JPH0785520A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH0785520A
JPH0785520A JP23311093A JP23311093A JPH0785520A JP H0785520 A JPH0785520 A JP H0785520A JP 23311093 A JP23311093 A JP 23311093A JP 23311093 A JP23311093 A JP 23311093A JP H0785520 A JPH0785520 A JP H0785520A
Authority
JP
Japan
Prior art keywords
magneto
optical recording
recording medium
sputtering
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23311093A
Other languages
Japanese (ja)
Other versions
JP3428085B2 (en
Inventor
Mutsumi Asano
睦己 浅野
Koji Katayama
晃治 片山
Mitsuo Endo
三男 遠藤
Akio Kondo
昭夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP23311093A priority Critical patent/JP3428085B2/en
Publication of JPH0785520A publication Critical patent/JPH0785520A/en
Application granted granted Critical
Publication of JP3428085B2 publication Critical patent/JP3428085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magneto-optical recording medium with a small tilt as well as to attain a high rate of film formation, to unnecessitate a gas diffusion preventing mechanism between chambers in the case of production in a multi- chamber sputtering device and to enhance the throughput of production. CONSTITUTION:At least a magneto-optical recording layer and a dielectric layer are formed on a substrate. In the resulting magneto-optical recording medium, the dielectric layer is formed from an SiC target having <=0.05OMEGAcm resistivity and each of the constituent layers of the recording medium are formed by DC sputtering with only gaseous Ar.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光磁気記録媒体および
その製造方法に関する。さらに、詳しくは高生産性の光
磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium and its manufacturing method. More specifically, it relates to a highly productive magneto-optical recording medium.

【0002】[0002]

【従来の技術】光記録媒体の中で、書き込み消去のでき
る書き換え可能型として従来知られているものには相変
化型、フォトクロミック型、光磁気型等がある。これら
の書き換え可能型の中でも、光磁気型が書き込み速度や
繰返し耐性に優れているという点で、現在普及しつつあ
る。この光磁気型の記録媒体に用いられる光磁気記録膜
(MO膜)の材料としては、作成が比較的容易で保磁力
が大きいという観点から希土類−遷移金属合金膜(RE
TM膜)が多用されている。
2. Description of the Related Art Among optical recording media, rewritable types that can be written and erased are conventionally known as phase change type, photochromic type, magneto-optical type and the like. Among these rewritable types, the magneto-optical type is now becoming popular because it is excellent in writing speed and repetition resistance. As a material for the magneto-optical recording film (MO film) used in this magneto-optical recording medium, a rare earth-transition metal alloy film (RE
TM film) is often used.

【0003】このRETM膜は耐蝕性に劣り、カ−回転
角が小さいという問題があったため、その問題解決のた
めに従来は誘電体層を設けて耐蝕性を向上させるととも
に、光干渉によりカ−回転角を増加させ反射率を調整す
るという方法が用いられてきた。
This RETM film has a problem that it is inferior in corrosion resistance and the car rotation angle is small. Therefore, in order to solve the problem, a dielectric layer has been conventionally provided to improve the corrosion resistance, and at the same time, the interference is caused by light interference. The method of increasing the rotation angle and adjusting the reflectance has been used.

【0004】MO膜としては、RETM膜の他にPt/
Co等の人工格子膜も提案されている。この人工格子膜
を用いた光磁気記録媒体においても誘電体層を設けてカ
−回転角を増加させ反射率を調整するという方法が用い
られる。
As the MO film, in addition to the RETM film, Pt /
An artificial lattice film such as Co has also been proposed. Also in a magneto-optical recording medium using this artificial lattice film, a method of providing a dielectric layer to increase the car rotation angle and adjusting the reflectance is used.

