JPH076417A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH076417A
JPH076417A JP14181193A JP14181193A JPH076417A JP H076417 A JPH076417 A JP H076417A JP 14181193 A JP14181193 A JP 14181193A JP 14181193 A JP14181193 A JP 14181193A JP H076417 A JPH076417 A JP H076417A
Authority
JP
Japan
Prior art keywords
dielectric layer
film
layer
magneto
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14181193A
Other languages
Japanese (ja)
Inventor
Tsutomu Takahata
努 高畑
Hitoshi Iigusa
仁志 飯草
Shinji Sekine
慎二 関根
Satoshi Kurosawa
聡 黒澤
Akio Kondo
昭夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP14181193A priority Critical patent/JPH076417A/en
Publication of JPH076417A publication Critical patent/JPH076417A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce a satisfactory magneto-optical recording medium having high sensitivity to a magnetic field and a small angle of warp of the substrate by forming the recording layer side part of a protective layer under a lower pressure of gas than the pressure at the time of forming the substrate side part. CONSTITUTION:The substrate side part 2 of a 1st dielectric layer is formed by a conventional method such as RF reactive sputtering with an Si target, gaseous Ar and N2. The recording layer side part 3 of the 1st dielectric layer is then formed preferably under 0.05-0.5Pa pressure. In the case of <0.05 Pa pressure, sputtering is liable to become unstable in a conventional sputtering device. In the case of >70.5 Pa pressure, sensitivity to a magnetic field becomes unsatisfactory. When the 1st dielectric layer is dividedly formed in two or more separate vacuum vessels, film formation time in the vacuum vessels is made uniform and the throughput of the entire producing device can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザー光を用い情報の
記録、再生、消去を行う光磁気記録媒体の製造法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magneto-optical recording medium for recording, reproducing and erasing information by using a laser beam.

【0002】[0002]

【従来の技術】近年、情報量の増大にともないコンピュ
ータの外部メモリーとしての書換え可能型記録媒体の大
容量化が進んでいる。そのひとつの手段として情報の記
録及び消去をレーザー光による加熱と外部磁場の印加に
より磁性体層の磁化方向を変えることで行い、記録され
た情報を磁気カー効果による光の偏光面の回転を利用し
て読み出す方式を用いた光磁気ディスクが実用化されて
いる。
2. Description of the Related Art In recent years, as the amount of information has increased, the capacity of a rewritable recording medium as an external memory of a computer has been increasing. As one of the means, recording and erasing of information is performed by changing the magnetization direction of the magnetic layer by heating with a laser beam and application of an external magnetic field, and using the rotation of the plane of polarization of light by the magnetic Kerr effect for recorded information. A magneto-optical disk using a read-out method has been put to practical use.

【0003】この光磁気記録媒体は、記録層として用い
られる希土類金属−3d遷移金属合金の磁気光学効果を
光の干渉効果により大きくするため誘電体保護層及び反
射層を組み合わせたディスク構造が一般に用いられてい
る。上記の目的に用いられる誘電体保護層は、屈折率が
大きく光の透過率が大きいことと共に、記録層を保護す
る効果に優れていることが求められ、その様な材質とし
てSiN、SiNH、SiON、SiAlON等が知ら
れている。
This magneto-optical recording medium generally has a disk structure in which a dielectric protective layer and a reflective layer are combined in order to enhance the magneto-optical effect of a rare earth metal-3d transition metal alloy used as a recording layer by the interference effect of light. Has been. The dielectric protective layer used for the above purpose is required to have a large refractive index and a large light transmittance and to be excellent in the effect of protecting the recording layer. As such materials, SiN, SiNH, SiON , SiAlON, etc. are known.

【0004】[0004]

【発明が解決しようとする課題】現在、光磁気ディスク
装置の磁気ヘッドの小型化や省電力化のために、又、磁
界変調ダイレクトオーバーライトへの対応のため、記録
媒体にはより一層の磁界感度の向上が求められている。
この問題点の解決法の一つとして、成膜条件を制御し下
地誘電体層が緻密でかつ表面が平滑なものとすることが
有効である。
At present, in order to reduce the size and power consumption of the magnetic head of the magneto-optical disk device and to cope with the magnetic field modulation direct overwrite, the recording medium has a further magnetic field. Improved sensitivity is required.
As one of the solutions to this problem, it is effective to control the film forming conditions so that the underlying dielectric layer is dense and has a smooth surface.

