JPS63239709A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPS63239709A
JPS63239709A JP62074640A JP7464087A JPS63239709A JP S63239709 A JPS63239709 A JP S63239709A JP 62074640 A JP62074640 A JP 62074640A JP 7464087 A JP7464087 A JP 7464087A JP S63239709 A JPS63239709 A JP S63239709A
Authority
JP
Japan
Prior art keywords
composition
dielectric
dielectric ceramic
firing
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62074640A
Other languages
Japanese (ja)
Other versions
JPH0821261B2 (en
Inventor
横谷 洋一郎
博司 加賀田
洋 丹羽
純一 加藤
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62074640A priority Critical patent/JPH0821261B2/en
Publication of JPS63239709A publication Critical patent/JPS63239709A/en
Publication of JPH0821261B2 publication Critical patent/JPH0821261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は低酸素分圧雰囲気1100℃以下で焼成される
高誘電率系誘電体磁器組成物に関し、特に焼成温度が低
く高い抵抗率の得られる組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high dielectric constant dielectric porcelain composition fired at 1100° C. or lower in a low oxygen partial pressure atmosphere, and particularly to a composition that can obtain high resistivity at a low firing temperature. relating to things.

従来の技術 近年セラミックコンデンサにおいては素子の小型化、大
容量化への要求から積層型セラミックコンデンサが急速
に普及しつつある。積層型セラミックコンデンサは、内
部電極とセラミックを一体焼成する工程によって通常製
造される。従来より、高誘電率系のセラミックコンデン
サ材料にはチタン酸バリウム系の材料が用いられてきた
が、焼成温度が1300℃程度と高いため、内部電極材
料としてはPt、Pd  などの高価な金属を用いる必
要があった。
BACKGROUND OF THE INVENTION In recent years, multilayer ceramic capacitors are rapidly becoming popular due to the demand for smaller elements and larger capacitance in ceramic capacitors. Multilayer ceramic capacitors are typically manufactured by a process of integrally firing internal electrodes and ceramics. Traditionally, barium titanate-based materials have been used for high-permittivity ceramic capacitor materials, but because the firing temperature is as high as 1,300°C, expensive metals such as Pt and Pd have been used as internal electrode materials. It was necessary to use it.

これに対し発明者らは、低酸素分圧雰囲気中1100℃
以下で焼成でき鋼を主成分とする卑金属材料を内部電極
として使用できる(Pb a Me b)(<Mgxt
3Nbqt3) x Ti y (Ni1z2Wl/2
 )ZIQ2+a+b  で表され、MeがCa、 S
r、又ぼBaからなる組成物を提案している。この組成
物は、低温度で焼成でき、低酸素分圧下で焼成した際高
い抵抗率を有する特性をもち、鋼もしくは銅を主成分と
する内部電極をもちいた積層コンデンサ素子に用いるこ
とができる優れた誘電体磁器組成物である。
On the other hand, the inventors proposed that
Base metal materials containing steel as the main component can be used as internal electrodes (Pb a Me b) (<Mgxt
3Nbqt3) x Ti y (Ni1z2Wl/2
) ZIQ2+a+b, Me is Ca, S
The present invention proposes a composition consisting of R, and also Ba. This composition can be fired at low temperatures and has high resistivity when fired under low oxygen partial pressure, making it an excellent material that can be used in multilayer capacitor elements with internal electrodes mainly made of steel or copper. It is a dielectric ceramic composition.

発明が解決しようとする問題点 いっぽう上に述べたセラミック積層コンデンサ素子の製
造工程においては、焼成時に内部電極である銅もしくは
銅を主成分とする合金が酸化せず、誘電体セラミックが
還元して低抵抗化しない酸素分圧下での焼成が必要とさ
れる。この酸素分圧の制御においては、焼成温度が高い
ほど最適条件を得るためのガス混合比の制御が困難にな
る。
Problems to be Solved by the Invention On the other hand, in the manufacturing process of the ceramic multilayer capacitor element mentioned above, during firing, the copper or copper-based alloy that is the internal electrode does not oxidize, and the dielectric ceramic is reduced. Firing is required under an oxygen partial pressure that does not lower the resistance. In controlling this oxygen partial pressure, the higher the firing temperature is, the more difficult it becomes to control the gas mixture ratio to obtain optimal conditions.

このため、誘電体セラミックにたいしては、“より低い
温度で焼成できかつ高い抵抗率を有する組成物が求めら
れていた。
Therefore, for dielectric ceramics, there has been a demand for a composition that can be fired at a lower temperature and has a high resistivity.

