JPS63297266A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPS63297266A
JPS63297266A JP62132504A JP13250487A JPS63297266A JP S63297266 A JPS63297266 A JP S63297266A JP 62132504 A JP62132504 A JP 62132504A JP 13250487 A JP13250487 A JP 13250487A JP S63297266 A JPS63297266 A JP S63297266A
Authority
JP
Japan
Prior art keywords
composition
partial pressure
firing
resistivity
minor component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62132504A
Other languages
Japanese (ja)
Inventor
Yoichiro Yokoya
横谷 洋一郎
Hiroshi Kagata
博司 加賀田
Hiroshi Niwa
洋 丹羽
Junichi Kato
純一 加藤
Toshihiro Mihara
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62132504A priority Critical patent/JPS63297266A/en
Publication of JPS63297266A publication Critical patent/JPS63297266A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dielectric porcelain composition which can be fired in a low oxygen-partial pressure atmosphere and gives high resistivity by adding a prescribed amount of Cu oxide as minor component to the main composition consisting of Pb, alkaline earth metal, Ni, Nb, Ti and O in a specific proportion. CONSTITUTION:The subject dielectric porcelain composition is obtained by mixing a composition which is represented with the formula and satisfies the equations: x+y=1.00, 0.001<=b<=0.150, 1.000<=1+b<=1.120, 0.450<=x<=0.770 with Cu oxide, as a minor component, in an amount of 0.03-0.65wt.% calculated as Cu2. According to the present invention, a sintered product which is dense and high in resistivity for giving high reliability as a laminated condenser element is obtained by firing the composition at a temperature lower than 1,080 deg.C in a low oxygen-partial pressure atmosphere. Especially, the addition of the minor component lowers the firing temperature and facilitates the control of oxygen partial pressure in firing. Thus, when a base metal material such as Cu is used as an inner electrode in a laminated condenser element, the element can be produced without adverse effects on its electric properties under more stable manufacturing conditions and the massproductivity increases.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1080℃以下で焼成される高誘電率系誘電体
磁器組成物に関し、特に低酸素分圧雰囲気で焼成でき高
い抵抗率の得られる組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high dielectric constant dielectric ceramic composition that is fired at 1080°C or lower, and particularly to a composition that can be fired in a low oxygen partial pressure atmosphere and has a high resistivity. Regarding.

従来の技術 近年セラミックコンデンサにおいては素子の小型化、大
容量化への要求から積層型セラミックコンデンサが急速
に普及しつつある。積層型セラミックコンデンサは内部
電極とセラミックを一体焼成する工程によって通常製造
される。従来より高誘電率系のセラミックコンデンサ材
料にはチタン酸バリウム系の材料が用いられてきたが、
焼成温度が1300℃程度と高いため、内部電極材料と
してはPt、Pd  などの高価な金属を用いる必要が
あった。
BACKGROUND OF THE INVENTION In recent years, multilayer ceramic capacitors are rapidly becoming popular due to the demand for smaller elements and larger capacitance in ceramic capacitors. Multilayer ceramic capacitors are typically manufactured by a process of integrally firing internal electrodes and ceramics. Barium titanate-based materials have traditionally been used as high-permittivity ceramic capacitor materials, but
Since the firing temperature is as high as about 1300° C., it is necessary to use expensive metals such as Pt and Pd as internal electrode materials.

これに対し発明者らはすでに1080℃以下、低酸素分
圧雰囲気で焼成でき銅または銅を主成分とする合金など
の安価な卑金属材料を内部電極として使用できる、(P
ba Meb )(Mg+/3Nb++z3)xTiy
  Oe+a+b (MeはCa、 Ba、 Sr)で
表される誘電体磁器組成物を提案している。この組成物
は低温度で焼成でき、低酸素分圧下で焼成した際、高い
抵抗率を有し、鋼または銅を主成分とする合金を内部電
極とした積層コンデンサ素子に用いることができる。
In contrast, the inventors have already discovered that it is possible to use inexpensive base metal materials such as copper or copper-based alloys as internal electrodes, which can be fired in a low oxygen partial pressure atmosphere at temperatures below 1080°C (P
ba Meb ) (Mg+/3Nb++z3)xTiy
We propose a dielectric ceramic composition represented by Oe+a+b (Me is Ca, Ba, Sr). This composition can be fired at low temperatures, has high resistivity when fired under low oxygen partial pressure, and can be used in multilayer capacitor elements with internal electrodes made of steel or an alloy mainly composed of copper.