【0005】ここで問題となるのは、このような条件で
誘電体層を形成すると膜の内部応力が大きくなるため、
成膜後の基板に反りが生じる点にある。基板の反りが大
きいと情報記録再生時のトラッキングやフォーカシング
が困難になる。又、膜の内部応力が適正でない場合は膜
の剥離やクラックが発生しやすくなる等、記録媒体の耐
久性にも問題が生じる。すなわち下地誘電体の成膜条件
は磁気媒体の耐久性やトラッキング、フォーカシング特
性に密接に関連し、磁界感度の見地のみから条件等を選
ぶことは出来ず、高磁界感度かつ耐久性に優れ、しかも
基板の反り角を低減した光磁気記録媒体を効率良く製造
することは困難であった。
The problem here is that when the dielectric layer is formed under such conditions, the internal stress of the film increases,
The point is that the substrate after film formation warps. If the warp of the substrate is large, tracking and focusing at the time of recording / reproducing information becomes difficult. Further, if the internal stress of the film is not proper, peeling or cracking of the film is likely to occur, which causes a problem in durability of the recording medium. That is, the film formation conditions for the underlying dielectric material are closely related to the durability, tracking, and focusing characteristics of the magnetic medium, and it is not possible to select the conditions etc. only from the viewpoint of magnetic field sensitivity. It has been difficult to efficiently manufacture a magneto-optical recording medium in which the warp angle of the substrate is reduced.

【0006】本発明が解決しようとする課題は、高磁界
感度と高C/N比を有し、かつ基板の反り角が小さい良
好な機械特性を有する光磁気記録媒体を効率良く製造す
ることにある。
The problem to be solved by the present invention is to efficiently manufacture a magneto-optical recording medium having a high magnetic field sensitivity and a high C / N ratio and good mechanical characteristics with a small warp angle of the substrate. is there.

【0007】[0007]

【課題を解決するための手段】種々のガス圧でスパッタ
成膜した誘電体保護膜の膜表面形状をSEMやAFMで
観察すると、低いガス圧で成膜したものの表面は平滑で
あり、高いガス圧で成膜したものは表面に凹凸が見られ
る。このような凹凸のある下地の上に記録層を成膜した
記録媒体では磁壁のスムーズな移動が妨げられるため磁
界感度が悪化し、低磁界で記録したときにC/N比の低
下が大きくなる。
Means for Solving the Problems When observing the film surface shape of a dielectric protective film sputter-deposited under various gas pressures with an SEM or AFM, the film formed under a low gas pressure has a smooth surface and a high gas The film formed by pressure has irregularities on the surface. In a recording medium having a recording layer formed on such an uneven underlayer, the smooth movement of the domain wall is hindered, so that the magnetic field sensitivity is deteriorated and the C / N ratio is greatly reduced when recording is performed in a low magnetic field. .

【0008】一方、誘電体層を低いガス圧でスパッタ成
膜したものは表面が平滑で良好な磁界感度が得られるも
のの、膜応力が大きいため基板の反り角が増大し、フォ
ーカシングやトラッキング特性を悪化させる。
On the other hand, in the case where the dielectric layer is formed by sputtering at a low gas pressure, the surface is smooth and good magnetic field sensitivity can be obtained, but since the film stress is large, the warp angle of the substrate increases and focusing and tracking characteristics are improved. make worse.