【0005】この誘電体層の材料には、透明で化学的安
定性の高い窒化ケイ素がよく用いられる。窒化ケイ素を
用いた光磁気記録媒体の構成の一例として、窒化ケイ素
の屈折率を2.0から2.2程度とし、基板/窒化ケイ
素(80〜120nm程度)/RETM(20〜30n
m程度)/窒化ケイ素(15〜35nm程度)/金属反
射膜(30〜100nm程度)という構成をあげること
ができる。各層は通常成膜する層に応じたチャンバ−を
複数備えたマルチチャンバ−のスパッタリング装置によ
り成膜される。
Transparent and highly chemically stable silicon nitride is often used as the material for the dielectric layer. As an example of the structure of a magneto-optical recording medium using silicon nitride, the refractive index of silicon nitride is set to about 2.0 to 2.2, and substrate / silicon nitride (about 80 to 120 nm) / RETM (20 to 30 n
m) / silicon nitride (about 15 to 35 nm) / metal reflective film (about 30 to 100 nm). Each layer is usually formed by a multi-chamber sputtering apparatus having a plurality of chambers according to the layer to be formed.

【0006】[0006]

【発明が解決しようとする課題】この際、窒化ケイ素よ
りなる誘電体層は、通常ケイ素タ−ゲットを用いアルゴ
ンガスと窒素ガスとの混合ガス中、高周波反応性スパッ
タリングにより形成される。混合ガスを用いるために、
DCスパッタリングのように成膜速度が大きく、応力の
小さい膜を成膜することが困難であった。また、複数種
の膜をマルチチャンバ−のスパッタリング装置で成膜す
る場合、RETM膜は窒素が混入すると特性が劣化する
ことから、チャンバ−間を仕切って窒素ガスの他のチャ
ンバ−への混入を防止しなければならないという問題が
あった。また、この仕切りのためにディスク搬送に時間
がかかり、生産性が低下するという問題もあった。
At this time, the dielectric layer made of silicon nitride is usually formed by high frequency reactive sputtering using a silicon target in a mixed gas of argon gas and nitrogen gas. In order to use a mixed gas,
It was difficult to form a film having a high film formation rate and a small stress, such as DC sputtering. Further, when a plurality of types of films are formed by a multi-chamber sputtering apparatus, the characteristics of the RETM film deteriorate when nitrogen is mixed therein. There was a problem that it had to be prevented. In addition, there is a problem in that it takes time to transfer the disk due to this partition, and the productivity is reduced.

【0007】さらに、RETM膜および金属反射膜の成
膜速度に比べて窒化ケイ素膜の成膜速度が小さいため、
窒化ケイ素膜の成膜が大量生産のスル−プットの律速と
なっていた。そのため、窒化ケイ素膜を複数のチャンバ
−で成膜することにより各チャンバ−での成膜時間を揃
えてスル−プットを大きくするという方法が行われてい
た。
Further, since the deposition rate of the silicon nitride film is lower than the deposition rate of the RETM film and the metal reflection film,
The formation of a silicon nitride film has been the rate limiting factor for mass production throughput. Therefore, a method has been used in which the silicon nitride film is formed in a plurality of chambers so that the film forming time in each chamber is made uniform to increase the throughput.

【0008】[0008]

【課題を解決するための手段】上述のような現状に鑑
み、本発明者ら鋭意検討を重ねた結果、光磁気記録媒体
の誘電体層を抵抗率0.05Ωcm以下のSiCターゲ
ットから構成し、かつ、光磁気記録媒体を構成する各層
をアルゴンガスのみによるスパッタリングで成膜するこ
とにより、生産性が向上しまた、マルチチャンバ−のス
パッタリング装置を用いる場合に、チャンバ−間の仕切
りが不要となることを見出し、本発明を完成するに至っ
た。
In view of the above-mentioned situation, the inventors of the present invention have conducted intensive studies and, as a result, formed a dielectric layer of a magneto-optical recording medium from a SiC target having a resistivity of 0.05 Ωcm or less, In addition, productivity is improved by forming each layer constituting the magneto-optical recording medium by sputtering with only argon gas, and when a multi-chamber sputtering apparatus is used, a partition between chambers is not required. This has led to the completion of the present invention.

【0009】即ち、本発明は、基板上に少なくとも光磁
気記録層と誘電体層とをスパッタリングにより形成して
なる光磁気記録媒体の製造方法において、誘電体層が抵
抗率0.05Ωcm以下のSiCターゲットから構成さ
れ、かつ、光磁気記録媒体を構成する各層がアルゴンガ
スのみによるDCスパッタリングで形成されることを特
徴とする光磁気記録媒体の製造方法に関する。
That is, according to the present invention, in a method of manufacturing a magneto-optical recording medium in which at least a magneto-optical recording layer and a dielectric layer are formed on a substrate by sputtering, the dielectric layer has a resistivity of 0.05 Ωcm or less. The present invention relates to a method of manufacturing a magneto-optical recording medium, which is composed of a target and each layer constituting the magneto-optical recording medium is formed by DC sputtering using only argon gas.