いっぽう上に述べたセラミック積層コンデンサ素子の製
造工程においては焼成時に内部電極である鋼もしくは銅
を主成分とする合金が酸化せず誘電体セラミックが還元
して低抵抗化しない酸素分圧下での焼成が必要とされる
。この酸素分圧の制御においては焼成温度が高いほど最
適条件を得るためのガス混合比の制御が困難になる。こ
のため、誘電体セラミックにたいしてはより低い温度で
焼成できかつ高い抵抗率を有する組成物が求められてい
た。
On the other hand, in the manufacturing process of the ceramic multilayer capacitor element mentioned above, firing is performed under an oxygen partial pressure that does not oxidize the steel or copper-based alloy that is the internal electrode during firing and does not reduce the dielectric ceramic and reduce its resistance. is required. In controlling this oxygen partial pressure, the higher the firing temperature is, the more difficult it becomes to control the gas mixture ratio to obtain optimal conditions. For this reason, there has been a demand for a dielectric ceramic composition that can be fired at a lower temperature and has a high resistivity.

発明が解決しようとする問題点 (Pba Meb )(Mg+/3Nb2/3)xTi
y  O2+a+b(MeはCa、Ba、Sr)  で
表される誘電体磁器組成物において誘電特性を損なわず
焼成温度をより低くし抵抗率の高い誘電体磁器組成物を
提供することを目的としている。
Problem to be solved by the invention (Pba Meb) (Mg+/3Nb2/3)xTi
The purpose of the present invention is to provide a dielectric ceramic composition represented by yO2+a+b (Me is Ca, Ba, Sr), which has high resistivity by lowering the firing temperature without impairing the dielectric properties.

問題点を解決するための手段 (Pba Meb )(Mg+/3Nb2/5)XTi
V  Og+m+b(MeはCa、Ba、Sr)  で
表される誘電体磁器組成物(ただしx+y=1)に対し
、副成分として銅酸化物をCu2O換算で0.03〜0
.65重量%含有する組成物とする。
Means to solve the problem (Pba Meb) (Mg+/3Nb2/5)XTi
V Og + m + b (Me is Ca, Ba, Sr) For a dielectric ceramic composition (where x + y = 1) expressed as
.. The composition contains 65% by weight.

作用 本発明の誘電体磁器組成物の系において、副成分を含ま
ない組成物に対し副成分を含む組成物は低い温度で焼結
し誘電率の低下は少な(、誘電損失の増大も小さく、か
つ抵抗率は同等ないし向上する。
Function: In the dielectric ceramic composition system of the present invention, the composition containing the subcomponent is sintered at a lower temperature than the composition containing no subcomponent, and the decrease in dielectric constant is small (and the increase in dielectric loss is also small). And the resistivity is the same or improved.

実施例 出発原料としては、化学的に高純度なpbo。Example The starting material is chemically highly purified pbo.

Nip、Nb2O5,TiO2,CaCO3,BaCO
3゜5rCOs、Cu2Oを用いた。これらを純度補正
をおこなったうえで所定量を秤量し、ジルコニア製玉石
を用い純水を溶媒としボールミルで17時時間式混合し
た。これを吸引ろ過して水分の大半を分離した後乾燥し
、その後ライカイ機で充分解砕した後粉体量の5wt%
の水分を加え、直径60+MR高さ約50+nmの円柱
状に成形圧力500kg/cm2で成形した。これをア
ルミナルツボ中に入れ同質のフタをし、680℃〜76
0℃で2時間仮焼した。次に仮焼物をアルミナ乳鉢で粗
砕し、さらにジルコニア製玉石を用い純水を溶媒として
ボールミルで17時間粉砕し、これを吸引ろ過し水分の
大半を分離した後乾燥した。以上の仮焼、粉砕。
Nip, Nb2O5, TiO2, CaCO3, BaCO
3°5rCOs and Cu2O were used. After correcting the purity of these, a predetermined amount was weighed and mixed in a ball mill for 17 hours using zirconia cobblestones and pure water as a solvent. This is filtered by suction to remove most of the moisture, then dried, and then thoroughly crushed in a Raikai machine, resulting in 5wt% of the powder amount.
of water was added thereto, and molded into a cylindrical shape with a diameter of 60 nm and a MR height of approximately 50 nm at a molding pressure of 500 kg/cm2. Place this in an aluminum crucible, cover with a similar lid, and heat at 680°C to 76°C.
It was calcined at 0°C for 2 hours. Next, the calcined product was roughly crushed in an alumina mortar, and further crushed in a ball mill using zirconia cobblestones and pure water as a solvent for 17 hours, filtered with suction to remove most of the moisture, and then dried. Calcining and crushing above.

乾燥を数回くりかえした後この粉末にポリビニルアルコ
ール6wt%水溶液を粉体量の6wt%加え、32メツ
シユふるいを通して造粒し、成形圧力1000 kg/
cm2で成形した。成形物は空気中で700′Cまで昇
温し1時間保持しポリビルアルコール分をバーンアウト
した。これを、上述の仮焼粉を体積の173程度敷きつ
めた上に200メツシュM g O粉を約1+nm敷い
たマグネシャ磁器容器に移し、同質のフタをし、管状電
気炉の炉心管内に挿入し、炉心管内をロータリーポンプ
で脱気したのちN2−H2H20混合ガスで置換し、焼
成温度での酸素分圧(PO2)が1.0 X 10−’
 atmになるようN2とH2ガスの混合比を調節しな
がら混合ガスを流し所定温度まで400℃/ h rで
昇温し2時間保持後400℃/ h rで降温した。炉
心管内のPoaは挿入した安定化ジルコニア酸素センサ
ーにより測定した。第1図に焼成時のマグネシャ磁器容
器の構造を、第2図に炉心管内部をそれぞれ断面図で示
す。
After drying was repeated several times, a 6 wt % aqueous solution of polyvinyl alcohol was added to the powder in an amount of 6 wt %, and the mixture was granulated through a 32-mesh sieve at a compacting pressure of 1000 kg/kg.
It was molded in cm2. The molded product was heated to 700'C in air and held for 1 hour to burn out the polyvinyl alcohol content. This was transferred to a Magnesia porcelain container in which the above-mentioned calcined powder was spread to a volume of about 173 cm, and 200 mesh MgO powder was spread to a thickness of about 1+ nm, covered with a homogeneous lid, and inserted into the core tube of a tubular electric furnace. After degassing the inside of the furnace core tube with a rotary pump, it was replaced with N2-H2H20 mixed gas, and the oxygen partial pressure (PO2) at the firing temperature was 1.0 x 10-'
A mixed gas was flowed while adjusting the mixing ratio of N2 and H2 gas so that the mixture became atm, and the temperature was raised to a predetermined temperature at a rate of 400°C/hr. After being maintained for 2 hours, the temperature was lowered at a rate of 400°C/hr. Poa in the reactor core tube was measured by an inserted stabilized zirconia oxygen sensor. FIG. 1 shows the structure of the Magnesia porcelain container during firing, and FIG. 2 shows a cross-sectional view of the inside of the furnace tube.

第1図において1はマグネシア容器であり、その上部は
マグネシア容器蓋2で封じた。マグネシア容器1の下部
には仮焼粉3を配置し、その上にマグネシア紛4を配置
した。さらにその上に試料5を配置した。
In FIG. 1, 1 is a magnesia container, the upper part of which is sealed with a magnesia container lid 2. Calcined powder 3 was placed at the bottom of magnesia container 1, and magnesia powder 4 was placed on top of it. Further, sample 5 was placed on top of it.

第2図のように準備されたマグネシア容器1を第3図の
ように炉心管6内に配置した。7は安定化ジルコニア酸
素センサーである。
The magnesia container 1 prepared as shown in FIG. 2 was placed in the furnace core tube 6 as shown in FIG. 7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1蘭の板状に切断し、両面にCr−Auを
蒸着し、誘電率、tanδを、1kHz、I V / 
amの電界下で測定した。また抵抗率は、1k V /
 nunの電圧を印加後1分値から求めた。
The fired product was cut into a plate shape with a thickness of 1 orchid, Cr-Au was deposited on both sides, and the dielectric constant, tan δ, was set at 1 kHz, I V /
Measurements were made under an electric field of am. Also, the resistivity is 1kV/
The voltage of nun was determined from the value 1 minute after application.

なお焼成温度は焼成物の密度がもっとも太き(なる温度
とした。
The firing temperature was set at the temperature at which the density of the fired product was the highest.

表1に本発明の組成範囲および周辺組成の成分、(a、
b、x、y、は、(PbaMeb) (Ni1/3Nb
2/3) X Ti y Oa+a+bの値)低酸素分
圧雰囲気で焼成したときの焼成温度、誘電率、誘電率の
温度変化率(20℃に対する)、tanδ、抵抗率、密
度を示した。
Table 1 shows the composition range of the present invention and peripheral composition components, (a,
b, x, y, (PbaMeb) (Ni1/3Nb
2/3) Value of X Ti y Oa+a+b) Firing temperature, dielectric constant, temperature change rate of dielectric constant (relative to 20° C.), tan δ, resistivity, and density when fired in a low oxygen partial pressure atmosphere are shown.

(以下余白) 発明範囲外の組成物では、a+bが1.000より小さ
いと副成分として銅酸化物を添加しても焼成温度が10
80℃より高くなるか、1080℃より焼成温度が低(
なるまで銅酸化物を添加すると誘電率が低下する、もし
くは抵抗率が低下する難点を有しており、1.120よ
り大きくなると誘電率および抵抗率が低下する難点を有
する。
(Left below) In a composition outside the scope of the invention, if a+b is less than 1.000, the firing temperature will be 10% even if copper oxide is added as a subcomponent.
The firing temperature is higher than 80℃ or lower than 1080℃ (
If copper oxide is added to a value of 1.120, the dielectric constant or resistivity will decrease, and if it exceeds 1.120, the dielectric constant and resistivity will decrease.

副成分の銅酸化物が0.03wt5より小さいと焼成温
度低下の改善効果が現れず、0.65wt1より大きく
なると誘電特性とくに誘電率と抵抗率の低下が大きくな
る。またXが限定の範囲外の組成物はキュリ一点が室温
から大きくはずれ誘電率が低くなる、もしくは誘電率の
温度変化率が太きなる難点を有している。特許請求の範
囲内の組成物では前記の問題がいずれも克服されている
If the amount of copper oxide as a subcomponent is smaller than 0.03wt5, the improvement effect of lowering the firing temperature will not appear, and if it is larger than 0.65wt1, the dielectric properties, especially the dielectric constant and resistivity, will be significantly reduced. Further, compositions in which X is outside the specified range have the disadvantage that the Curie point deviates significantly from room temperature and the dielectric constant becomes low, or the rate of change of the dielectric constant with temperature increases. Both of the aforementioned problems are overcome in the claimed compositions.

なお焼成雰囲、気として選択した低酸素分圧雰囲気PO
2; 1. Ox 100−8at は、焼成温度にお
ける銅の平衡酸素分圧より低(金属はほとんど酸化しな
いと考えられる。
The firing atmosphere was a low oxygen partial pressure atmosphere PO selected as the atmosphere.
2; 1. Ox 100-8at is lower than the equilibrium oxygen partial pressure of copper at the firing temperature (it is thought that the metal is hardly oxidized).

発明の効果 本発明によれば、低酸素分圧雰囲気1080℃以下の焼
成で積層コンデンサ素子として高信頼性を得るためのチ
密で抵抗率の高い焼結体が得られ、とくに本発明の副成
分の添加により焼成温度が低下し焼成時の酸素分圧の制
御が容易になる。
Effects of the Invention According to the present invention, a dense and highly resistive sintered body for obtaining high reliability as a multilayer capacitor element can be obtained by firing at 1080° C. or lower in a low oxygen partial pressure atmosphere. The addition of the components lowers the firing temperature, making it easier to control the oxygen partial pressure during firing.

二のため内部電極としてCuなどの卑金属材料を用いた
積層コンデンサ素子に本発明の組成物を用いた場合、電
気的特性を損なうことな(、より安定な製造条件で素子
が製造でき、量産性が向上する。
For the second reason, when the composition of the present invention is used in a multilayer capacitor element using a base metal material such as Cu as an internal electrode, the element can be manufactured under more stable manufacturing conditions without impairing the electrical characteristics (the element can be manufactured under more stable manufacturing conditions, and mass production is easier. will improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼成時に磁器を入れるマグネシャ容器の断面図
、第2図は焼成時の炉心管内の断面図を示す。 ■・・・・マグネシャ容器、2・・・・マグネシャ容器
蓋、3・・・・仮焼粉、4・・・・マグネシア粉、5・
・・・試料、6・・・・炉心管、7・・・・安定化ジル
コニア酸素センサー。 代理人の氏名 弁理士 中尾敏男 ばか1名第2図
FIG. 1 is a sectional view of a magnesia container into which porcelain is placed during firing, and FIG. 2 is a sectional view of the inside of the furnace tube during firing. ■... Magnesia container, 2... Magnesia container lid, 3... Calcined powder, 4... Magnesia powder, 5...
...Sample, 6.. Furnace tube, 7.. Stabilized zirconia oxygen sensor. Name of agent: Patent attorney Toshio Nakao One idiot Figure 2

Claims (1)

【特許請求の範囲】 (PbaMeb)(Ni_1_/_3Nb_2_/_3
)xTiyO_2_+_a_+_bで表され、MeはC
a、Ba、Srからなる群から選ばれた少なくとも一種
の元素からなり、 x+y=1.00 0.001≦b≦0.150 1.000≦a+b≦1.120 0.450≦x≦0.770 の範囲内にある組成物に対し、副成分として、銅酸化物
をCu_2O換算で副成分合計の重量%で、0.03〜
0.65%含有したることを特徴とする誘電体磁器組成
物。
[Claims] (PbaMeb) (Ni_1_/_3Nb_2_/_3
)xTiyO_2_+_a_+_b, Me is C
It consists of at least one element selected from the group consisting of a, Ba, and Sr, x+y=1.00 0.001≦b≦0.150 1.000≦a+b≦1.120 0.450≦x≦0. For compositions within the range of
A dielectric ceramic composition characterized by containing 0.65%.
JP62132504A 1987-05-28 1987-05-28 Dielectric ceramic composition Pending JPS63297266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132504A JPS63297266A (en) 1987-05-28 1987-05-28 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132504A JPS63297266A (en) 1987-05-28 1987-05-28 Dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JPS63297266A true JPS63297266A (en) 1988-12-05

Family

ID=15082906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132504A Pending JPS63297266A (en) 1987-05-28 1987-05-28 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS63297266A (en)

Similar Documents

Publication Publication Date Title
JPS63297266A (en) Dielectric ceramic composition
JPH0712973B2 (en) Dielectric porcelain composition
JPS63299006A (en) Dielectric porcelain composition
JPS63239709A (en) Dielectric ceramic composition
JPS63116308A (en) Dielectric magnetic composition
JPS63239708A (en) Dielectric ceramic composition
JPS63108612A (en) Dielectric ceramic composition
JPH0195404A (en) Dielectric porcelain composition material
JPH0324427B2 (en)
JPH0195405A (en) Dielectric porcelain composition material
JPH0329019B2 (en)
JPS62123060A (en) Dielectric ceramic composition
JPS63264806A (en) Dielectric porcelain composition
JPH0329017B2 (en)
JPH0644408B2 (en) Dielectric porcelain composition
JPS63239710A (en) Dielectric ceramic composition
JPH0712974B2 (en) Dielectric porcelain composition
JPS6317254A (en) Dielectric ceramic composition
JPH07110782B2 (en) Dielectric porcelain composition
JPS63239711A (en) Dielectric ceramic composition
JPS62123063A (en) Dielectric ceramic composition
JPS6317252A (en) Dielectric ceramic composition
JPH013044A (en) dielectric porcelain composition
JPH0764632B2 (en) Dielectric porcelain composition
JPH0676248B2 (en) Dielectric porcelain composition