【0009】本発明者らは上記した性質について種々検
討した結果、基板上に誘電体からなる保護層、磁性体か
らなる記録層(磁性層)、および反射層とからなる多層
構造の記録膜を有する光磁気記録媒体をスパッタ法によ
り製造する際、ガス圧力を調節することにより高磁界感
度と良好なフォーカシング、トラッキング特性を併せ持
つ光磁気記録媒体を製造できることを見出した。
As a result of various studies on the above-mentioned properties, the present inventors have formed a recording film having a multi-layer structure including a protective layer made of a dielectric material, a recording layer (magnetic layer) made of a magnetic material, and a reflective layer on a substrate. It has been found that a magneto-optical recording medium having both high magnetic field sensitivity and good focusing and tracking characteristics can be produced by adjusting the gas pressure when the magneto-optical recording medium having the same is manufactured by the sputtering method.

【0010】即ち本発明は、基板上に少なくとも誘電体
からなる保護層及び磁性体からなる記録層をスパッタ法
により積層して成膜する光磁気記録媒体の製造法におい
て、前記保護層の記録層(磁性層)側部分の成膜を、同
じく基板側部分の成膜時より低いガス圧下で成膜するこ
とを特徴とする光磁気記録媒体の製造法に関する。
That is, the present invention relates to a method of manufacturing a magneto-optical recording medium in which at least a protective layer made of a dielectric material and a recording layer made of a magnetic material are laminated on a substrate by a sputtering method to form a film. The present invention relates to a method for manufacturing a magneto-optical recording medium, which is characterized in that the film formation on the (magnetic layer) side portion is performed under a gas pressure lower than that at the time of film formation on the substrate side portion.

【0011】次に、本発明をさらに詳細に説明する。図
1は本発明で得た光磁気記録媒体の断面を示す図であ
る。この光磁気記録媒体は記録・再生が基板側から行わ
れることを前提としており、透明基板1上に第1誘電体
層2、3、記録層4、第2誘電体層5および反射層6が
この順序に積層されたものである。
Next, the present invention will be described in more detail. FIG. 1 is a diagram showing a cross section of a magneto-optical recording medium obtained by the present invention. This magneto-optical recording medium is premised on that recording / reproducing is performed from the substrate side, and the first dielectric layer 2, 3, the recording layer 4, the second dielectric layer 5 and the reflective layer 6 are formed on the transparent substrate 1. They are laminated in this order.

【0012】次に本発明の成膜方法について説明する。
透明基板上に第1誘電体層を成膜するが、この層は、通
常SiN層で構成される。成膜は、例えばSiターゲッ
トを用いAr+N2 ガスを用いたRF反応スパッタ法な
どの通常の方法で行う。第1誘電体層中の2は、後述す
る比較的高いガス圧のもとに成膜した層で、同3はそれ
よりも低いガス圧のもとに成膜した層である。
Next, the film forming method of the present invention will be described.
A first dielectric layer is deposited on the transparent substrate, which layer is usually composed of a SiN layer. The film formation is performed by a usual method such as an RF reactive sputtering method using a Si target and Ar + N 2 gas. 2 in the first dielectric layer is a layer formed under a relatively high gas pressure, which will be described later, and 3 is a layer formed under a gas pressure lower than that.

【0013】前記真空槽中のガス圧の設定はArガス流
量を固定し排気系のバルブ開度の調整で行い、成膜する
誘電体層膜の屈折率はN2 ガス流量を調整して行う。
The gas pressure in the vacuum chamber is set by fixing the Ar gas flow rate and adjusting the valve opening of the exhaust system, and the refractive index of the dielectric layer film to be formed is adjusted by adjusting the N 2 gas flow rate. .

【0014】第2誘電体層は、例えばSiターゲットを
用いAr+NH3 ガスを用いたRF反応スパッタ法でS
iNH膜を形成するなどして成膜することができる。
又、反射層は、通常AlターゲットをArガスを用いD
Cスパッタすることで形成することができる。
The second dielectric layer is formed, for example, by an RF reactive sputtering method using a Si target and Ar + NH 3 gas.
It can be formed by forming an iNH film.
The reflective layer is usually formed by using an Al target and Ar gas.
It can be formed by C sputtering.

