JPS6317254A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPS6317254A
JPS6317254A JP61161310A JP16131086A JPS6317254A JP S6317254 A JPS6317254 A JP S6317254A JP 61161310 A JP61161310 A JP 61161310A JP 16131086 A JP16131086 A JP 16131086A JP S6317254 A JPS6317254 A JP S6317254A
Authority
JP
Japan
Prior art keywords
composition
fired
dielectric ceramic
partial pressure
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61161310A
Other languages
Japanese (ja)
Other versions
JPH0676249B2 (en
Inventor
純一 加藤
横谷 洋一郎
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61161310A priority Critical patent/JPH0676249B2/en
Publication of JPS6317254A publication Critical patent/JPS6317254A/en
Publication of JPH0676249B2 publication Critical patent/JPH0676249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、1100℃以下で焼成される高誘電率系誘電
体磁器組成物に関し、特に低酸素分圧雰囲気で焼成でき
高い抵抗率の得られる組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high dielectric constant dielectric ceramic composition fired at 1100° C. or lower, particularly a composition that can be fired in a low oxygen partial pressure atmosphere and has a high resistivity. relating to things.

従来の技術 近年セラミックコンデンサにおいては素子の小型化、大
容量化への要求から積層型セラミックコンデンサが急速
に普及しつつある。積層型セラミックコンデンサは内部
電極とセラミックを一体焼成する工程によって通常製造
される。従来より高誘電率系のセラミックコンデンサ材
料にはチタン酸バリウム系の材料が用いられてきたが、
焼成温度が1300℃程度と高いため、内部電極材料と
してはPt、Pdなどの高価な金属を用いる必要があっ
た。
BACKGROUND OF THE INVENTION In recent years, multilayer ceramic capacitors are rapidly becoming popular due to the demand for smaller elements and larger capacitance in ceramic capacitors. Multilayer ceramic capacitors are typically manufactured by a process of integrally firing internal electrodes and ceramics. Barium titanate-based materials have traditionally been used as high-permittivity ceramic capacitor materials, but
Since the firing temperature is as high as about 1300° C., it is necessary to use expensive metals such as Pt and Pd as internal electrode materials.

これに対し、空気中1000℃以下で焼成でき内部電極
として安価なAg系材料を用G・ることかできる鉛複合
ペロブスカイト系材料や、低酸素分圧雰囲気中で焼成で
きNiなとの卑金属材料を内部電極として使用できるチ
タン酸バリウム系材料が開発されている。前者について
は、特開昭58−176175号公報に、Pb(Ni!
z+ Nb*z+ )OF3− PbTiQ 3− P
b(Mg1z2Wl/2 )03を含む誘電体磁器組成
物が記載されている。後者については特公昭56−46
641号公報に記載の材料などが知られている。
On the other hand, there are lead composite perovskite materials that can be fired in air at temperatures below 1000°C and inexpensive Ag-based materials used as internal electrodes, and base metal materials such as Ni that can be fired in low oxygen partial pressure atmospheres. Barium titanate-based materials have been developed that can be used as internal electrodes. Regarding the former, JP-A-58-176175 describes Pb(Ni!
z+ Nb*z+ )OF3- PbTiQ 3- P
A dielectric ceramic composition containing b(Mg1z2Wl/2)03 is described. Regarding the latter, the Special Public Interest Publication of 1984-1984
Materials such as those described in Japanese Patent No. 641 are known.

Pb (Ni1zs Nb2z3)03−PbTiO3
−Pb(Mg里/2 Wl/2 ) Os系固溶体は低
温で焼成でき、誘電率の温度変化率が同程度のチタン酸
バリウム系材料に比べ高い誘電率が得られる。従ってこ
の誘電体磁器組成物とAg系内部電極からなる積層コン
デンサは素子の大容量、小型化、低コスト化が図れる利
点を有している。しかし近年さらに内部電極材料の低コ
スト化が図れるCuなどの卑金属を内部電極として用い
ることが求められており、このため、同時焼成したとき
Cuなとの金属が酸化しないような低酸素分圧雰囲気で
焼成でき、高い抵抗率が得られる材料が必要とされてい
る。
Pb (Ni1zs Nb2z3)03-PbTiO3
-Pb(Mg/2Wl/2)Os-based solid solution can be fired at low temperatures and has a higher dielectric constant than barium titanate-based materials, which have a similar rate of change in dielectric constant with temperature. Therefore, a multilayer capacitor made of this dielectric ceramic composition and an Ag-based internal electrode has the advantage of allowing the device to have a large capacity, be small in size, and be low in cost. However, in recent years, there has been a demand for the use of base metals such as Cu as internal electrodes, which can further reduce the cost of internal electrode materials.For this reason, it is necessary to create an atmosphere with a low oxygen partial pressure in which metals such as Cu do not oxidize when co-fired. There is a need for materials that can be fired at high temperatures and have high resistivities.

