ほど良いが数原子%以下とすることが好ましい。
Oxygen is mainly contained in the form of oxides of metals, semimetals, or alloys thereof constituting the above-mentioned dielectric, but the form in which it is contained is not particularly limited. Further, the pattern of change in the content of 1 in the layer thickness direction is not particularly limited, but it is preferable from the viewpoint of the characteristics of the entire layer that at least in the change portion, the change is not step-like but gradually decreases. The oxygen content on the substrate side is preferably at least 10-odd atomic percent or more, and on the recording layer side, the lower the oxygen content is, the better, but it is preferably several atomic percent or less.

記録層は希土類金属−遷移金属の非晶質合金膜よりなる
ものであれば良く、前述した公知のもの等が適用できる
The recording layer may be made of an amorphous alloy film of rare earth metals and transition metals, and the above-mentioned known materials can be used.

基板には、PMMA、ポリカーボネート、エポキシ系等
の高分子樹脂基板及びガラス基板等があげられるが、特
に安価で温度特性9寸法安定性のよいポリカーボネート
が好んで用いられる。
Examples of the substrate include polymer resin substrates such as PMMA, polycarbonate, and epoxy, and glass substrates, but polycarbonate is particularly preferably used because it is inexpensive and has good temperature characteristics and dimensional stability.

〈作用〉 上記に記載した誘電体の成膜方法により、基板との密着
がよく、しかも記録層の酸化による劣化を防止すること
が可能な酸化物と窒化物の複合膜が一つの蒸発元で安定
に成膜することが可能となり、記録再生特性の安定した
高信頼性の光磁気記録媒体が安価で得ることが出来る。
<Function> With the dielectric film forming method described above, a composite film of oxide and nitride, which has good adhesion to the substrate and can prevent deterioration of the recording layer due to oxidation, is created using a single evaporation source. It becomes possible to form a film stably, and a highly reliable magneto-optical recording medium with stable recording and reproducing characteristics can be obtained at low cost.

〈実施例〉 以下、本発明の実施例について図を参照にしながら説明
する。
<Example> Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は基板とターゲットを対置した公知の2橿のRF
マグネトロンスパッタ装置を用い、成膜したAuN11
の膜組成の膜形成電力依存性を示したものである。第1
図において(1)はアルミの含有層、(2)は窒素の含
有量、(3)は酸素の含有量である。
Figure 1 shows a known two-pronged RF device with a substrate and a target placed opposite each other.
AuN11 film formed using magnetron sputtering equipment
This figure shows the dependence of the film composition on the film formation power. 1st
In the figure, (1) is the aluminum content layer, (2) is the nitrogen content, and (3) is the oxygen content.

上記A1Ni1の成膜方法はターゲットにA!L(5N
)を用いた、Nz /Ar = 1.0(7)混合比の
混合ガス雰囲気中での反応性スパッタ法であり、スパッ
タガス圧は2 X 10−3 T Orr 、基板とタ
ーゲット間距離は11α、到達真空度は4 x 10’
 T orrとした。また膜組成分析はAESで行なっ
た。第1図により低電カスバッタ時には酸素含有層は3
0at (原子)%を越え、Atカスバッタ時にはほぼ
Qat%になることが確認された。また、窒素の含有量
は酸素とは逆の傾向にあることが確認出来た。
The above A1Ni1 film formation method uses A! L (5N
) is a reactive sputtering method in a mixed gas atmosphere with a mixing ratio of Nz/Ar = 1.0 (7), the sputtering gas pressure is 2 x 10-3 T Orr, and the distance between the substrate and target is 11α , the ultimate vacuum is 4 x 10'
It was set as Torr. Further, film composition analysis was performed using AES. As shown in Figure 1, the oxygen-containing layer is 3
It was confirmed that it exceeds 0 at (atomic) % and becomes almost Qat % in the case of At cassata. It was also confirmed that the nitrogen content had a tendency opposite to that of oxygen.

第2図は、本発明の一実施例で光磁気記録媒体の構成を
示す断面図である。第2図において、(21)はポリカ
ーボネート基板、(22a)。
FIG. 2 is a sectional view showing the structure of a magneto-optical recording medium according to an embodiment of the present invention. In FIG. 2, (21) is a polycarbonate substrate, (22a).

(22b )は上述のようにして形成した低電力(1,
2W/ail)成膜による窒化アルミ層(約400人)
と、高電力(6,0W/cd’)成膜による窒化アルミ
II(約400人)、(23)は同じくスパッタリング
法により形成したTb23Feg6COu  (添字は
原子%)非晶質合金からなる記録1 (400人)、(
24)は同じくスパッタリング法で形成した保護層のT
+ 11 (1000人)である。
(22b) is the low power (1,
2W/ail) aluminum nitride layer (approximately 400 people)
and Aluminum nitride II (approximately 400 people) formed by high power (6.0 W/cd') film formation, (23) is Record 1 consisting of an amorphous alloy of Tb23Feg6COu (subscripts are atomic %) formed by the same sputtering method. 400 people), (
24) is the protective layer T formed by the same sputtering method.
+ 11 (1000 people).