【0015】本発明で用いる誘電体層の材質は上記した
ものに限定されるものではなく、第1誘電体層としてS
iNH、SiON、SiCN、SiAlON等、或いは
それ以外の酸化物を用いても同様の効果が得られ、また
第2誘電体層に関しても同様である。
The material of the dielectric layer used in the present invention is not limited to the above-mentioned ones, but S as the first dielectric layer.
The same effect can be obtained by using iNH, SiON, SiCN, SiAlON or the like, or the other oxide, and the same can be said for the second dielectric layer.

【0016】本発明は、前記した成膜方法において、第
1誘電体層の成膜の際、基板側部分(図1の2の部分)
の成膜時のガス圧と、記録層側部分(図1の3の部分)
の成膜の際のガス圧とで差を持たせて、即ち後者の成膜
の際のガス圧を前者の成膜の際のガス圧より低いガス圧
下で成膜することが必須である。
According to the present invention, in the above-described film forming method, when forming the first dielectric layer, the substrate side portion (the portion 2 in FIG. 1) is formed.
Gas pressure during film formation and recording layer side part (3 part in FIG. 1)
It is essential to make a difference with the gas pressure during the film formation, that is, the film pressure under the latter film formation is lower than the gas pressure during the former film formation.

【0017】第1誘電体層の基板側部分(図1の2の部
分)の成膜は、まず前記したようにSiターゲットを用
いArおよびN2 ガスを用いたRF反応スパッタ法など
の通常の方法で行なうが、この際のガス圧は成膜装置や
成膜速度にもよるが、例えば0.4〜2Pa、好ましく
は0.5より高い圧力〜2Paである。
The film formation on the substrate side portion (the portion 2 in FIG. 1) of the first dielectric layer is first carried out by the usual RF reactive sputtering method using a Si target and Ar and N 2 gas as described above. The gas pressure at this time is, for example, 0.4 to 2 Pa, preferably higher than 0.5 to 2 Pa, although it depends on the film forming apparatus and the film forming speed.

【0018】次いで、第1誘電体層の記録層側部分(図
1の3の部分)の成膜を行うが、この場合基板側部分の
成膜時より低いガス圧で成膜を行う。この際の成膜圧力
は0.05〜0.5Paが好ましく、この範囲より低い
と、通常のスパッタ装置ではスパッタリングが不安定に
なることがあり、また、この範囲より高いと磁界感度が
不充分なものとなり好ましくない。
Next, film formation is performed on the recording layer side portion (the portion 3 in FIG. 1) of the first dielectric layer. In this case, the film formation is performed at a lower gas pressure than when forming the substrate side portion. The film forming pressure at this time is preferably 0.05 to 0.5 Pa. If it is lower than this range, sputtering may become unstable in a normal sputtering apparatus, and if it is higher than this range, the magnetic field sensitivity is insufficient. It becomes unfavorable.

【0019】第1誘電体層の全体の膜厚は500〜15
00A、又、第2誘電体層の全体の膜厚は150〜50
0Aである。
The total thickness of the first dielectric layer is 500 to 15
00A, and the total thickness of the second dielectric layer is 150 to 50
It is 0A.

【0020】本発明では第1誘電体層の低ガス圧成膜部
分(図1中の3の部分)の厚みは100オングストロー
ム程度以上あれば磁界感度向上の効果が見られる。しか
し、この部分の厚みが第1誘電体層全体の厚みの3分の
2以上になると積層による基板反り角の低減効果が少な
くなるので、図1中の3の部分の厚みとしては100オ
ングストロームから第1誘電体層全体の厚みの3分の2
以下が一つの目安となる。
In the present invention, the effect of improving the magnetic field sensitivity can be seen if the thickness of the low gas pressure film-forming portion (3 portion in FIG. 1) of the first dielectric layer is about 100 angstroms or more. However, when the thickness of this portion is two-thirds or more of the thickness of the entire first dielectric layer, the effect of reducing the substrate warp angle due to lamination is reduced, so the thickness of portion 3 in FIG. 2/3 of the total thickness of the first dielectric layer
The following is one guide.