【0010】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0011】本発明の光磁気記録媒体の各層の構成につ
いては、光磁気記録層と誘電体層とを少なくとも有して
いれば特に制限はないが、光磁気記録層の保護や光磁気
記録媒体の特性を向上させるためには、基板/誘電体層
/光磁気記録層/誘電体層/反射層という構成をとるこ
とが好ましい。また、オーバーコート層および/または
ハードコート層を設けてもよく、更にこれらの媒体を貼
合せてもよい。
The structure of each layer of the magneto-optical recording medium of the present invention is not particularly limited as long as it has at least a magneto-optical recording layer and a dielectric layer, but the magneto-optical recording layer is protected and the magneto-optical recording medium is protected. In order to improve the characteristics of (1), it is preferable to adopt a structure of substrate / dielectric layer / magneto-optical recording layer / dielectric layer / reflection layer. Further, an overcoat layer and / or a hard coat layer may be provided, and these media may be laminated.

【0012】本発明の基板としては、ガラスやポリカー
ボネート、ポリメチル(メタ)アクリレートなどに代表
されるアクリル樹脂およびオレフィン樹脂などの透明樹
脂を例示することができる。
Examples of the substrate of the present invention include transparent resins such as glass, polycarbonate, acrylic resins represented by polymethyl (meth) acrylate, and olefin resins.

【0013】本発明における誘電体層はSiCタ−ゲッ
トからDCスパッタリングにより形成することができ
る。SiとCとの割合は原子比で、47/53〜53/
47、好ましくは50/50であり、SiCタ−ゲット
の抵抗率は0.05Ωcm以下、好ましくは0.02Ω
cm以下である。抵抗率が0.05Ωcmを越えると異
常放電が起こりやすくなったり、放電が中断しやすくな
るため好ましくない。これらのターゲットにはホウ素等
の不純物を含んでいるものも使用可能である。
The dielectric layer in the present invention can be formed from a SiC target by DC sputtering. The atomic ratio of Si to C is 47/53 to 53 /.
47, preferably 50/50, and the resistivity of the SiC target is 0.05 Ωcm or less, preferably 0.02 Ω.
cm or less. If the resistivity exceeds 0.05 Ωcm, abnormal discharge is likely to occur or the discharge is likely to be interrupted, which is not preferable. Those containing impurities such as boron can be used as these targets.

【0014】本発明における光磁気記録層としては、例
えば、TbFe,TbCo,TbFeCo,DyCo,
DyFeCo,GdFe,GdFeCo,TbFeN
i,GdTbFeCoなどの希土類金属と鉄族遷移金属
からなる合金を用いることが可能である。更にCr,T
i,Al,Ta,Mo,Bi,Cuなどの添加物を含ん
だり、他の不純物を含んでいてもよい。
Examples of the magneto-optical recording layer in the present invention include TbFe, TbCo, TbFeCo, DyCo,
DyFeCo, GdFe, GdFeCo, TbFeN
It is possible to use an alloy composed of a rare earth metal such as i and GdTbFeCo and an iron group transition metal. Further Cr, T
It may contain additives such as i, Al, Ta, Mo, Bi, and Cu, or may contain other impurities.

【0015】反射層を設ける場合には、Al,Cr,A
g,Ti,Moなどの単元素、あるいは複数元素からな
る金属を用いることが可能である。
When a reflective layer is provided, Al, Cr, A
It is possible to use a single element such as g, Ti, or Mo, or a metal composed of a plurality of elements.