ここで、誘電体層(22)の形成において低電力から高
電力へパワーを上げる際には放電を止めることなく放電
状態で徐々に上昇させた。このようにすると(22a 
)と(22b)との間に整合のとれた酸素81度が漸減
する中間III(22c)が出来ることがAESの結果
から明らかになった。
Here, when increasing the power from low power to high power in forming the dielectric layer (22), the power was gradually increased in the discharge state without stopping the discharge. If you do this (22a
) and (22b), it was revealed from the AES results that an intermediate III (22c) was formed in which the consistent oxygen content gradually decreased by 81 degrees.

第3図は、本発明による上記実施例の光磁気記録媒体に
ついて70℃、90%RHの耐候試験をおこなった結果
である。通常記録II(23)の磁性材料が酸化した場
合、保磁力、カー回転角が低下するが、第3図に示すご
とく、本発明による成膜方法で製膜した誘電体層を用い
た媒体は1000時間以上ひび割れや保磁力、カー回転
角の劣化は認められなかった。
FIG. 3 shows the results of a weather resistance test at 70° C. and 90% RH for the magneto-optical recording medium of the above embodiment according to the present invention. When the magnetic material of Normal Recording II (23) is oxidized, the coercive force and Kerr rotation angle decrease, but as shown in FIG. No cracks or deterioration of coercive force or Kerr rotation angle were observed after 1000 hours.

第4図は比較の為に第2図の誘電体層(22)部を全て
低電カスバッタした膜(800人)に置きかえた光磁気
記録媒体の保磁力の経時変化をみたものである。媒体の
ひび割れは認められなかったが第4図に示されたごとり
50時間程度で特性の劣化が確認された。
For comparison, FIG. 4 shows the change over time in the coercive force of a magneto-optical recording medium in which the dielectric layer (22) shown in FIG. 2 was entirely replaced with a low-electrical scattering film (800 layers). Although no cracks were observed in the medium, deterioration of characteristics was confirmed after about 50 hours as shown in FIG.

又同様に第2図の誘電体層(22)部を全て高電力でス
パッタした!!(800人)に置きかえた光磁気媒体に
ついても耐候試験を行なったが、わずか10時間で媒体
にひび割れが発生した。
Similarly, all of the dielectric layer (22) in FIG. 2 was sputtered at high power! ! A weather test was also conducted on the magneto-optical medium that had been replaced by the same person (800 people), but cracks appeared in the medium after just 10 hours.

なおスパッタガス圧を高< (10″2T orr台)
して誘電体保護膜を形成する場合、低電力でスパッタし
た膜と同様な膜組成、即ち酸素含有量の多い膜を得るこ
とが出来るが、膜が疎で耐久性が悪いことが確認されて
いる。
Note that the sputtering gas pressure is high (10″2T orr level).
When forming a dielectric protective film by sputtering with low power, it is possible to obtain a film with a similar composition to that of a film sputtered with low power, that is, a film with a high oxygen content, but it has been confirmed that the film is sparse and has poor durability. There is.

〈発明の効果〉 以上にように本発明によれば、構成が簡単で生産性が良
く、一つの蒸発元により安定に光磁気記録媒体に適した
複合膜の膜組成が可能となり、耐久性に優れた光磁気記
録媒体が得られる。このように本発明は光磁気記録媒体
の実用化に大きな寄与をなすものである。
<Effects of the Invention> As described above, according to the present invention, the structure is simple and the productivity is high, and a composite film suitable for a magneto-optical recording medium can be stably formed using a single evaporation source, and the durability is improved. An excellent magneto-optical recording medium can be obtained. In this way, the present invention makes a significant contribution to the practical application of magneto-optical recording media.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例の窒化アルミ膜の膜組成の膜形成電力
依存性を示すグラフ、第2図は実施例の光磁気記録媒体
の構成を示す側断面図、第3図は実施例の光磁気記録媒
体の耐久性を示す特性の経時変化のグラフ、第4図は比
較例として作成した光磁気記録媒体の耐久性を示す特性
の経時変化のグラフである。 21:基板    22:誘電体層 23:記録層   24:保護層 R莫1〉八゛を力(w/cy) − 第1 因 第 図 (a) 拓
FIG. 1 is a graph showing the film formation power dependence of the film composition of the aluminum nitride film of the example, FIG. 2 is a side cross-sectional view showing the structure of the magneto-optical recording medium of the example, and FIG. FIG. 4 is a graph of changes over time in characteristics indicating durability of a magneto-optical recording medium prepared as a comparative example. 21: Substrate 22: Dielectric layer 23: Recording layer 24: Protective layer

Claims (1)

【特許請求の範囲】 1、高分子基板上に誘電体層、希土類−遷移金属の非晶
質合金膜よりなる記録層が順次形成され、該誘電体層は
その酸素含有量が基板側で高くて記録側で低い誘電体か
らなる光磁気記録媒体の該誘電体層の形成に際し、蒸発
源の一つの反応性気相薄膜形成法を用い、所定の到達真
空度に排気後、所定の反応性ガスを導入して該反応ガス
雰囲気下で膜形成電力を前記酸素含有量になるように調
整しつつ前記誘電体膜を形成することを特徴とする光磁
気記録媒体の製造方法。 2、前記反応性ガスが窒素ガスであり酸素含有窒化物か
らなる誘電体を形成する請求項第1項記載の光磁気記録
媒体の製造方法。 3、前記気相薄膜形成法がスパッタリング法である請求
項第1項又は第2項記載の光磁気記録媒体の製造方法。 4、前記到達真空度が10^−^5Torr以下である
請求項第3項記載の光磁気記録媒体の製造方法。 5、前記誘電体層がSi、Al、Ti又はSiとAlの
酸素含有窒化物である請求項第2項記載の光磁気記録媒
体の製造方法。
[Claims] 1. A dielectric layer and a recording layer made of a rare earth-transition metal amorphous alloy film are sequentially formed on a polymer substrate, and the dielectric layer has a high oxygen content on the substrate side. When forming a dielectric layer of a magneto-optical recording medium consisting of a low dielectric material on the recording side, a reactive vapor phase thin film formation method using one of the evaporation sources is used, and after evacuation to a predetermined ultimate vacuum, a predetermined reactivity is applied. A method for manufacturing a magneto-optical recording medium, characterized in that the dielectric film is formed by introducing a gas and adjusting the film-forming power to the oxygen content in the reaction gas atmosphere. 2. The method of manufacturing a magneto-optical recording medium according to claim 1, wherein the reactive gas is nitrogen gas to form a dielectric made of oxygen-containing nitride. 3. The method for manufacturing a magneto-optical recording medium according to claim 1 or 2, wherein the vapor phase thin film forming method is a sputtering method. 4. The method for manufacturing a magneto-optical recording medium according to claim 3, wherein the ultimate degree of vacuum is 10^-^5 Torr or less. 5. The method for manufacturing a magneto-optical recording medium according to claim 2, wherein the dielectric layer is Si, Al, Ti, or an oxygen-containing nitride of Si and Al.
JP18684988A 1988-07-28 1988-07-28 Production of magneto-optical recording medium Pending JPH0237545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18684988A JPH0237545A (en) 1988-07-28 1988-07-28 Production of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18684988A JPH0237545A (en) 1988-07-28 1988-07-28 Production of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH0237545A true JPH0237545A (en) 1990-02-07

Family

ID=16195721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18684988A Pending JPH0237545A (en) 1988-07-28 1988-07-28 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0237545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152051A (en) * 1988-12-05 1990-06-12 Hitachi Ltd Magneto-optical recording medium
CN102412341A (en) * 2011-11-07 2012-04-11 西南交通大学 Magnetron sputtering preparation method for copper indium gallium selenide (CIGS) film with Cu content changing in different layers
US9337664B2 (en) 2010-12-16 2016-05-10 Qualcomm Incorporated Wireless power receiver circuitry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152051A (en) * 1988-12-05 1990-06-12 Hitachi Ltd Magneto-optical recording medium
US9337664B2 (en) 2010-12-16 2016-05-10 Qualcomm Incorporated Wireless power receiver circuitry
CN102412341A (en) * 2011-11-07 2012-04-11 西南交通大学 Magnetron sputtering preparation method for copper indium gallium selenide (CIGS) film with Cu content changing in different layers

Similar Documents

Publication Publication Date Title
US5577020A (en) Magneto-optical disc with intermediate film layer between a recording film and a dielectric film
JPH0237545A (en) Production of magneto-optical recording medium
JP2593206B2 (en) Optical recording medium
JPH01173455A (en) Magneto-optical recording medium
JP2527762B2 (en) Magneto-optical recording medium
JPH0524572B2 (en)
JPH0673197B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPS62279542A (en) Magneto-optical recording medium
JPH01173454A (en) Magneto-optical recording medium
JPH0792935B2 (en) Magneto-optical recording medium
JP3079651B2 (en) Method for manufacturing magneto-optical recording medium
JPH0785520A (en) Production of magneto-optical recording medium
JP2754658B2 (en) Magneto-optical recording medium
JPH02173957A (en) Optical recording medium
KR100304864B1 (en) Method of manufacturing optical recording medium
JP2583255B2 (en) Magneto-optical recording medium
JPH01173453A (en) Magneto-optical recording medium
JP2506935B2 (en) Magneto-optical recording medium
JPH01213849A (en) Magneto-optical recording medium
JPS60143460A (en) Optothermomagnetic recording medium and its production
JP2737241B2 (en) Magneto-optical recording medium
JPH0630182B2 (en) Manufacturing method of magneto-optical recording element
Coulman et al. AES and XPS Studies of the Chemical Effects at the Magneto-Optic/Dielectric Interface
JPS6353735A (en) Magneto-optical recording medium
JPH01171140A (en) Magneto-optical recording medium