【0021】又、本発明では第1誘電体層の形成を2分
割ではなく3分割以上に分けて成膜する事も可能であ
る。ただし、その場合においても誘電体層のうち記録層
に接する部分が他の部分よりも低いガス圧下で成膜され
ることが必須である。
Further, in the present invention, it is possible to form the first dielectric layer by dividing it into three or more divisions instead of two divisions. However, even in that case, it is essential that the portion of the dielectric layer in contact with the recording layer is formed under a gas pressure lower than that of the other portions.

【0022】記録層の成膜は、記録層を構成する成分、
例えば、TbとFeCoの各ターゲットをArガスを用
いて同時にDCスパッタを行い、基板が各ターゲット上
を交互に通過するように回転することでTbFeCo合
金膜を形成することができる。
The recording layer is formed by the components constituting the recording layer,
For example, a TbFeCo alloy film can be formed by simultaneously performing DC sputtering on each target of Tb and FeCo using Ar gas and rotating the substrate so as to alternately pass over each target.

【0023】記録層としては、上に例示したTbFeC
oの他にGdTbFe、GdDyFe、DyFeCo、
GdTbFeCo、GdDyFeCo、TbDyFeC
o等の組成の希土類金属−3d遷移金属合金を用いるこ
とができ、更に耐蝕性向上のためにCr、Ti、Ta等
に代表される不動態元素を微量添加した系においても同
様に有効である。またそれ以外にもMnBi等の金属間
化合物や、Co/Pt系の人工格子薄膜などの垂直磁化
膜を用いたときにも同様な効果が得られる。
As the recording layer, the TbFeC exemplified above is used.
In addition to o, GdTbFe, GdDyFe, DyFeCo,
GdTbFeCo, GdDyFeCo, TbDyFeC
A rare earth metal-3d transition metal alloy having a composition such as o can be used, and it is similarly effective in a system to which a small amount of a passive element typified by Cr, Ti, Ta, etc. is added to improve corrosion resistance. . Other than that, the same effect can be obtained when an intermetallic compound such as MnBi or a perpendicular magnetization film such as a Co / Pt-based artificial lattice thin film is used.

【0024】記録層の膜厚は100〜500Aである。The film thickness of the recording layer is 100 to 500A.

【0025】本発明では、第一誘電体層を前記したよう
な積層構造とした光磁気記録媒体の製造に際し、インラ
イン型成膜装置(複数の真空槽が並べて配置され、真空
を破らずに各層を連続して成膜できる)を用い、この第
1誘電体層を2つ以上の別個の真空槽中で分割して成膜
することで各真空槽で成膜する層厚、言い換えれば各真
空槽中での成膜時間が均一化され製造装置全体のスルー
プットを向上させることができる。
According to the present invention, in manufacturing the magneto-optical recording medium having the laminated structure of the first dielectric layer, an in-line type film forming apparatus (a plurality of vacuum tanks are arranged side by side, each vacuum layer is not broken) The first dielectric layer is divided into two or more separate vacuum chambers to form a film by dividing the first dielectric layer into two or more separate vacuum chambers. The film forming time in the bath is made uniform, and the throughput of the entire manufacturing apparatus can be improved.

【0026】本発明で、反射膜の成膜は、通常のAlタ
ーゲットを用いArガスを用いてDCスパッタして行う
ことができる。反射膜の膜厚は300〜1000Aであ
る。
In the present invention, the reflection film can be formed by DC sputtering using an ordinary Al target and Ar gas. The thickness of the reflective film is 300 to 1000A.

【0027】[0027]

【実施例】各層の成膜は次の方法で行った。なお、本実
施例において作製した光磁気記録媒体の概略的な構成を
図1に示した。
[Examples] Each layer was formed by the following method. The schematic structure of the magneto-optical recording medium manufactured in this example is shown in FIG.

【0028】3.5インチ径のポリカーボネート製基板
を用いた。第1誘電体層としてのSiN層の成膜は、S
iターゲットを用い、Ar+N2 ガスを用いたRF反応
スパッタで行った。真空槽中のガス圧の設定はArガス
流量を固定し排気系のバルブ開度の調整で行い、まず基
板側の第1誘電体層(図1中の2の部分)を厚さ約70
0Aとなるまで成膜した。形成するSiN膜の屈折率
は、スパッタ時のN2 ガス流量を調整することで約2.
05に合わせた。次いで、第1誘電体層の磁性層側(図
1中の3の部分)を厚さ約300Aとなるまで成膜し
た。この際の夫々のガス圧は表1に示した。これら図1
中の2、3の部分はそれぞれ別の真空槽中で分割して成
膜した。
A polycarbonate substrate having a diameter of 3.5 inches was used. The SiN layer as the first dielectric layer is formed by S
It was performed by RF reactive sputtering using an i target and Ar + N 2 gas. The gas pressure in the vacuum chamber is set by fixing the Ar gas flow rate and adjusting the valve opening of the exhaust system. First, the thickness of the first dielectric layer (2 in FIG. 1) on the substrate side is set to about 70
The film was formed until it reached 0 A. The refractive index of the formed SiN film is adjusted to about 2. by adjusting the N 2 gas flow rate during sputtering.
It was set to 05. Next, a film was formed on the magnetic layer side of the first dielectric layer (3 portion in FIG. 1) to a thickness of about 300A. The respective gas pressures at this time are shown in Table 1. These Figure 1
The second and third portions were divided into different vacuum chambers for film formation.

【0029】次に記録層(磁性層 図1中4)を、Tb
のターゲットとFeCo合金ターゲットを用い、基板が
各ターゲット上を交互に通過するように回転させながら
Arガスを用いて同時にDCスパッタを行い、厚さ約2
50AのTbFeCo合金膜を形成した。第2誘電体層
(図1中5)はSiターゲットを用い、Ar+NH3
スを用いたRF反応スパッタで、屈折率約2.05、膜
厚約300AのSiNH膜を形成した。反射層(図1中
6)は、Alターゲットを用いArガスを用いてDCス
パッタし膜厚約600Aに形成した。
Next, the recording layer (magnetic layer 4 in FIG. 1) was replaced with Tb.
Target and FeCo alloy target, DC sputtering was performed at the same time using Ar gas while rotating the substrate so as to alternately pass over each target, and the thickness was about 2
A 50A TbFeCo alloy film was formed. The second dielectric layer (5 in FIG. 1) uses a Si target and Ar + NH 3 gas.
A SiNH film having a refractive index of about 2.05 and a film thickness of about 300 A was formed by RF reactive sputtering using a glass. The reflection layer (6 in FIG. 1) was formed by DC sputtering using an Ar target and Ar gas to a film thickness of about 600A.

【0030】又、比較例として約700オングストロー
ム厚の部分(図中2)と約300オングストローム厚の
部分(図中3)とを同じ成膜ガス圧で実施例と同様に2
つの真空槽中で分けて成膜した試料を用意した。第1誘
電体層以外の部分の成膜条件は実施例と同一である。
As a comparative example, a portion having a thickness of about 700 angstroms (2 in the figure) and a portion having a thickness of about 300 angstroms (3 in the figure) are formed under the same film forming gas pressure as in the embodiment.
Samples prepared by forming films separately in two vacuum chambers were prepared. The film forming conditions for the portions other than the first dielectric layer are the same as those in the example.

【0031】基板の反り角に関する試験は、スパッタ成
膜前の基板の反り角を0とし、成膜前後での変化量(ミ
リラジアン)で評価し、実施例、比較例ともに各5枚の
ディスクの測定値の平均を用いた。又、それぞれの成膜
条件で作成したSiN膜の表面形状は原子間力顕微鏡
(AFM)を用いて測定した。AFMでの測定に際し、
基準長さL(測定長さ)は330nmとし、測定された
粗さ曲線f(x)の標高中心線からの変位を|f(x)
|とした時に下式で表される中心線平均粗さRaの値を
用いて平滑性の比較を行った。
In the test on the warp angle of the substrate, the warp angle of the substrate before the sputtering film formation was set to 0, and the change amount (milliradian) before and after the film formation was evaluated. The average of the measured values was used. The surface shape of the SiN film formed under each film forming condition was measured using an atomic force microscope (AFM). When measuring with AFM,
The reference length L (measurement length) is set to 330 nm, and the displacement of the measured roughness curve f (x) from the elevation center line is | f (x).
The smoothness was compared by using the value of the center line average roughness Ra expressed by the following equation when |.

【0032】[0032]

【化1】 [Chemical 1]

【0033】実施例及び比較例それぞれの第1誘電体層
の成膜圧力と、上述したような方法で得られた基板反り
角の変化量および下地SiN膜の表面粗さの測定結果を
表1に示す。
Table 1 shows the measurement results of the film forming pressure of the first dielectric layer of each of the examples and the comparative examples, the variation of the substrate warp angle and the surface roughness of the underlying SiN film obtained by the above-mentioned method. Shown in.

【0034】[0034]

【表1】 [Table 1]

【0035】第1誘電体層を単層のSiN膜とした場合
は、誘電体層を低いガス圧で成膜したディスクは基板反
り角が大きくなり(比較例A、B)、フォーカシングや
トラッキング特性の面で好ましくない。そこで、これら
の試料のうちで基板の反り角が比較的小さい実施例a〜
dおよび比較例C、Dのディスクについて外部磁界強度
とC/N比の関係を検討した。C/N比は波長780n
mのレーザー光を用いて測定し、測定結果を図2、3に
示す。
When the first dielectric layer is a single-layer SiN film, the disk having the dielectric layer formed at a low gas pressure has a large substrate warp angle (Comparative Examples A and B), and focusing and tracking characteristics. Is not preferable in terms of. Therefore, among these samples, Examples a to
The relationship between the external magnetic field strength and the C / N ratio was examined for the disks of d and Comparative Examples C and D. C / N ratio is wavelength 780n
The measurement results are shown in FIGS.

【0036】なお、図2、3は縦軸にC/N比、横軸に
外部磁場を示した。又、図中(1)〜(6)は夫々順に
実施例a〜d、および比較例C、Dの結果を示した。
2 and 3, the vertical axis represents the C / N ratio and the horizontal axis represents the external magnetic field. Further, (1) to (6) in the figure respectively show the results of Examples a to d and Comparative Examples C and D, respectively.

【0037】図2、3から明らかなように比較例C、D
のディスクは磁界感度が不十分であり、記録および消去
時に大きな外部磁界が必要となる。一方、実施例a〜d
で示したディスクは記録及び消去時に必要な外部磁場が
低減され、磁界感度が大幅に改善されていることが判
る。又、表1に示したAFMによる表面粗さの測定結果
からディスクの磁界感度が下地SiN表面の平滑性に支
配されており、本発明による磁界感度の向上が下地Si
Nの平滑化によるものであることが判る。
As is apparent from FIGS. 2 and 3, Comparative Examples C and D
The disk has a poor magnetic field sensitivity and requires a large external magnetic field during recording and erasing. On the other hand, Examples a to d
It can be seen that the disk indicated by (1) has a significantly reduced external magnetic field required for recording and erasing, and the magnetic field sensitivity is significantly improved. Further, from the results of surface roughness measurement by AFM shown in Table 1, the magnetic field sensitivity of the disk is governed by the smoothness of the surface of the underlayer SiN.
It can be seen that this is due to smoothing of N.

【0038】[0038]

【発明の効果】本発明により、C/N比の磁場依存性が
良く、言い換えれば高磁界感度で、基板の反り角の小さ
な良好な光磁気記録媒体を効率良く製造することができ
る。この光磁気記録媒体は、磁界変調ダイレクトオーバ
ーライトにも対応が可能であり、反り角の減少はトラッ
キングやフォーカシングを容易にし安定した記録再生を
可能にする。
According to the present invention, it is possible to efficiently manufacture a good magneto-optical recording medium in which the C / N ratio has good magnetic field dependence, in other words, high magnetic field sensitivity and a small warp angle of the substrate. This magneto-optical recording medium is also compatible with magnetic field modulation direct overwrite, and the reduction of the warp angle facilitates tracking and focusing and enables stable recording and reproduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で得た光磁気記録媒体の一実施態様の断
面を示す図
FIG. 1 is a diagram showing a cross section of an embodiment of a magneto-optical recording medium obtained by the present invention.

【図2】本発明の実施例a、b、比較例Cで得た光磁気
記録媒体のC/Nの外部磁場依存性を示す図
FIG. 2 is a diagram showing the external magnetic field dependence of C / N of the magneto-optical recording media obtained in Examples a and b of the present invention and Comparative Example C.

【図3】本発明の実施例c、d、比較例Dで得た光磁気
記録媒体のC/Nの外部磁場依存性を示す図
FIG. 3 is a diagram showing the external magnetic field dependence of C / N of the magneto-optical recording media obtained in Examples c and d of the present invention and Comparative Example D.

【符号の説明】[Explanation of symbols]

1:透明基板 2:第1誘電体層 3:第1誘電体層 4:記録層 5:第2誘電体層 6:反射層 1: Transparent Substrate 2: First Dielectric Layer 3: First Dielectric Layer 4: Recording Layer 5: Second Dielectric Layer 6: Reflective Layer

フロントページの続き (72)発明者 近藤 昭夫 愛知県江南市東野土手5番地10号Front Page Continuation (72) Inventor Akio Kondo 5-10, Higashino Embankment, Konan City, Aichi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基板上に少なくとも誘電体からなる保護層
及び磁性体からなる記録層をスパッタ法により積層して
成膜する光磁気記録媒体の製造法において、前記保護層
の記録層側部分の成膜を、同じく基板側部分の成膜時よ
り低いガス圧下で成膜することを特徴とする光磁気記録
媒体の製造法。
1. A method of manufacturing a magneto-optical recording medium in which at least a protective layer made of a dielectric material and a recording layer made of a magnetic material are laminated on a substrate to form a film. A method for manufacturing a magneto-optical recording medium, characterized in that the film formation is performed under a gas pressure lower than that at the time of film formation on the substrate side portion.
【請求項2】保護層の磁性層側部分を0.5Pa以下の
ガス圧で成膜する請求項1記載の製造法。
2. The method according to claim 1, wherein the magnetic layer side portion of the protective layer is formed under a gas pressure of 0.5 Pa or less.
JP14181193A 1993-06-14 1993-06-14 Production of magneto-optical recording medium Pending JPH076417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14181193A JPH076417A (en) 1993-06-14 1993-06-14 Production of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14181193A JPH076417A (en) 1993-06-14 1993-06-14 Production of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH076417A true JPH076417A (en) 1995-01-10

Family

ID=15300687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14181193A Pending JPH076417A (en) 1993-06-14 1993-06-14 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH076417A (en)

Similar Documents

Publication Publication Date Title
JPH0325737A (en) Magneto-optical recording medium
JPH056820A (en) Magneto-optical recording medium
JPH076417A (en) Production of magneto-optical recording medium
JP3428085B2 (en) Method for manufacturing magneto-optical recording medium
JPH01173455A (en) Magneto-optical recording medium
JPH0524572B2 (en)
JP3882483B2 (en) Manufacturing method of optical recording medium
JPH02128346A (en) Magneto-optical disk
JP2754658B2 (en) Magneto-optical recording medium
JPH01204243A (en) Magneto-optical recording medium
JP2703003B2 (en) Optical disc and method of manufacturing the same
JP3438004B2 (en) Magneto-optical recording medium
JPH0778370A (en) Magneto-optical recording medium
JPH0352144A (en) Magneto-optical recording medium
JPS6168748A (en) Photomagnetic recording medium
JP2737241B2 (en) Magneto-optical recording medium
JP2729308B2 (en) Magneto-optical recording element and manufacturing method thereof
KR940011681B1 (en) Optical-magneto disk
JPH03122845A (en) Optical recording medium
JP2932687B2 (en) Magneto-optical recording medium
JPH0644624A (en) Magneto-optical recording medium
JPH0660452A (en) Magneto-optical recording medium
JPH07262633A (en) Magneto-optical recording medium
JPH03142728A (en) Optical recording medium
JPH02254647A (en) Magneto-optical recording medium