本発明は、(Pb a Me b) l(Mg1/3N
b2z3)xTi  y (Ni1z2Wl/2 ) 
zlo2”a”b で表され、MeがCa、Sr、Ba
からなる群から選ばれた少な(とも一種である組成物を
主成分とする誘電体磁器組成物において誘電特性を損な
わず焼成温度をより低(し抵抗率の高い誘電体セラミッ
クが得られる誘電体磁器組成物を提供することを目的と
している。
The present invention provides (Pb a Me b) l(Mg1/3N
b2z3)xTi y (Ni1z2Wl/2)
zlo2"a"b, where Me is Ca, Sr, Ba
A dielectric ceramic selected from the group consisting of a dielectric ceramic composition whose main component is a dielectric ceramic composition that can be fired at a lower firing temperature without impairing the dielectric properties and yielding a dielectric ceramic with high resistivity. The purpose is to provide a porcelain composition.

問題点を解決するための手段 (Pb * Me b )  <Mg5ts Nbs+
zs ) x Ti z(N1xt2Wl/2 )02
+a+bで表され、MeがCa。
Means to solve the problem (Pb * Me b ) <Mg5ts Nbs+
zs) x Ti z(N1xt2Wl/2)02
It is represented by +a+b, and Me is Ca.

Sr、Baからなる群の少なくとも一つの成分からなる
組成物に対し、副成分として鋼酸化物をCu2O換算で
0.03〜0.65重量%含有する組成物とする。
A composition containing at least one component of the group consisting of Sr and Ba contains 0.03 to 0.65% by weight of steel oxide as a subcomponent in terms of Cu2O.

作用 本発明の誘電体磁器組成物の系において、添加分を含ま
ない組成物に対し添加物を含む組成物は低い焼成温度で
焼結し、誘電率の低下は少なく、誘電損失の増大も小さ
く、かつ抵抗率は同等ないし向上する。
Effect: In the dielectric ceramic composition system of the present invention, the composition containing additives is sintered at a lower firing temperature than the composition containing no additives, and the decrease in dielectric constant is small and the increase in dielectric loss is small. , and the resistivity is the same or improved.

実施例 出発原料には化学的に高純度なPbO,MgO。Example The starting materials are chemically highly pure PbO and MgO.

MeCOs  (Me:Ca、Sr、Ba)*  Nb
2O5゜TiO2,Nip、WC)a、Cu2Oを用い
た。これらを純度補正をおこなったうえで所定量を秤量
し、ジルコニア製玉石を用い純水を溶媒としボールミル
で17時時間式混合した。これを吸引ろ過して水分の大
半を分離した後乾燥し、その後ライカイ機で充分解砕し
た後粉体量の5wt%の水分を加え、直径60M1高さ
約50mの円柱状に成形圧力500kg/c1  で成
形した。これをアルミナルツボ中に入れ同質のフタをし
、 680℃〜760℃で2時間仮焼した。次に仮焼物
をアルミナ乳鉢で粗砕し、さらにジルコニア製玉石を用
い純水を溶媒としてボールミルで17時間粉砕し、これ
を吸引ろ、過し水分の大半を分離した後乾燥した。以上
の仮焼、粉砕、乾燥を数回(りかえした後この粉末にポ
リビニルアルコール6 w t%水溶液を粉体量の6 
w t%加え、32メツシユふるいを通して造粒し、成
形圧力1000kg/co+zで成形した。成形物は空
気中で600℃まで昇温し4時間保持しポリビルアルコ
ール分をバーンアウトした。これを、上述の仮焼粉を体
積の1/3程度敷きつめた上に200メツシュMgO粉
を約1m+a敷いたマグネシャ磁器容器に移し、同質の
フタをし、管状電気炉の炉心管内に挿入し、炉心管内を
ロータリーポンプで脱気したのちN2−N2−N20ガ
スで置換し、酸素分圧(PO2)が1.oxlO−8a
tmになるようN2とN2ガスの混合比を調節しながら
混合ガスを流し、所定温度まで400℃/hrで昇温し
2時間保持後400℃/hrで降温した。炉心管内のP
o2は、挿入した安定化ジルコニア酸素センサーにより
測定した。
MeCOs (Me:Ca, Sr, Ba)*Nb
2O5°TiO2, Nip, WC)a, and Cu2O were used. After correcting the purity of these, a predetermined amount was weighed and mixed in a ball mill for 17 hours using zirconia cobblestones and pure water as a solvent. This is filtered by suction to remove most of the moisture, dried, and then thoroughly crushed using a Raikai machine. After adding 5wt% of moisture to the powder, it is molded into a cylindrical shape with a diameter of 60M and a height of about 50m at a pressure of 500kg/ It was molded with c1. This was placed in an alumina crucible, covered with a homogeneous lid, and calcined at 680°C to 760°C for 2 hours. Next, the calcined product was roughly crushed in an alumina mortar, and further crushed for 17 hours in a ball mill using zirconia cobblestones and pure water as a solvent.The resulting mixture was filtered under suction to remove most of the moisture, and then dried. After repeating the above steps of calcination, crushing, and drying several times, a 6 wt% aqueous solution of polyvinyl alcohol was added to the powder in an amount equal to 6 wt%.
wt% was added, granulated through a 32 mesh sieve, and molded at a molding pressure of 1000 kg/co+z. The molded product was heated to 600°C in air and held for 4 hours to burn out the polyvinyl alcohol content. This was transferred to a Magnesia porcelain container in which about 1/3 of the volume of the calcined powder was spread, and about 1 m+a of 200 mesh MgO powder was spread, covered with a homogeneous lid, and inserted into the core tube of a tubular electric furnace. After deaerating the inside of the reactor core tube with a rotary pump, it was replaced with N2-N2-N20 gas until the oxygen partial pressure (PO2) was 1. oxlO-8a
A mixed gas was flowed while adjusting the mixing ratio of N2 and N2 gas so that the temperature became tm, the temperature was raised to a predetermined temperature at a rate of 400°C/hr, and after being held for 2 hours, the temperature was lowered at a rate of 400°C/hr. P in the core tube
o2 was measured by an inserted stabilized zirconia oxygen sensor.