発明が解決しようとする問題点 Pb (Nil/3  Nbυ3 )03− PbTi
03− Pb(Mg1t* Wl/2 )03系固溶体
は低酸素分圧雰囲気で焼成するとチ密に焼結せず、また
抵抗率が小さくなる傾向がある。
Problem to be solved by the invention Pb (Nil/3 Nbυ3 )03- PbTi
03-Pb(Mg1t*Wl/2)03-based solid solution does not sinter densely when fired in a low oxygen partial pressure atmosphere and tends to have a low resistivity.

本発明は、Pb (Ni1zs Nbzz+ )03−
 PbTi0CI−Pb (Mg1/* w、、、 )
Os系のもつ高い誘電率と低温焼結性をそこなわず、低
酸素分圧雰囲気で焼成したとき抵抗値が高い誘電体磁器
組成物を提供することを目的としている。
The present invention provides Pb (Ni1zs Nbzz+)03-
PbTi0CI-Pb (Mg1/* w,,, )
The object of the present invention is to provide a dielectric ceramic composition that has a high resistance value when fired in a low oxygen partial pressure atmosphere without impairing the high dielectric constant and low-temperature sintering properties of the Os system.

問題点を解決するための手段 Pba(Nixzs Nb2.s )xTiy(Mg1
z2Wl/2 )Z02+aで表される組成式(ただし
、x+y+z=1)において、1.001≦a≦1.1
10の範囲とするとともにに、この範囲内の各aの値に
対し、Pb、(N15z3Nb2zs ) 02+a、
P b@ T i O2+a %およびPba (Mg
s/2Wl/2 ) 02+1を頂点とする三角座標に
おいて、下記組成点A。
Means to solve the problemPba(Nixzs Nb2.s)xTiy(Mg1
z2Wl/2) In the composition formula represented by Z02+a (however, x+y+z=1), 1.001≦a≦1.1
10, and for each value of a within this range, Pb, (N15z3Nb2zs) 02+a,
P b@T i O2+a % and Pba (Mg
s/2Wl/2) In the triangular coordinates with 02+1 as the vertex, the following composition point A.

B、C,D  を頂点とする四角形の領域内の組成とす
る。
Let the composition be within a rectangular region with B, C, and D as vertices.

A  : x=o、700  y=0.27F+  z
=0.025B ; x=o、500  y=0.47
5z=0.025C;x=0.100y=0.450z
=0.450D ; x=0.100y=0.300z
=0.600作用 本発明の組成物においてはAサイト成分を過剰にするこ
とにより、低酸素分圧雰囲気、1100℃以下でチ密な
焼成物が得られ、高い抵抗率を有する信頼性の高い素子
かえられる。
A: x=o, 700 y=0.27F+z
=0.025B; x=o, 500 y=0.47
5z=0.025C;x=0.100y=0.450z
=0.450D; x=0.100y=0.300z
= 0.600 Effect In the composition of the present invention, by increasing the A-site component in excess, a dense fired product can be obtained in a low oxygen partial pressure atmosphere at 1100°C or less, and a highly reliable product with high resistivity can be obtained. Elements can be changed.

実施例 出発原料には化学的に高純度なPbO,Nip。Example Starting materials include chemically highly pure PbO and Nip.

MgO,Nb2O5、TiO2、WO3を用いた。MgO, Nb2O5, TiO2, and WO3 were used.

これらを純度補正をおこなったうえで所定量を秤量し、
メノウ製玉石を用い純水を溶媒としボールミルで17時
間湿式混合した。これを吸引ろ過して水分の大半を分離
した後乾燥し、その後ライカイ機で充分解砕した後扮体
量の5wt%の水分を加え、直径60耶高さ約50 m
mの円柱状に成形圧力500kg/cm2  で成形し
た。これをアルミナルツボ中に入れ同質のフタをし、7
50℃〜880℃で2時間仮焼した。次に仮焼物をアル
ミナ乳鉢で粗砕し、さらにメノウ製玉石を用い純水を溶
媒としてボールミルで17時間粉砕し、これを吸引ろ過
し水分の大半を分離した後乾燥した。以上の仮焼、粉砕
、乾燥を数回くりかえした後、この粉末にポリビニルア
ルコール6wt%水溶液を粉体量の6wt%加え、32
メツシユふるいを通して造粒し、成形圧力1000kg
/cm2で、直径13m+n高さ約5mn1の円柱状に
成形した。成形物は空気中で700℃まで昇温し1時間
保持し、ポリビルアルコール分をバーンアウトした。
After correcting the purity of these, weigh the specified amount,
Wet mixing was carried out for 17 hours in a ball mill using agate boulders and pure water as a solvent. This was filtered with suction to remove most of the water, then dried, and then thoroughly crushed in a Raikai machine, after which 5 wt% of water was added to the mass of the material.
It was molded into a cylindrical shape with a molding pressure of 500 kg/cm2. Place this in an aluminum pot and cover with the same material, 7
Calcining was performed at 50°C to 880°C for 2 hours. Next, the calcined product was roughly crushed in an alumina mortar, and further crushed in a ball mill using agate cobblestones and pure water as a solvent for 17 hours, filtered under suction to remove most of the moisture, and then dried. After repeating the above calcining, crushing, and drying several times, a 6 wt % aqueous solution of polyvinyl alcohol was added to the powder in an amount of 6 wt %, and 32
Granulate through mesh sieve and press at 1000kg
/cm2, and was molded into a cylindrical shape with a diameter of 13m+n and a height of about 5mn1. The molded product was heated to 700°C in air and held for 1 hour to burn out the polyvinyl alcohol content.

これを上述の仮焼粉を体積の173程度敷きつめた上に
200メツシユZrO2粉を約1 mm敷し・たマグネ
シャ磁器容器に移し、同質のフタをし、管状電気炉の炉
心管内に挿入し、炉心管内をロータリーポンプで脱気し
たのちN2−82混合ガスで置換し、酸素分圧(PO2
)が1. Ox 10−”atmになるようN2とH2
ガスの混合比を調節しながら混合ガスを流し、所定温度
まで400℃/hrで昇温し2時間保持後、400℃/
hrで降温した。炉心管内のPo2は挿入した安定化ジ
ルコニア酸素センサーにより測定した。第2図に焼成時
のマグネシャ磁器容器の構造を、第3図に炉心管内部を
それぞれ断面図で示す。
This was transferred to a Magnesia porcelain container in which about 173 of the volume of the calcined powder was spread, and 200 meshes of ZrO2 powder was spread to a thickness of about 1 mm, covered with a homogeneous lid, and inserted into the core tube of a tubular electric furnace. After degassing the inside of the reactor core tube with a rotary pump, it was replaced with N2-82 mixed gas, and the oxygen partial pressure (PO2
) is 1. N2 and H2 to make Ox 10-”atm
Flow the mixed gas while adjusting the gas mixture ratio, raise the temperature to the specified temperature at 400℃/hr, hold it for 2 hours, and then increase the temperature to 400℃/hr.
The temperature decreased in hr. Po2 in the reactor core tube was measured by an inserted stabilized zirconia oxygen sensor. FIG. 2 shows the structure of the Magnesia porcelain container during firing, and FIG. 3 shows a cross-sectional view of the inside of the furnace tube.

第2図において1はマグネシア容器であり、その上部は
マグネシア容器蓋2で封じた。マグネシア容器1の下部
には仮焼粉3を配置し、その上にジルコニア粉4を配置
した。さらにその上に試料5を配置した。
In FIG. 2, 1 is a magnesia container, the upper part of which is sealed with a magnesia container lid 2. Calcined powder 3 was placed at the bottom of magnesia container 1, and zirconia powder 4 was placed on top of it. Further, sample 5 was placed on top of it.

第2図のように準備されたマグネシア容器1を第3図の
ように炉心管6内に配置した。7は安定化ジルコニア酸
素センサーである。
The magnesia container 1 prepared as shown in FIG. 2 was placed in the furnace core tube 6 as shown in FIG. 7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1聰の円板状に切断し、両面にCr−Au
を蒸着し、誘電率、tanδをl kll z 。
The fired product was cut into a disk shape with a thickness of 1 thick, and Cr-Au was coated on both sides.
, and the dielectric constant, tan δ, is 1 kll z .

1v/lWIの電界下で測定した。また抵抗率は、1k
 V / m+nの電圧を印加後1分値から求めた。
Measurements were made under an electric field of 1v/lWI. Also, the resistivity is 1k
The voltage of V/m+n was determined from the value 1 minute after application.

なお焼成温度は焼成物の密度がもっとも大きくなる温度
とした。
The firing temperature was set to the temperature at which the density of the fired product was the highest.

表1に本発明の組成範囲および周辺組成の成分(a、x
、y、zはPb3(Ni1z+ Nbzz+ )X T
iy(Mg1t2Wl/2 )Z 02□と表したとき
の値)、低酸素分圧雰囲気で焼成したときの焼成温度、
誘電率、誘電率の温度変化率(20℃に対する)、ta
nδ、抵抗率、密度を示した。
Table 1 shows the composition range of the present invention and peripheral composition components (a, x
, y, z are Pb3 (Ni1z+ Nbzz+ )X T
iy (value expressed as Mg1t2Wl/2)Z 02□), firing temperature when firing in a low oxygen partial pressure atmosphere,
Dielectric constant, temperature change rate of dielectric constant (relative to 20°C), ta
nδ, resistivity, and density are shown.

、第1図は表1に示した試料を、P ba T i O
2+a、Pba (Nirls Nbs+/s )Oz
+a N及びPl:h(Mgl/2Wl/2 )02+
aを端成分とする三角組成図中に示したもので、斜線の
範囲が発明の範囲である。
, FIG. 1 shows the samples shown in Table 1, P ba T i O
2+a, Pba (Nirls Nbs+/s) Oz
+a N and Pl:h(Mgl/2Wl/2)02+
This is shown in a triangular composition diagram with a as an end member, and the shaded area is the scope of the invention.

(以下余白) 発明範囲外の組成物では、aが1.001より小さいと
低酸素分圧雰囲気で焼成したときチ密な焼結物が得られ
ない、もしくは抵抗率が低(なる難点を有しており、1
.110より大きくなると誘電率および抵抗率が低下す
る録点を有する。またx、y、zが限定の範囲外の組成
物は、キュリ一点が室温から大きくはずれ誘電率が低(
なる、もしくは誘電率の温度変化率が太きなる難点を有
している。特許請求の範囲内の組成物では前記の問題が
いずれも克服されている。
(Left below) For compositions outside the scope of the invention, if a is smaller than 1.001, a dense sintered product cannot be obtained when fired in a low oxygen partial pressure atmosphere, or the resistivity may be low. 1
.. When the value exceeds 110, the dielectric constant and resistivity decrease. In addition, for compositions in which x, y, and z are outside the specified ranges, the Curie point will deviate significantly from room temperature and the dielectric constant will be low (
However, the temperature change rate of the dielectric constant becomes large. Both of the aforementioned problems are overcome in the claimed compositions.

なお焼成雰囲気として選択した低酸素分圧雰囲気PO2
; 1. OX 10−’at+++は焼成温度におけ
る鋼の平衡酸素分圧より低(金属はほとんど酸化しない
と考えられる。
Note that the low oxygen partial pressure atmosphere PO2 selected as the firing atmosphere
;1. OX 10-'at+++ is lower than the equilibrium oxygen partial pressure of the steel at the firing temperature (it is thought that the metal hardly oxidizes).

発明の効果 本発明によれば低酸素分圧雰囲気1100℃以下の焼成
で積層コンデンサ素子として高信頼性を得るためのチ密
で抵抗率の高い焼結体が得られ、内部電極としてCuな
どの卑金属材料を用いることが可能になる優れた誘電体
磁器組成物を得ることができる。
Effects of the Invention According to the present invention, a dense, high-resistivity sintered body for obtaining high reliability as a multilayer capacitor element can be obtained by firing at 1100°C or lower in a low oxygen partial pressure atmosphere, and a sintered body made of Cu or the like as an internal electrode can be obtained. An excellent dielectric ceramic composition that allows the use of base metal materials can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁器組成物の成分組成を示す三角
組成図、第2図は焼成時に磁器を入れるマグネシャ容器
の断面図、第3図は焼成時の炉心管内の断面図を示す。 ■・・・マグネシャ容器、 2・・・マグネシャ容器蓋
、3・・・仮焼粉、 4・・・ジルコニア粉、 5・・
・試料、 6・・・炉心管、 7・・・安定化ジルコニ
ア酸素センサー。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図
FIG. 1 is a triangular composition diagram showing the component composition of the porcelain composition according to the present invention, FIG. 2 is a cross-sectional view of a magnesia container in which the porcelain is placed during firing, and FIG. 3 is a cross-sectional view of the inside of the furnace tube during firing. ■... Magnesia container, 2... Magnesia container lid, 3... Calcined powder, 4... Zirconia powder, 5...
- Sample, 6... Furnace tube, 7... Stabilized zirconia oxygen sensor. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1

Claims (1)

【特許請求の範囲】 Pb_a(Ni_1_/_3Nb_2_/_3)_xT
i_y(Mg_1_/_2W_1_/_2)_zO_2
_+_aで表される組成式(ただし、x+y+z=1)
において、1.001≦a≦1.110の範囲にあり、
この範囲内の各aの値に対し、 Pb_a(Ni_1_/_3Nb_2_/_3)O_2
_+_a、Pb_aTiO_2_+_aおよび Pb_a(Mg_1_/_2W_1_/_2)O_2_
+_aを頂点とする三角座標において、下記組成点A、
B、C、Dを頂点とする四角形の領域内の組成物からな
ることを特徴とする誘電体磁器組成物。 A;x=0.700 y=0.275 z=0.025
B;x=0.500 y=0.475 z=0.025
C;x=0.100 y=0.450 z=0.450
D;x=0.100 y=0.300 z=0.600
[Claims] Pb_a(Ni_1_/_3Nb_2_/_3)_xT
i_y(Mg_1_/_2W_1_/_2)_zO_2
Compositional formula represented by ___+_a (x+y+z=1)
is in the range of 1.001≦a≦1.110,
For each value of a within this range, Pb_a(Ni_1_/_3Nb_2_/_3)O_2
_+_a, Pb_aTiO_2_+_a and Pb_a(Mg_1_/_2W_1_/_2)O_2_
In the triangular coordinates with +_a as the vertex, the following composition point A,
A dielectric ceramic composition comprising a composition within a rectangular region with vertices B, C, and D. A; x=0.700 y=0.275 z=0.025
B; x=0.500 y=0.475 z=0.025
C; x=0.100 y=0.450 z=0.450
D; x=0.100 y=0.300 z=0.600
JP61161310A 1986-07-09 1986-07-09 Dielectric porcelain composition Expired - Fee Related JPH0676249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161310A JPH0676249B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161310A JPH0676249B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS6317254A true JPS6317254A (en) 1988-01-25
JPH0676249B2 JPH0676249B2 (en) 1994-09-28

Family

ID=15732667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161310A Expired - Fee Related JPH0676249B2 (en) 1986-07-09 1986-07-09 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0676249B2 (en)

Also Published As

Publication number Publication date
JPH0676249B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
JPS6317254A (en) Dielectric ceramic composition
JPS62123064A (en) Dielectric ceramic composition
JPS6321249A (en) Dielectric ceramic composition
JPS6317251A (en) Dielectric ceramic composition
JPS62123061A (en) Dielectric ceramic composition
JPS62123063A (en) Dielectric ceramic composition
JPS6317252A (en) Dielectric ceramic composition
JPS62123065A (en) Dielectric ceramic composition
JPS6287454A (en) Dielectric ceramic composition
JPS62123060A (en) Dielectric ceramic composition
JPS6317253A (en) Dielectric ceramic composition
JPS6287455A (en) Dielectric ceramic composition
JPS62105953A (en) Dielectric ceramic composition
JPS62117205A (en) Dielectric porcelain compound
JPS62123062A (en) Dielectric ceramic composition
JPS62128966A (en) Dielectric ceramic composition
JPS6296357A (en) Dielectric ceramic composition
JPS63264806A (en) Dielectric porcelain composition
JPS63299006A (en) Dielectric porcelain composition
JPH0195403A (en) Dielectric porcelain composition material
JPS63297266A (en) Dielectric ceramic composition
JPS63239708A (en) Dielectric ceramic composition
JPS63108612A (en) Dielectric ceramic composition
JPS63116308A (en) Dielectric magnetic composition
JPS63239709A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees