JPS63295751A - Production of two-dimensional stretched staple fiber reinforced composite material - Google Patents

Production of two-dimensional stretched staple fiber reinforced composite material

Info

Publication number
JPS63295751A
JPS63295751A JP62128344A JP12834487A JPS63295751A JP S63295751 A JPS63295751 A JP S63295751A JP 62128344 A JP62128344 A JP 62128344A JP 12834487 A JP12834487 A JP 12834487A JP S63295751 A JPS63295751 A JP S63295751A
Authority
JP
Japan
Prior art keywords
reinforced composite
ferromagnetic
composite material
fibers
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62128344A
Other languages
Japanese (ja)
Other versions
JP2675995B2 (en
Inventor
秀 山下
博志 八田
俊行 菅野
江藤 昌平
邦彦 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62128344A priority Critical patent/JP2675995B2/en
Publication of JPS63295751A publication Critical patent/JPS63295751A/en
Application granted granted Critical
Publication of JP2675995B2 publication Critical patent/JP2675995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は構造部側、特に複雑形状の部側として用いら
れる短繊維強化複合林料の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a short fiber reinforced composite forest material used as a structural part, particularly a complex-shaped part.

〔従来の技術〕[Conventional technology]

短繊維強化複合材料で十分な強化効果を期待するには2
強化材である短繊維の7スベクト比をできるだけ大きく
とシ、更に短繊維を整然と一方向に配向させなお且つ繊
維体積含有率(以下Vf  と記す)を上昇させる必要
のめることが知られている。
To expect sufficient reinforcement effect with short fiber reinforced composite materials 2
It is known that it is necessary to increase the 7-spectral ratio of the short fibers as a reinforcing material as much as possible, to reorient the short fibers in an orderly manner in one direction, and to increase the fiber volume content (hereinafter referred to as Vf).

従来の技術では、短繊維を一方向に配向させる手段とし
ては流動(例えば特開昭53−80484号公報、特開
昭61−12995号公報]、押し出しく例えば特公昭
52−33641号公報)。
In conventional techniques, means for orienting short fibers in one direction include flow (eg, JP-A-53-80484, JP-A-61-12995) and extrusion (eg, JP-B-52-33641).

遠心力(例えば特公昭52−37003号公報)。Centrifugal force (for example, Japanese Patent Publication No. 52-37003).

機械的(例えば特公昭54−40676号公報。Mechanical (for example, Japanese Patent Publication No. 54-40676).

特開昭60−46211号公報2%公昭58−2078
1号公報)が提案されている。しかしながらいずれの手
段においても配向された短繊維は配向主軸に対しである
程度の配向分布を持っている。前述のように強化材の効
果を上げるには短繊維の配向度が問題となシ2例えば引
張強度では。
Japanese Unexamined Patent Publication No. 60-46211 2% Publication No. 58-2078
Publication No. 1) has been proposed. However, in either method, the oriented short fibers have a certain degree of orientation distribution with respect to the main axis of orientation. As mentioned above, the degree of orientation of the short fibers is an issue in increasing the effectiveness of the reinforcing material.2 For example, in terms of tensile strength.

一方向強化材において繊維の配向が配向主軸に対して5
度傾いただけで50(%〕低下する。また本発明と同じ
磁場による磁力を用いた提案(例えば特開昭60−15
132号公報]においても配向度の向上はなされている
ものの、低Vf で限界となり十分な強化効果を期待す
るまでには至らなかった。
In unidirectional reinforcement, the fiber orientation is 5 with respect to the main axis of orientation.
It decreases by 50 (%) just by tilting the degree.Also, proposals using magnetic force from the same magnetic field as the present invention (for example, Japanese Patent Laid-Open No. 60-15
Although the degree of orientation was also improved in Japanese Patent Publication No. 132, it reached its limit at low Vf, and a sufficient strengthening effect could not be expected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来技術にあっては2強化材でめる短繊維の
配向度が十分ではなく、ま&Vr が低いところで限界
となるので強化材として十分に効果を発揮できないとい
う問題点がめった。
As described above, in the conventional technology, the degree of orientation of the short fibers in the 2-reinforcement material is not sufficient, and the problem is that the short fibers are not fully oriented as a reinforcing material, and the limit is reached when M&Vr is low.

この発明は上記のような問題点を解消するためになされ
たもので,マトリツクス中に短繊維を混入する際に磁性
相斜部と非磁性材料部を組合わせて構成した成形型を用
いて、al場による磁力線の向きを所定方向に与え、こ
の磁力線の向きに強磁性体の短繊維をきわめて整然と配
向させる。この時磁性材料部と非磁性林料部の配置を組
み変えれば、配向方向を任意に制御できる。ま几、成形
型中に超音波振動を加えれば、さらにVf  を向上さ
せることができ、所定方向に配向度の高い、高Vf O
高性能な短繊維強化複合林料を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and when mixing short fibers into a matrix, a mold configured by combining a magnetic phase oblique part and a non-magnetic material part is used. The direction of magnetic lines of force by the Al field is given in a predetermined direction, and the short fibers of the ferromagnetic material are oriented very orderly in the direction of the lines of magnetic force. At this time, by rearranging the arrangement of the magnetic material part and the non-magnetic material part, the orientation direction can be controlled arbitrarily. However, if ultrasonic vibration is applied to the mold, Vf can be further improved, producing high VfO with a high degree of orientation in a predetermined direction.
The aim is to obtain a high-performance short fiber reinforced composite forest material.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では成形型を構成する一方の型(例えば下型ン
にマトリックスを投入し、これに強磁性体の短繊維を混
入してい(。この時、超音波振動を特別に与えれば投入
された強磁性体の短繊維を振動させ、そのからみを解き
はぐず。この時、繊維のほぐれと同時に繊維間、*維と
マトリックス間のボイドも抜かれる。また、成形型は例
えばマグネットコイル等の磁極間に設置され、磁性材料
 −と非磁性材料部を組合わせて構成された成形型にな
っているので、成形型内の磁性材料部間に所定方向に磁
力線が発生している。超音波振動などで解きほぐされた
強磁性体の短繊維はこの磁力線の向きに整然と配向して
いく。なお、超音波振動を与えれば9強磁性体の短繊維
はさらに幾何学的に効率良(マトリックス中に混入され
るのでVf が著しく向上する。さらにこの手法では繊
維自身に無理な力が加わらないので短繊維が破損するこ
とはない。このように強磁性体の短繊維を混入した後、
成形型を構成する他方の型(例えば上型)により加圧・
加熱してプレス成形を行なう。なお。
In this invention, a matrix is introduced into one of the molds (for example, the lower mold), and short ferromagnetic fibers are mixed into it. The ferromagnetic short fibers are vibrated to disentangle them.At this time, the fibers are loosened and at the same time voids between the fibers and between the *fibers and the matrix are also removed.The mold can also be used for magnetic poles such as magnetic coils. Since the mold is made up of a combination of a magnetic material and a non-magnetic material, lines of magnetic force are generated in a predetermined direction between the magnetic material parts in the mold. The short fibers of the ferromagnetic material, which are unraveled by the above method, are oriented in the direction of these magnetic lines of force.In addition, if ultrasonic vibration is applied, the short fibers of the ferromagnetic material become even more geometrically efficient (in the matrix). Since the short fibers of ferromagnetic material are mixed in, the Vf is significantly improved.Furthermore, this method does not apply excessive force to the fibers themselves, so the short fibers are not damaged.After mixing the short fibers of ferromagnetic material in this way,
Pressure and
Heat and press mold. In addition.

プレス成形に際し,マトリツクスの流動による繊維配向
の乱れを防ぐため、al界は印加し念ままでも一向にか
まわない。
During press molding, an Al field may be applied at will to prevent disturbance of fiber orientation due to matrix flow.

〔作用〕[Effect]

この発明によシ製造され次二次元配向短繊維強化複合材
料は従来と比較して繊維の配向度の良い。
The two-dimensionally oriented short fiber reinforced composite material produced according to the present invention has a better degree of fiber orientation than conventional materials.

低ボイド率、高vf の成形物が得られるので繊維方向
の機械的特性が著しく高(、高性能な構造部劇として用
いられる。
Since molded products with low void ratio and high vf can be obtained, the mechanical properties in the fiber direction are extremely high (and it is used as a high-performance structural component).

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、実施例で使用する成形装置の正面図。FIG. 1 is a front view of the molding apparatus used in the examples.

第2図は成形型の垂直断面図である。図において(1)
は成形金型、  (Ia)  はその非磁性材料部(1
b)ha磁性材料部(2)は超音波振動子、(3)はマ
グネットコイル、14)はマトリックス、(5)は短繊
維、(6)はプレスである。
FIG. 2 is a vertical sectional view of the mold. In the figure (1)
is the molding die, (Ia) is the non-magnetic material part (1
b) ha Magnetic material section (2) is an ultrasonic vibrator, (3) is a magnet coil, 14) is a matrix, (5) is a short fiber, and (6) is a press.

トコイル(3)により一方向の磁力線を発生させる。The coil (3) generates magnetic lines of force in one direction.

この時金型の磁性材料部(1b)間に磁力線が発生する
ので、磁性材料部(1b)の配置を変えさせることによ
シ磁力線の向き分制御できる。この状態でニッケルメッ
キされたアスペクト比130.引張弾性率40.0 O
O(kgf / m 、引張強度2500〆/−]の炭
素繊維(5)をエポキシ樹脂(4)中に混入していく。
At this time, since lines of magnetic force are generated between the magnetic material parts (1b) of the mold, the direction of the lines of magnetic force can be controlled by changing the arrangement of the magnetic material parts (1b). Nickel plated in this state with an aspect ratio of 130. Tensile modulus 40.0 O
Carbon fiber (5) having a tensile strength of 2,500〆/-] is mixed into the epoxy resin (4).

短繊維(5)はエポキシ樹脂(4)中で超音波振動によ
り激しく加振され、からみを解きながら型内に生じた磁
力線の向きに役って一方向に配向していく。この時多数
のボイドが抜けていくのが確認される。超音波による振
動が不可能になるまで短繊゛維(5)を混入し、超音波
加振を停止した後磁場はそのitでプレス(61により
加圧、加熱して成形する。得られた成形物のVf  を
測定するとVf = 65(ト)と高Vf の成形物が
得られ次。この成形物から試験片を切出し、引張弾性率
Eおよび引張強度?を測定し、その結果を表1に示す。
The short fibers (5) are violently vibrated in the epoxy resin (4) by ultrasonic vibrations, and while being untangled, they become oriented in one direction due to the direction of the magnetic lines of force generated within the mold. At this time, it is confirmed that many voids are coming out. Short fibers (5) are mixed until ultrasonic vibration becomes impossible, and after the ultrasonic vibration is stopped, the magnetic field is pressed and heated using a press (61) to form the resulting product. When the Vf of the molded product was measured, a molded product with a high Vf of Vf = 65 (g) was obtained.A test piece was cut from this molded product, and the tensile modulus E and tensile strength ? were measured, and the results are shown in Table 1. Shown below.

また短繊維(5)が完全に配向していると仮定した時の
計算値を併記する。表1の結果よシ、この発明の実施例
により得られた成形物はROM(%)〔(測定値/計算
値)xtOO)で95(%〕以上となシ非常に配向度の
高い、欠陥の少ない成形物が得られることが確認され念
Calculated values are also shown assuming that the short fibers (5) are completely oriented. According to the results in Table 1, the molded product obtained according to the example of the present invention had a ROM (%) [(measured value/calculated value) It has been confirmed that a molded product with less oxidation can be obtained.

他の短繊維即ち1強磁性体ウィスカ、強磁性体で被覆さ
れたウィスカ、酸化鉄粒子、メタル粒子等と他のマトリ
ックス即ち金属、セラミックスとのあらゆる組み合わせ
で上記実施例と同じように高性能な成形物が得られるの
は言うまでもない。
Any combination of other short fibers, such as single ferromagnetic whiskers, ferromagnetic coated whiskers, iron oxide particles, metal particles, etc., and other matrices, such as metals or ceramics, can achieve high performance in the same way as in the above embodiments. Needless to say, a molded product can be obtained.

表1 成形物の引張弾性率Eおよび引張強度Fこの発明
の詳細な説明中2強磁性体の短繊維としては炭素繊維(
5)として説明したが、この発明では酸化鉄粒子、メタ
ル粒子2強磁性体ウィスカ強磁性体で被覆されたウィス
カーセラミック繊維・有機繊維が使用でき、またマトリ
ックスとしては樹脂、金属ま°たはセラミックスが使用
できる。
Table 1 Tensile modulus E and tensile strength F of molded product In the detailed description of this invention, carbon fiber (
As explained in 5), in this invention, iron oxide particles, metal particles, ferromagnetic whiskers, whisker ceramic fibers/organic fibers coated with ferromagnetic materials can be used, and the matrix can be resin, metal, or ceramic. can be used.

ただし短繊維として強磁性体で被覆された有機繊維を使
用する時はマトリックスとして金属、セラミックスを使
用すると成形温度が高(て有機繊維の方が熱分解を起こ
してしまうので,マトリツクスとしては熱硬化性ま九は
熱可塑性の樹脂が好ましい。
However, when using organic fibers coated with ferromagnetic material as short fibers, the molding temperature will be high if metals or ceramics are used as the matrix (and organic fibers will undergo thermal decomposition), so thermosetting as a matrix is not recommended. It is preferable that the material is made of thermoplastic resin.

強磁性体の短繊維は、前述のように強化効果を向上させ
るにはアスペクト比が大きい方が良いが。
As mentioned above, it is better for short ferromagnetic fibers to have a large aspect ratio in order to improve the reinforcing effect.

アスペクト比があまシ大きくなると繊維間のからみが多
くほぐれに((なるので繊維の配向度が低下してしまう
。そこで短繊維のアスペクト比としては20以上150
以下であることが望ましい。
If the aspect ratio becomes too large, the fibers become more entangled ((), and the degree of fiber orientation decreases. Therefore, the aspect ratio of short fibers should be 20 to 150.
The following is desirable.

また、この発明の詳細な説明中、磁力発生手段はプレス
(61に固定されたマグネットコイル(3)として説明
し九が、マグネットコイル以外の例えば永久磁石なども
使用可能であり、さらに磁力発生手段はプレス(6)に
必ずしも固定される必要はなく。
In addition, in the detailed description of the present invention, the magnetic force generating means is explained as a magnetic coil (3) fixed to the press (61), but other than the magnetic coil, for example, a permanent magnet, etc. can also be used, and the magnetic force generating means can also be used. does not necessarily need to be fixed to the press (6).

成形型と磁力発生手段との間に相対的変移を与え伝力線
の方向を所定方向にすれば良いものである。
What is necessary is to provide a relative displacement between the mold and the magnetic force generating means so that the direction of the power transmission line is set in a predetermined direction.

さらにこの発明は、実施例の図面に示された配置構成に
限定されるものでな(9例えば成形型(1)を構成する
非磁性材料部(1a)と磁性材料部(1b)の組合わせ
は短繊維(5)の配向方向に応じて適宜変更されるもの
であり、また、磁場を加えるタイミングとして加圧、加
熱プレス工程まで行なうものとして説明したが、この工
程前に十分な短繊維(5)の配向が得られる場合には必
ずしも磁場は必要としない。
Furthermore, the present invention is not limited to the arrangement shown in the drawings of the embodiments (9, for example, the combination of the non-magnetic material part (1a) and the magnetic material part (1b) constituting the mold (1)). is changed as appropriate depending on the orientation direction of the short fibers (5), and the timing of applying the magnetic field is explained as applying pressure and hot pressing steps, but before this step, sufficient short fibers (5) A magnetic field is not necessarily required when the orientation of 5) is obtained.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、複合材料の成形に際し
成形型を所定方向の磁力線を持つ磁場中に設置すること
により、配向度が高く、高vf の欠陥の少ない高性能
な二次元配向短繊維強化複合材料が得られる効果がある
。ま元、成形に際し超音波振動を与えれば、低ボイド率
となり上記効果はさらに向上する。
As described above, according to the present invention, when molding a composite material, a mold is placed in a magnetic field having lines of magnetic force in a predetermined direction, so that a high-performance two-dimensional oriented short film with a high degree of orientation and few high vf defects can be produced. This has the effect of producing a fiber-reinforced composite material. However, if ultrasonic vibration is applied during molding, the void ratio will be reduced and the above effect will be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による二次元配向短繊維強
化複合林料製造装置の正面図、第2図は成形型の垂直断
面図である。 図中同一符号は同一部分を示し、(1)は成形型。 (1a)は非磁性材料部、  (+b)  は磁性材料
部、(2)は超音波振動子、(3)はマグネットコイル
、14)はマトリックス、(5)は短繊維、(61はプ
レスでめる。 @ll!1 4]マトリツクス 5:薙織ち1
FIG. 1 is a front view of a two-dimensionally oriented short fiber reinforced composite forest material manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a vertical sectional view of a mold. The same reference numerals in the figures indicate the same parts, and (1) is a mold. (1a) is a non-magnetic material part, (+b) is a magnetic material part, (2) is an ultrasonic vibrator, (3) is a magnet coil, 14) is a matrix, (5) is a short fiber, (61 is a press) @ll!1 4] Matrix 5: Nagiorichi 1

Claims (1)

【特許請求の範囲】 (1)二次元の所定方向に短繊維を配向して短繊維強化
複合材料を得る製造方法であつて,上記二次元内に磁力
線を与える磁力発生手段を配置し,上記複合材料の成形
に際し成形型を所定方向の磁力線を持つ磁場中に設置し
,なお且つ上記成形型を磁性材料部と非磁性材料部を組
み合わせた構成とすることにより上記成形型内部のマト
リツクス中の強磁性体の短繊維を磁性材料部間の磁力線
の向きに配向させることを特徴とする二次元配向短繊維
強化複合材料の製造方法。 (2)磁力発生手段と成形型が相対変移可能としたこと
を特徴とする特許請求の範囲第1項記載の二次元配向短
繊維強化複合材料の製造方法。(3)磁力発生手段を所
定位置に固定し,成形型を変移させたことを特徴とする
特許請求の範囲第2項記載の二次元配向短繊維強化複合
材料の製造方法。 (4)強磁性体の短繊維が酸化鉄粒子またはメタル粒子
であることを特徴とする特許請求の範囲第1項記載の二
次元配向短繊維強化複合材料の製造方法。 (5)強磁性体の短繊維が強磁性ウイスカまたは強磁性
体で被覆されたウイスカであることを特徴とする特許請
求の範囲第1項記載の二次元配向強化短繊維強化複合材
料の製造方法。 (6)強磁性体の短繊維が強磁性体で被覆されたセラミ
ツク繊維であり,マトリツクスが樹脂,金属またはセラ
ミツクスであることを特徴とする特許請求の範囲第1項
記載の二次元配向短繊維強化複合材料の製造方法。 (7)強磁性体の短繊維が強磁性体を被覆された有機繊
維であり,マトリツクスが熱硬化性または熱可塑性樹脂
であることを特徴とする特許請求の範囲第1項記載の二
次元配向短繊維強化複合材料の製造方法。 (8)強磁性体の短繊維がアスペクト比20以上150
以下であることを特徴とする特許請求の範囲第1項記載
の二次元配向短繊維強化複合材料の製造方法。 (9)成形型に超音波振動を加えることにより,繊維の
配向度および体積含有率を上昇させることを特徴とする
特許請求の範囲第1項記載の二次元配向短繊維強化複合
材料の製造方法。
[Scope of Claims] (1) A manufacturing method for obtaining a short fiber-reinforced composite material by orienting short fibers in a two-dimensional predetermined direction, which comprises arranging magnetic force generating means for generating lines of magnetic force in the two-dimensional direction, When molding a composite material, the mold is placed in a magnetic field with lines of magnetic force in a predetermined direction, and the mold is constructed by combining a magnetic material part and a non-magnetic material part. A method for producing a two-dimensionally oriented short fiber reinforced composite material, which comprises orienting short ferromagnetic fibers in the direction of lines of magnetic force between magnetic material parts. (2) A method for producing a two-dimensionally oriented short fiber reinforced composite material according to claim 1, characterized in that the magnetic force generating means and the mold are movable relative to each other. (3) A method for manufacturing a two-dimensionally oriented short fiber reinforced composite material according to claim 2, characterized in that the magnetic force generating means is fixed at a predetermined position and the mold is moved. (4) The method for producing a two-dimensionally oriented short fiber reinforced composite material according to claim 1, wherein the ferromagnetic short fibers are iron oxide particles or metal particles. (5) A method for producing a two-dimensionally oriented short fiber reinforced composite material according to claim 1, wherein the short ferromagnetic fibers are ferromagnetic whiskers or whiskers coated with a ferromagnetic material. . (6) Two-dimensionally oriented short fibers according to claim 1, wherein the ferromagnetic short fibers are ceramic fibers coated with ferromagnetic material, and the matrix is resin, metal, or ceramic. Method for manufacturing reinforced composite materials. (7) Two-dimensional orientation according to claim 1, characterized in that the ferromagnetic short fibers are organic fibers coated with a ferromagnetic material, and the matrix is a thermosetting or thermoplastic resin. A method for producing short fiber reinforced composite materials. (8) Ferromagnetic short fibers have an aspect ratio of 20 or more and 150
A method for producing a two-dimensionally oriented short fiber reinforced composite material according to claim 1, characterized in that: (9) A method for producing a two-dimensionally oriented short fiber reinforced composite material according to claim 1, characterized in that the degree of fiber orientation and volume content are increased by applying ultrasonic vibration to a mold. .
JP62128344A 1987-05-27 1987-05-27 Method for producing two-dimensional oriented short fiber reinforced composite material Expired - Lifetime JP2675995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128344A JP2675995B2 (en) 1987-05-27 1987-05-27 Method for producing two-dimensional oriented short fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128344A JP2675995B2 (en) 1987-05-27 1987-05-27 Method for producing two-dimensional oriented short fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPS63295751A true JPS63295751A (en) 1988-12-02
JP2675995B2 JP2675995B2 (en) 1997-11-12

Family

ID=14982485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128344A Expired - Lifetime JP2675995B2 (en) 1987-05-27 1987-05-27 Method for producing two-dimensional oriented short fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP2675995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319948A (en) * 1989-06-15 1991-01-29 Toshio Moro Magnetic nonwoven fabric and its production
JP2000191998A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive, method of adhesion and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926380A (en) * 1972-07-05 1974-03-08
JPS5224218A (en) * 1975-07-29 1977-02-23 Inst Fueru Innobashiyonsutekun Method of reinforcing material with fiber
JPS58115314U (en) * 1982-01-28 1983-08-06 積水化学工業株式会社 Molding equipment
JPS6015132A (en) * 1983-07-08 1985-01-25 Toyota Motor Corp Manufacture of composite material reinforced with fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926380A (en) * 1972-07-05 1974-03-08
JPS5224218A (en) * 1975-07-29 1977-02-23 Inst Fueru Innobashiyonsutekun Method of reinforcing material with fiber
JPS58115314U (en) * 1982-01-28 1983-08-06 積水化学工業株式会社 Molding equipment
JPS6015132A (en) * 1983-07-08 1985-01-25 Toyota Motor Corp Manufacture of composite material reinforced with fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319948A (en) * 1989-06-15 1991-01-29 Toshio Moro Magnetic nonwoven fabric and its production
JP2000191998A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive, method of adhesion and semiconductor device

Also Published As

Publication number Publication date
JP2675995B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US5487773A (en) Process for producing sintered body and magnet base
US5057257A (en) Method of transfer molding fiber-reinforced resin bolt products
JPS63295751A (en) Production of two-dimensional stretched staple fiber reinforced composite material
JPS63247013A (en) Manufacture of short fiber reinforced composite material
JPS63111039A (en) Three-dimensional reinforced composite and its manufacture
JPH0344432A (en) Manufacture of fiber reinforced metallic composite material
JP4157030B2 (en) Method for manufacturing casting product of secondary part for motor and manufacturing apparatus for secondary part for motor
JP2532514B2 (en) Method of manufacturing magnetic anisotropic body
JPH03159713A (en) Method and die for injection molding of precision component
JPS63111038A (en) Three-dimensional reinforced laminate and its manufacture
JPS6015132A (en) Manufacture of composite material reinforced with fiber
JPS6410583B2 (en)
JPH05335166A (en) Method and device for manufacturing resin magnet
JPH03216298A (en) Compression molding method
JPS61197467A (en) Manufacture of carbon fiber reinforced composite material
JPS6219443A (en) Body of revolution consisting of reinforced plastic using woven fabric
JP3136653B2 (en) Dry preform manufacturing method
JPH11277571A (en) Monolithic molding method for reinforcing bonding strength between resin member and metallic member
JPH07144369A (en) Manufacture of fiber reinforced resin molded body
JPS62249712A (en) Manufacture of sintered product through injection molding
JPH03213311A (en) Manufacture of molded product containing highly inorganic substance
JPH04263916A (en) Mold assembly
JPH04309207A (en) Manufacture of bonded magnet
JPS61221341A (en) Production of single composite material
JPS6289831A (en) Manufacture of fiber preliminary compact

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term