第2図に焼成時のマグネシャ磁器容器の構造を、第3図
に炉心管内部をそれぞれ断面図で示す。第2図において
1はマグネシア容器であり、その上部はマグネシア容器
蓋2で封じた。マグネシア容器1の下部に仮焼粉3を配
置し、その上にマグネシア粉4を配置した。さらにその
上に試料5を配置した。第2図のように準備されたマグ
ネシア容器1を第3図のように炉心管6内に配置した。
FIG. 2 shows the structure of the Magnesia porcelain container during firing, and FIG. 3 shows a cross-sectional view of the inside of the furnace tube. In FIG. 2, 1 is a magnesia container, the upper part of which is sealed with a magnesia container lid 2. Calcined powder 3 was placed at the bottom of magnesia container 1, and magnesia powder 4 was placed above it. Further, sample 5 was placed on top of it. The magnesia container 1 prepared as shown in FIG. 2 was placed in the furnace core tube 6 as shown in FIG.

7は安定化ジルコニア酸素センサーである。7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1mの板状に切断し、両面にCr−Auを
蒸着し、誘電率、tanδを1kHz、IV / rt
mの電界下で測定した。また抵抗率は1kV/lW+の
電圧を印加後1分値から求めた。
The fired product was cut into a plate shape with a thickness of 1 m, Cr-Au was evaporated on both sides, and the dielectric constant and tan δ were set to 1 kHz and IV/rt.
Measurements were made under an electric field of m. Further, the resistivity was determined from the value 1 minute after applying a voltage of 1 kV/lW+.

なお焼成温度は焼成物の密度がもっとも太き(なる温度
とした。
The firing temperature was set at the temperature at which the density of the fired product was the highest.

第1表に、本発明の組成範囲および周辺組成の成分[a
、b、x、y、zは、(Pb−Meb)(Mgszs 
Nb+;i/3) x Ti y  (N15zs+ 
Wl/2 ) z02+Q+l)  と表したときの値
J1低酸素分圧雰囲気で焼成したときの焼成温度、誘電
率、tanδ、抵抗率を示した。
Table 1 shows the composition range of the present invention and the surrounding composition components [a
, b, x, y, z are (Pb-Meb) (Mgszs
Nb+;i/3) x Ti y (N15zs+
Value J1 when expressed as Wl/2)z02+Q+l) shows the firing temperature, dielectric constant, tan δ, and resistivity when fired in a low oxygen partial pressure atmosphere.

第1図は本発明の主組成を(Pb a Me b) T
iO2+a+b;     (Pb  a  Me  
b)   (Mgt/+  Nb2/3 )02”+b
;および(Pb a Me b)(Nit/2W12 
)02+a+b  を端成分とする三角組成図中に示し
たもので、斜線の範囲が主組成の範囲である。
Figure 1 shows the main composition of the present invention as (Pb a Me b) T
iO2+a+b; (Pb a Me
b) (Mgt/+Nb2/3)02”+b
; and (Pb a Me b) (Nit/2W12
)02+a+b is shown in a triangular composition diagram with end members, and the diagonally shaded range is the main composition range.

発明範囲外の組成物では、副成分が0.03wt%より
小さいと焼結温度低下の改善効果が現れず、0.65w
t%より大きくなると、誘電特性と(に誘電率と抵抗率
の低下が大きくなる。発明の範囲内の組成物では前記の
問題がいずれも克服されている。主成分の範囲は低酸素
分圧雰囲気で焼成したときの焼成物のち密性、抵抗率、
誘電率および誘電率の温度変化率より限定されたもので
ある。
In a composition outside the scope of the invention, if the subcomponents are smaller than 0.03wt%, the improvement effect of lowering the sintering temperature will not appear;
t%, the dielectric properties and dielectric constant and resistivity decrease significantly. Compositions within the scope of the invention overcome both of the aforementioned problems. The compactness and resistivity of the fired product when fired in an atmosphere,
It is limited by the dielectric constant and the temperature change rate of the dielectric constant.

なお焼成雰囲気として選択した低酸素分圧雰囲気PO2
: 1.0x 10−”atmは、焼成温度におイテ鋼
がほとんど酸化せず、誘電体セラミックの還元による低
抵抗化が発生しない酸素分圧であり、胴もしくは銅を主
成分とする内部電極を含む@層コンデンサの製造条件を
満足するものである。
Note that the low oxygen partial pressure atmosphere PO2 selected as the firing atmosphere
: 1.0x 10-"atm is an oxygen partial pressure at which the steel is hardly oxidized at the firing temperature and the resistance does not decrease due to reduction of the dielectric ceramic, and it is the oxygen partial pressure that does not cause any reduction in resistance due to reduction of the dielectric ceramic. This satisfies the manufacturing conditions for @ layer capacitors including:

発明の効果 本発明によれば、低酸素分圧雰囲気1100℃以下の焼
成で高誘電率、チ密で抵抗率の高い誘電体磁器が得られ
、と(に本発明の添加物により、焼成温度が低下し焼成
時の最適酸素分圧制御が容易になる。このため内部電極
としてCuを用いた積層コンデンサ素子の誘電体に本発
明の組成物を用いた場合、電気的特性を損なうことな(
、より安定な製造条件で素子が製造でき、量産性が向上
する。
Effects of the Invention According to the present invention, dielectric porcelain with high dielectric constant, high density, and high resistivity can be obtained by firing at 1100°C or lower in a low oxygen partial pressure atmosphere, and (by using the additives of the present invention, the firing temperature can be reduced. is reduced, making it easier to control the optimum oxygen partial pressure during firing.For this reason, when the composition of the present invention is used as the dielectric of a multilayer capacitor element using Cu as the internal electrode, the electrical properties will not be impaired (
, devices can be manufactured under more stable manufacturing conditions, improving mass productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る誘電体磁器組成物の生成分組成を
示す三角組成図、第2図は焼成時に磁器を入れるマグネ
シャ容器の断面図、第3図は焼成時の炉心管の断面図を
示す。 1・・・・・・マグネシャ容器、 2・・・・・・マグ
ネシャ容器蓋、 3・・・・・・仮焼粉、 4・・・・
・・マグネシア粉、5・・・・・・試料、6・・・・・
・マグネシャ容器、7・・・・・・炉心管、8・・・・
・・安定化ジルコニア酸素センサー。 ・へ1代理人の氏名 弁理士 中尾敏男 ほか1名(P
baMeb)(Mg+zJlt)2/5)Q2+a+b
80        Go        40   
    20(PbaMebXNil/2WI/2)0
2+a+b  ”       (PbaMeb)Ti
02+s+b第1図
Fig. 1 is a triangular composition diagram showing the product composition of the dielectric porcelain composition according to the present invention, Fig. 2 is a cross-sectional view of the magnesia container in which the porcelain is placed during firing, and Fig. 3 is a cross-sectional view of the furnace tube during firing. shows. 1...Magnesha container, 2...Magnesha container lid, 3...Calcined powder, 4...
... Magnesia powder, 5 ... Sample, 6 ...
・Magnesha container, 7...Furnace tube, 8...
...Stabilized zirconia oxygen sensor.・Name of 1 agent: Patent attorney Toshio Nakao and 1 other person (P
baMeb) (Mg+zJlt)2/5)Q2+a+b
80 Go 40
20(PbaMebXNil/2WI/2)0
2+a+b” (PbaMeb)Ti
02+s+b Figure 1

Claims (1)

【特許請求の範囲】  (Pb_aMe_b){(Mg_1_/_3Nb_2
_/_3)_xTi_y(Ni_1_/_2W_1_/
_2)_z}O_2_+_a_+_bで表される組成を
有し(ただし、x+y+z=1)、MeがCa、Sr、
Baからなる群から選ばれた少なくとも一種であり、 0.001≦b≦0.250 1.001≦a+b≦1.200 の範囲にあり、この範囲内の各a、bの値に対し、(P
b_aMe_b)(Mg_1_/_3Nb_2_/_3
)O_2_+_a_+_b;(Pb_aMe_b)Ti
O_2_+_a_+_b;および(Pb_aMe_b)
(Ni_1_/_2W_1_/_2)O_2_+_a_
+_bを頂点とする三角座標において下記組成点、A、
B、C、D、E、 A:x=0.950y=0.049z=0.001B;
x=0.750y=0.249z=0.001C;x=
0.010y=0.800z=0.190D;x=0.
010y=0.450z=0.540を頂点とする四角
形の領域内にある組成物に対し、副成分として、銅酸化
物をCu_2O換算の重量%で0.03〜0.65%含
有することを特徴とする誘電体磁器組成物。
[Claims] (Pb_aMe_b) {(Mg_1_/_3Nb_2
___/_3)_xTi_y(Ni_1_/_2W_1_/
_2)_z}O_2_+_a_+_b (however, x+y+z=1), Me is Ca, Sr,
is at least one selected from the group consisting of Ba, and is in the range of 0.001≦b≦0.250 1.001≦a+b≦1.200, and for each value of a and b within this range, ( P
b_aMe_b)(Mg_1_/_3Nb_2_/_3
)O_2_+_a_+_b; (Pb_aMe_b)Ti
O_2_+_a_+_b; and (Pb_aMe_b)
(Ni_1_/_2W_1_/_2)O_2_+_a_
In the triangular coordinates with +_b as the vertex, the following composition point, A,
B, C, D, E, A: x=0.950y=0.049z=0.001B;
x=0.750y=0.249z=0.001C;x=
0.010y=0.800z=0.190D;x=0.
010y=0.450z=0.540 as the apex of the composition, containing 0.03 to 0.65% by weight of copper oxide as a subcomponent in terms of Cu_2O. Characteristic dielectric ceramic composition.
JP62074640A 1987-03-27 1987-03-27 Dielectric porcelain composition Expired - Lifetime JPH0821261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074640A JPH0821261B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074640A JPH0821261B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS63239709A true JPS63239709A (en) 1988-10-05
JPH0821261B2 JPH0821261B2 (en) 1996-03-04

Family

ID=13553012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074640A Expired - Lifetime JPH0821261B2 (en) 1987-03-27 1987-03-27 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0821261B2 (en)

Also Published As

Publication number Publication date
JPH0821261B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JPS63239709A (en) Dielectric ceramic composition
JPH0712973B2 (en) Dielectric porcelain composition
JPS63239711A (en) Dielectric ceramic composition
JPS63299006A (en) Dielectric porcelain composition
JPS63239708A (en) Dielectric ceramic composition
JPS63297266A (en) Dielectric ceramic composition
JPS63116308A (en) Dielectric magnetic composition
JPS62123061A (en) Dielectric ceramic composition
JPH0644408B2 (en) Dielectric porcelain composition
JPS63108612A (en) Dielectric ceramic composition
JPS63239710A (en) Dielectric ceramic composition
JPH0324426B2 (en)
JPS63116306A (en) Dielectric magnetic composition
JPH0195405A (en) Dielectric porcelain composition material
JPH0712974B2 (en) Dielectric porcelain composition
JPH07110782B2 (en) Dielectric porcelain composition
JPH0329019B2 (en)
JPS62105954A (en) Dielectric ceramic composition
JPS6317253A (en) Dielectric ceramic composition
JPS63264806A (en) Dielectric porcelain composition
JPH0829980B2 (en) Dielectric porcelain composition
JPS6321249A (en) Dielectric ceramic composition
JPS6317251A (en) Dielectric ceramic composition
JPS6317252A (en) Dielectric ceramic composition
JPS63108611A (en) Dielectric ceramic composition