【0016】本発明においては、以上のような各層をア
ルゴンガスのみでDCスパッタリングすることにより形
成する。このような製造方法を経ることにより、生産性
が向上するのみならず、複数のチャンバ−からなるスパ
ッタリング装置においてチャンバ−間のガスの拡散を防
止する機構を持たないマルチチャンバ−スパッタリング
装置においても光磁気記録媒体を製造することが可能と
なる。もちろん、ガス拡散防止機構を有した装置におい
ても、ガス拡散防止のために通常設けられるゲ−トバル
ブを解放したままで成膜することにより本発明を実施可
能である。
In the present invention, each layer as described above is formed by DC sputtering with only argon gas. Through such a manufacturing method, not only the productivity is improved, but also in a multi-chamber sputtering apparatus which does not have a mechanism for preventing gas diffusion between the chambers in a sputtering apparatus including a plurality of chambers. It becomes possible to manufacture a magnetic recording medium. Of course, even in an apparatus having a gas diffusion preventing mechanism, the present invention can be carried out by forming a film with a gate valve normally provided for preventing gas diffusion being opened.

【0017】また、DCスパッタリングが可能となった
ために、大きな成膜速度がえられ、かつ、得られた膜の
応力が低下するのでチルトの小さい光磁気記録媒体を製
造することができる。
Further, since DC sputtering is possible, a high film forming rate can be obtained, and the stress of the obtained film is lowered, so that a magneto-optical recording medium having a small tilt can be manufactured.

【0018】[0018]

【実施例】以下、本発明を実施例をもって更に詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited thereto.

【0019】参考例1 スパッタリング装置としてチャンバ−間をゲ−トバルブ
で仕切ることのできるマルチチャンバ−スパッタリング
装置を用いた。チャンバ−構成は基板の入り口側から出
口側に向かい、ロ−ド室、真空保管室、第一誘電体層成
膜室、光磁気記録層成膜室、第二誘電体層成膜室、反射
層成膜室、アンロ−ド室の7室からなる。第一および第
二誘電体層成膜室にはSiC(Si:50原子%,C:
50原子%、抵抗率:1.5×10-2Ωcm)タ−ゲッ
トを設置した。RETM成膜室にはTbとFeCo(F
e:92原子%,Co:8原子%)の2つのタ−ゲットを
設置した。反射膜成膜室にはAlタ−ゲットを設置し
た。
Reference Example 1 As the sputtering apparatus, a multi-chamber sputtering apparatus capable of partitioning the chambers with a gate valve was used. The chamber is composed of a load chamber, a load chamber, a vacuum storage chamber, a first dielectric layer deposition chamber, a magneto-optical recording layer deposition chamber, a second dielectric layer deposition chamber, and a reflection chamber. It consists of seven layers, a layer deposition chamber and an unloading chamber. SiC (Si: 50 atomic%, C:
A target of 50 at%, resistivity: 1.5 × 10 -2 Ωcm) was installed. In the RETM film forming chamber, Tb and FeCo (F
Two targets of e: 92 atomic% and Co: 8 atomic% were set. An Al target was installed in the reflection film forming chamber.

【0020】光磁気記録媒体を製造する前に、第一誘電
体層成膜室においてガラス基板上に、DCスパッタリン
グにてSiC膜を成膜し、その成膜速度を求めた。な
お、成膜条件としてはArガスのみ、ガス圧0.5P
a,投入電力1000Wであった。また同条件でカバ−
ガラス上にSiC膜を成膜し、膜の応力を求めた。結果
を表1に示す。
Before manufacturing the magneto-optical recording medium, a SiC film was formed on the glass substrate by DC sputtering in the first dielectric layer forming chamber, and the film forming rate was obtained. The film forming conditions were Ar gas only and gas pressure was 0.5 P.
a, input power was 1000 W. Also under the same conditions
A SiC film was formed on glass and the stress of the film was determined. The results are shown in Table 1.

【0021】参考例2 第一誘電体層成膜室において、DCスパッタリングのか
わりにRFスパッタリングを行った他は参考例1と同様
に実施し、成膜速度および膜応力を測定した。結果を表
1に示す。
Reference Example 2 The same procedure as in Reference Example 1 was performed except that RF sputtering was used instead of DC sputtering in the first dielectric layer film forming chamber, and the film forming rate and film stress were measured. The results are shown in Table 1.

【0022】参考例3 参考例1の装置の第一誘電体層成膜室において、ガラス
基板上にDCスパッタリングおよびRFスパッタリング
を行ってSiN膜の成膜を試みた。なお、成膜条件とし
てはアルゴン/窒素混合ガス、ガス圧0.5Pa,投入
電力1000Wであった。
Reference Example 3 In the first dielectric layer deposition chamber of the apparatus of Reference Example 1, an attempt was made to deposit a SiN film by performing DC sputtering and RF sputtering on a glass substrate. The film forming conditions were an argon / nitrogen mixed gas, a gas pressure of 0.5 Pa, and an input power of 1000 W.

【0023】DCスパッタリングでは、放電が不安定で
連続放電が不可能であったので、RFスパッタリングの
み成膜速度を求めた。また同条件のRFスパッタリング
でカバ−ガラス上にSiN膜を成膜し、膜の応力を求め
た。結果を表1に示す。
In DC sputtering, the discharge was unstable and continuous discharge was impossible, so the deposition rate was determined only for RF sputtering. A SiN film was formed on the cover glass by RF sputtering under the same conditions, and the film stress was determined. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例1 参考例1で用いたスパッタリング装置により、1.6μ
mピッチの案内溝をもつ直径86mmのポリカーボネー
ト基板を用いて、DCスパッタリングにより光磁気記録
媒体を形成した。媒体の構成は、基板/SiC誘電体層
(80nm)/TbFeCo光磁気記録層(23nm)
/SiC誘電体層(30nm)/Al反射層(50n
m)で、光磁気記録層の組成はTb20(Fe92Co8
80とした。全ての層においてスパッタリングガスはAr
ガスとし、ガス圧は0.5Paとし、誘電体層形成時の
投入電力は、1000Wとした。
Example 1 Using the sputtering apparatus used in Reference Example 1, 1.6 μ
A magneto-optical recording medium was formed by DC sputtering using a polycarbonate substrate having a diameter of 86 mm and having guide grooves of m pitch. The medium is composed of a substrate / SiC dielectric layer (80 nm) / TbFeCo magneto-optical recording layer (23 nm).
/ SiC dielectric layer (30 nm) / Al reflective layer (50 n
m), the composition of the magneto-optical recording layer is Tb 20 (Fe 92 Co 8 )
80 . The sputtering gas is Ar in all layers
Gas was used, the gas pressure was 0.5 Pa, and the input power at the time of forming the dielectric layer was 1000 W.

【0026】成膜は第一誘電体層成膜室、光磁気記録層
成膜室、第二誘電体層成膜室、反射層成膜室の全てにガ
スを投入し所定電力で放電を継続した状態で、チャンバ
−間のゲ−トバルブを全て開放した状態で、第一誘電体
層成膜室から反射層成膜室に基板を移動して各層を順次
成膜した。すなわち第一誘電体層を形成している時も他
の成膜室も放電している状態で行った。第一誘電体以外
の成膜も同様である。但し、一つの層のスパッタリング
が終了し、基板を次の成膜室へ搬送している間は各スパ
ッタリング室にガスは導入し続けたが放電は停止した。
For film formation, gas is introduced into all of the first dielectric layer film forming chamber, the magneto-optical recording layer film forming chamber, the second dielectric layer film forming chamber, and the reflective layer film forming chamber, and discharge is continued at a predetermined power. In this state, with all the gate valves between the chambers open, the substrate was moved from the first dielectric layer film forming chamber to the reflective layer film forming chamber to sequentially form each layer. That is, even when the first dielectric layer was formed, the other film forming chambers were also discharged. The same applies to film formation other than the first dielectric. However, while the sputtering of one layer was completed and the substrate was transferred to the next film forming chamber, the gas was continuously introduced into each sputtering chamber, but the discharge was stopped.

【0027】得られた光磁気記録媒体の記録再生特性と
チルトを測定した。記録再生特性は波長780nm,N
A=0.53の光学系の評価機でマ−ク長0.75μm
となる条件でキャリア−対ノイズ比(CNR)を求め
た。チルトは波長780nm,NA=0.53の光学系
の評価機で周方向に5度、半径方向に4mm間隔でサン
プリングして求めた。結果を表2に示す。
The recording / reproducing characteristics and tilt of the obtained magneto-optical recording medium were measured. Recording / reproduction characteristics have a wavelength of 780 nm, N
Marker length 0.75 μm with an optical system evaluator with A = 0.53.
The carrier-to-noise ratio (CNR) was determined under the following condition. The tilt was obtained by sampling at an angle of 5 degrees in the circumferential direction and at an interval of 4 mm in the radial direction with an evaluation system of an optical system having a wavelength of 780 nm and NA = 0.53. The results are shown in Table 2.

【0028】比較例1 DCスパッタリングのかわりにRFスパッタリングを行
った他は実施例1と同様に実施し、得られた光磁気記録
媒体の記録再生特性とチルトを測定した。結果を表2に
示す。
Comparative Example 1 Recording and reproducing characteristics and tilt of the obtained magneto-optical recording medium were measured in the same manner as in Example 1 except that RF sputtering was used instead of DC sputtering. The results are shown in Table 2.

【0029】比較例2 参考例1で用いたスパッタリング装置により、1.6μ
mピッチの案内溝をもつ直径86mmのポリカーボネー
ト基板を用いて、RFスパッタリングにより光磁気記録
媒体を形成した。媒体の構成は、基板/SiN誘電体層
(100nm)/TbFeCo光磁気記録層(23n
m)/SiN誘電体層(30nm)/Al反射層(50
nm)で、光磁気記録層の組成はTb20(Fe92
880とした。なお、成膜は全てのゲ−トバルブを閉
じて行い、スパッタリングするチャンバ−のみガスを導
入して放電を行い、その他のスパッタリング室にはガス
導入、放電は行わなかった。SiN誘電体層は、第一お
よび第二誘電体層成膜室において、Ar/窒素混合ガス
で、SiN誘電体層以外の層はアルゴンガスのみでスパ
ッタリングを行った。なお、ガス圧は0.5Pa、投入
電力1000Wであった。
Comparative Example 2 1.6 μm was obtained by the sputtering apparatus used in Reference Example 1.
A magneto-optical recording medium was formed by RF sputtering using a 86 mm diameter polycarbonate substrate having m-pitch guide grooves. The medium is composed of a substrate / SiN dielectric layer (100 nm) / TbFeCo magneto-optical recording layer (23 n
m) / SiN dielectric layer (30 nm) / Al reflective layer (50
nm), the composition of the magneto-optical recording layer is Tb 20 (Fe 92 C
o 8 ) 80 . Note that film formation was performed with all the gate valves closed, gas was introduced only in the sputtering chamber, and no gas was introduced or discharged in the other sputtering chambers. The SiN dielectric layer was sputtered with Ar / nitrogen mixed gas in the first and second dielectric layer deposition chambers, and the layers other than the SiN dielectric layer were sputtered with argon gas only. The gas pressure was 0.5 Pa and the input power was 1000 W.

【0030】得られた光磁気記録媒体の特性とチルトと
を実施例2と同じ方法で測定した結果を表2に示す。
Table 2 shows the results of measuring the characteristics and tilt of the obtained magneto-optical recording medium by the same method as in Example 2.

【0031】比較例3 比較例2において、全てのゲ−トバルブを開放してスパ
ッタリングを行った。ゲ−トバルブを開放している間、
全てのスパッタリング室にガスを導入して放電を継続し
た状態で各層を形成した。なお、各層のスパッタリング
が終了し、基板を搬送している間だけは、各スパッタリ
ング室にガスは導入し続けたが放電は停止した。
Comparative Example 3 In Comparative Example 2, all the gate valves were opened and sputtering was performed. While opening the gate valve,
Each layer was formed in a state where gas was introduced into all sputtering chambers and discharge was continued. Note that the gas was continuously introduced into each sputtering chamber, but the discharge was stopped, while the sputtering of each layer was completed and the substrate was transported.

【0032】得られた光磁気記録媒体の特性とチルトと
を実施例2と同じ方法で測定した結果を表2に示す。
The results of measuring the characteristics and tilt of the obtained magneto-optical recording medium by the same method as in Example 2 are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明によれば、大きい成膜速度が得ら
れ、チルトの小さい光磁気記録媒体が得られる。更に、
マルチチャンバ−のスパッタリング装置で生産する場合
にはチャンバ−間のガス拡散を防止する機構が不要であ
るため、生産のスル−プットを向上させることができ
る。
According to the present invention, a magneto-optical recording medium having a high film formation rate and a small tilt can be obtained. Furthermore,
When a multi-chamber sputtering apparatus is used for production, a mechanism for preventing gas diffusion between the chambers is not required, so that the production throughput can be improved.

【0035】[0035]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に少なくとも光磁気記録層と誘電
体層とをスパッタリングにより形成してなる光磁気記録
媒体の製造方法において、誘電体層が抵抗率0.05Ω
cm以下のSiCターゲットから構成され、光磁気記録
媒体を構成する各層がアルゴンガスのみによるDCスパ
ッタリングで形成されることを特徴とする光磁気記録媒
体の製造方法。
1. A method for manufacturing a magneto-optical recording medium comprising a substrate on which at least a magneto-optical recording layer and a dielectric layer are formed by sputtering, wherein the dielectric layer has a resistivity of 0.05Ω.
A method of manufacturing a magneto-optical recording medium, comprising a SiC target having a size of 1 cm or less, and each layer constituting the magneto-optical recording medium is formed by DC sputtering using only argon gas.
JP23311093A 1993-09-20 1993-09-20 Method for manufacturing magneto-optical recording medium Expired - Fee Related JP3428085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23311093A JP3428085B2 (en) 1993-09-20 1993-09-20 Method for manufacturing magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23311093A JP3428085B2 (en) 1993-09-20 1993-09-20 Method for manufacturing magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH0785520A true JPH0785520A (en) 1995-03-31
JP3428085B2 JP3428085B2 (en) 2003-07-22

Family

ID=16949931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23311093A Expired - Fee Related JP3428085B2 (en) 1993-09-20 1993-09-20 Method for manufacturing magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP3428085B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040044824A (en) * 2002-11-22 2004-05-31 에스케이텔레텍주식회사 Method for setting prefix number automatically and mobile communication terminal implementing the same
US7018696B2 (en) 2003-04-18 2006-03-28 Target Technology Company Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7045188B2 (en) 1998-06-22 2006-05-16 Nee Han H Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7572517B2 (en) 2002-07-08 2009-08-11 Target Technology Company, Llc Reflective or semi-reflective metal alloy coatings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045188B2 (en) 1998-06-22 2006-05-16 Nee Han H Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7572517B2 (en) 2002-07-08 2009-08-11 Target Technology Company, Llc Reflective or semi-reflective metal alloy coatings
KR20040044824A (en) * 2002-11-22 2004-05-31 에스케이텔레텍주식회사 Method for setting prefix number automatically and mobile communication terminal implementing the same
US7018696B2 (en) 2003-04-18 2006-03-28 Target Technology Company Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium

Also Published As

Publication number Publication date
JP3428085B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP3428085B2 (en) Method for manufacturing magneto-optical recording medium
JPH0524572B2 (en)
JPH01173455A (en) Magneto-optical recording medium
JP2527762B2 (en) Magneto-optical recording medium
JP2541677B2 (en) Optical recording medium
JPH01173454A (en) Magneto-optical recording medium
US20010010869A1 (en) Vertical recording medium with thin soft magnetic film
JPH01204243A (en) Magneto-optical recording medium
JP2754658B2 (en) Magneto-optical recording medium
JP2737241B2 (en) Magneto-optical recording medium
JPH0792935B2 (en) Magneto-optical recording medium
JP2528184B2 (en) Magneto-optical recording medium
JPH064919A (en) Production of magneto-optical medium
JPH076417A (en) Production of magneto-optical recording medium
JPH0660452A (en) Magneto-optical recording medium
JPH02254647A (en) Magneto-optical recording medium
JP2932687B2 (en) Magneto-optical recording medium
WO2003077245A1 (en) Magneto-optical recording medium and manufacturing method thereof
JPH0644624A (en) Magneto-optical recording medium
JPH03142728A (en) Optical recording medium
JPH05325278A (en) Manufacture of magneto-optical recording medium
JPH07225976A (en) Magneto-optical recording medium and its production
JPH07244878A (en) Magneto-optic recording medium
JPH0877624A (en) Magneto-optical disc
JPH05266521A (en) Optical information recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees