JPS6015132A - Manufacture of composite material reinforced with fiber - Google Patents

Manufacture of composite material reinforced with fiber

Info

Publication number
JPS6015132A
JPS6015132A JP58124205A JP12420583A JPS6015132A JP S6015132 A JPS6015132 A JP S6015132A JP 58124205 A JP58124205 A JP 58124205A JP 12420583 A JP12420583 A JP 12420583A JP S6015132 A JPS6015132 A JP S6015132A
Authority
JP
Japan
Prior art keywords
plastic
fiber
magnetic
composite material
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58124205A
Other languages
Japanese (ja)
Inventor
Yuuichi Hokazono
祐一 外薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58124205A priority Critical patent/JPS6015132A/en
Publication of JPS6015132A publication Critical patent/JPS6015132A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain the titled composite material with good productivity that is excellent in orientation and strength, by mixing magnetic reinforcing short fibers (FR) with a plastic or the like followed by heating to melt the plastic or the like, injecting the mixture into a mold place in a magnetic field, and orientating the FR in a desired direcion by the magnetic force. CONSTITUTION:FR (e.g. silicon carbide short fibers) is magnetized by a process of forming a metal film of iron, nickel or the like wherein for example sputtering, electroless plating is used, and is mixed with a plastic 4 or a metal such as aluminium in a desired ratio followed by heating to melt the plastic or the like. Then the melt is injected into a mold 1 placed in a magnetic field and magnetic lines of force are generated in parallel with the direction wherein the FR3 are orientated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は強度部材として用いられる繊維強化複合材料の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fiber reinforced composite material used as a strength member.

(従来技術) 繊維強化樹脂(FRP)及び線維強化金属(F’)LM
)は各種の産業分野に利用せられ、特K F RM 7
7、ついてはピストンヘッド等のエンジン部品として開
発が進、められている。
(Prior art) Fiber reinforced resin (FRP) and fiber reinforced metal (F') LM
) is used in various industrial fields, and special K F RM 7
7. Development is progressing as engine parts such as piston heads.

ところでFRP−?PRMの強度的性質は繊維の配列方
向に依存することが極めて多く、例えばFRMにおいて
は、引張方向が繊維軸に対して10°ずれると引張強変
が大巾に低下し、3σずれるとマトリックスの強度まで
低下して、繊維強化の効果のなくなることが知られてい
る。
By the way, FRP-? The strength properties of PRM are extremely dependent on the fiber arrangement direction. For example, in FRM, if the tensile direction is shifted by 10 degrees from the fiber axis, the tensile strength decreases significantly, and if the tensile strength is shifted by 3σ, the matrix It is known that the strength decreases and the effect of fiber reinforcement disappears.

FRMは一般的には熱間圧延法により製造されており、
繊維の配向度を改善する方法として押出法及び溶着法が
試みられているが未だ十分な効果を得てない。すなわち
アルミニウムと炭化珪素(8iC)短繊維とよりなる複
合材料を例にとって説明すると、押出法は上記のアルミ
ニウムと8iC短繊維の混合物e 400ないし500
℃の熱間で押出成形する方法で8iC短繊維がダイス通
過中に更にイないし%の長さに切断され、また横断面で
みたSiC短繊維の配列方向にバラツキを生じ、とくに
中心部より周辺部で配向性の悪いことが認められる。こ
れらの現象が複合材料を曲げを受ける部品として使用し
たときに不利な影響を与えることは明らかである。また
押出法には繊維の配列方向が押出方向に限定されるとい
う欠点もある。
FRM is generally manufactured by hot rolling method.
Extrusion methods and welding methods have been attempted as methods for improving the degree of fiber orientation, but have not yet achieved sufficient effects. That is, to explain a composite material made of aluminum and silicon carbide (8iC) short fibers as an example, the extrusion method uses a mixture of aluminum and 8iC short fibers e 400 to 500
In the method of hot extrusion molding at ℃, the 8iC short fibers are further cut into lengths of 1 to 10% while passing through the die, and variations occur in the arrangement direction of the SiC short fibers when viewed in cross section, especially from the center to the periphery. It is recognized that the orientation is poor in some parts. It is clear that these phenomena have an adverse effect when the composite material is used as a part subjected to bending. The extrusion method also has the disadvantage that the direction in which the fibers are arranged is limited to the extrusion direction.

次に溶着法は加熱ロール上を移動するアルミニウムの金
属箔またはシートにSiC短繊維スラリーを注ぎ加熱溶
層させる方法でスラリーの流動方向、すなわち、ロール
の回転方向に繊維が配向するが、巻きとられた箔甘りは
シートの切断、重ね合せ等の作業に手作業に依存する部
分があり生産性に難点があるうえ、上記押出法に比べて
も配向性が不十分である。
Next, the welding method is a method in which SiC short fiber slurry is poured onto an aluminum metal foil or sheet that moves on a heated roll and heated to form a melt layer, and the fibers are oriented in the flow direction of the slurry, that is, in the rotational direction of the roll. The looseness of the foil produced by this method involves manual work such as cutting and stacking the sheets, which poses a problem in productivity, and the orientation is insufficient compared to the above-mentioned extrusion method.

(発明の目的) 本発明Fまこれらの問題を解消し、マトリックス中の繊
維を任意の方向に配向せしめ得る繊維強化泡合材料の製
造方法の提供を目的とするものである。
(Objective of the Invention) The object of the present invention is to solve these problems and provide a method for producing a fiber-reinforced foam material in which the fibers in the matrix can be oriented in any direction.

(発明の構成) すなわち本発明の繊維強化複合材料の製造方法はa性を
帯びた強化用短繊維を金属またはプラスチックスと所定
の比率で混合し、加熱溶融してから磁場におかれた型の
中で上記の強化用繊維を磁力の方向に配向せしめること
全特徴とするものである。
(Structure of the Invention) That is, the method for producing a fiber reinforced composite material of the present invention is to mix reinforcing short fibers with a property with metals or plastics at a predetermined ratio, heat and melt the mixture, and then place the mold in a magnetic field. Among these, the entire feature is that the reinforcing fibers mentioned above are oriented in the direction of magnetic force.

本来、磁性のない繊維、例λばStC’p At203
の繊維表面にはスパッタリング、無電解メッキまたは溶
射等の手段により第三物質、例λは鉄、ニッケル等の金
属破膜を形成することにより磁性を付与することができ
る。また鉄の丸棒を削ったときに生ずる切子が短繊維で
あるので、そのま1本発明の方法に使用することができ
る。
Fibers that are inherently non-magnetic, such as λ, StC'p At203
Magnetism can be imparted to the fiber surface by forming a broken film of a third substance, for example λ, a metal such as iron or nickel, by means such as sputtering, electroless plating or thermal spraying. Furthermore, since the cut pieces produced when cutting a round iron bar are short fibers, they can be used as they are in the method of the present invention.

以下、図面に従って本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

(実施例) 直径0.2μ、長さ40ないし60μのSiC短繊維を
真空中におき、ニッケル陰極によって該繊維の表面にス
パッタリング、ニッケル被膜全形成させる。
(Example) A short SiC fiber having a diameter of 0.2 μm and a length of 40 to 60 μm is placed in a vacuum, and a nickel coating is formed on the entire surface of the fiber by sputtering using a nickel cathode.

上記の繊維をアルミニウム合金粉末に対し体積ベースで
2ないし3tI)混合し、700℃に加熱して溶湯とし
た後、第1図に示す鋳型1に注湯する。次にこの鋳型1
を磁場発生装#2の中に静置し、SiC短繊維3を配向
させたい方向と平行(矢印の方向)に磁力線を発生させ
る。鋳型1に鋳込んだ装置では、第2図に示す如く、無
秩序に分散していたS r C短繊維3が磁場の中では
第31¥1に示す如く所望の方向に配列する。マトリッ
クスのアルミニウム合金4が冷却凝固した後、鋳型1の
中から試験片A (直径20I ×長さ30m+)kと
り出し、所定の強度試験を行なって従来の押出l−法に
よって得た試験片 中)及び単に鋳込んた1捷で磁場に
かけなかった試験片(C)と比較し下記の如き結果を得
た。
The above-mentioned fibers are mixed with aluminum alloy powder (2 to 3 tI) by volume, heated to 700° C. to form a molten metal, and then poured into a mold 1 shown in FIG. 1. Next, this mold 1
is placed in magnetic field generator #2, and lines of magnetic force are generated parallel to the direction in which the SiC short fibers 3 are desired to be oriented (in the direction of the arrow). In the device cast into the mold 1, the S r C short fibers 3, which were randomly dispersed as shown in FIG. 2, are arranged in a desired direction in the magnetic field as shown in No. 31\1. After the matrix aluminum alloy 4 is cooled and solidified, a test piece A (diameter 20I x length 30m+) is taken out from the mold 1, and a predetermined strength test is carried out to obtain a test piece obtained by the conventional extrusion method. ) and a test piece (C) which was simply cast and not subjected to a magnetic field, and the following results were obtained.

AB C 引張強度 197m 64 56 42ヤニyり率Ir
P/m” 18,300 16,200 11.800
すなわち本発明方法による試験片Aにおいては試験片C
に対し引張強度が52チ、ヤング率が55チ増加し、試
験片Hに対しては引張強度が14係、ヤング率が13チ
向上した。
AB C Tensile strength 197m 64 56 42 Tarnishing rate Ir
P/m” 18,300 16,200 11.800
That is, in the test piece A according to the method of the present invention, the test piece C
Compared to this, the tensile strength increased by 52 inches and the Young's modulus increased by 55 inches, and the tensile strength and Young's modulus increased by 14 factors and 13 inches with respect to test piece H.

なおそれ自身磁性を有する繊維については第三物質の被
膜をつけ;1 <ても磁場において配向し上記と同様の
効果の得られることは明らかである。捷た本発明の方法
をF It Pに適用できることもいう棟でもない。
It is clear that the same effect as above can be obtained by applying a coating of a third substance to the fibers, which are themselves magnetic, and oriented in a magnetic field. It is also not true that the method of the present invention can be applied to F It P.

(発明の効果) 上記の記載から明らかな如く本発明の方法によればマ)
 IJラックス中の強化用繊維を任意の方向に容易に配
向せしめることができ、全体的に均一で高強度のFIE
tM 、 FI−LP f製造することができる。なお
本発明の方法は簡単な装置を用いて実施できるので量産
に通しており、生産性の向上に資する効果が大きい。
(Effect of the invention) As is clear from the above description, according to the method of the present invention,
The reinforcing fibers in IJ Lux can be easily oriented in any direction, resulting in an overall uniform and high-strength FIE.
tM, FI-LP f can be produced. It should be noted that the method of the present invention can be carried out using a simple device, so it is suitable for mass production, and has a large effect on improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の説明図を表わし、 第2図は実施例による試験片Aの部分断面図を表わし、 第3図は比較例による試験片Cの部分断面図を表わす。 図中、 1・・・鋳型 2・・・磁場発生装置 FIG. 1 shows an explanatory diagram of an embodiment, FIG. 2 shows a partial cross-sectional view of test piece A according to the example, FIG. 3 shows a partial cross-sectional view of test piece C according to a comparative example. In the diagram, 1...Mold 2...Magnetic field generator

Claims (1)

【特許請求の範囲】[Claims] 磁性を帯びた強化用短繊維を金属またはプラスチックス
と所定の比率で混合し、加熱溶融してから磁場におかれ
た型の中で上記の強化用繊維を磁力の方向に配向せしむ
ることを特徴とする繊維強化複合材料の製造方法。
Mixing magnetic reinforcing short fibers with metals or plastics at a predetermined ratio, heating and melting them, and then orienting the reinforcing fibers in the direction of magnetic force in a mold placed in a magnetic field. A method for producing a fiber-reinforced composite material characterized by:
JP58124205A 1983-07-08 1983-07-08 Manufacture of composite material reinforced with fiber Pending JPS6015132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124205A JPS6015132A (en) 1983-07-08 1983-07-08 Manufacture of composite material reinforced with fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124205A JPS6015132A (en) 1983-07-08 1983-07-08 Manufacture of composite material reinforced with fiber

Publications (1)

Publication Number Publication Date
JPS6015132A true JPS6015132A (en) 1985-01-25

Family

ID=14879587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124205A Pending JPS6015132A (en) 1983-07-08 1983-07-08 Manufacture of composite material reinforced with fiber

Country Status (1)

Country Link
JP (1) JPS6015132A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295751A (en) * 1987-05-27 1988-12-02 工業技術院長 Production of two-dimensional stretched staple fiber reinforced composite material
JPH03141638A (en) * 1989-10-26 1991-06-17 Toshiba Ceramics Co Ltd Semiconductor-wafer transfer jig and manufacture thereof
JP2000195998A (en) * 1998-12-28 2000-07-14 Polymatech Co Ltd Heat conductive sheet, its manufacture, and semiconductor device
US8167543B2 (en) 2008-11-28 2012-05-01 Vestas Wind Systems A/S Method of manufacturing a wind turbine rotor blade
CN110774557A (en) * 2019-11-16 2020-02-11 徐州乐泰机电科技有限公司 Preparation method of outer rubber tube of tensile compression-resistant high-performance hydraulic oil pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295751A (en) * 1987-05-27 1988-12-02 工業技術院長 Production of two-dimensional stretched staple fiber reinforced composite material
JPH03141638A (en) * 1989-10-26 1991-06-17 Toshiba Ceramics Co Ltd Semiconductor-wafer transfer jig and manufacture thereof
JP2000195998A (en) * 1998-12-28 2000-07-14 Polymatech Co Ltd Heat conductive sheet, its manufacture, and semiconductor device
US8167543B2 (en) 2008-11-28 2012-05-01 Vestas Wind Systems A/S Method of manufacturing a wind turbine rotor blade
CN110774557A (en) * 2019-11-16 2020-02-11 徐州乐泰机电科技有限公司 Preparation method of outer rubber tube of tensile compression-resistant high-performance hydraulic oil pipe

Similar Documents

Publication Publication Date Title
US20050006803A1 (en) Preform for manufacturing a material having a plurality of voids and method of making the same
US5337803A (en) Method of centrifugally casting reinforced composite articles
JPS6015132A (en) Manufacture of composite material reinforced with fiber
JPS62188769A (en) Manufacture of composite material by composite thermal spraying method
JPS60223640A (en) Production of pipe bend
US5295528A (en) Centrifugal casting of reinforced articles
US3923945A (en) Method of making corrosion resistant metal fiber reinforced plastic composites
JPS609568A (en) Production of fiber-reinforced composite metallic material
JPH04275127A (en) Crystalline thermoplastic synthetic resin thin plate and preparation thereof
JPH01245957A (en) Production of fiber reinforced metal base composite material
JPH06106632A (en) Method for molding composite material product
JPH0229497B2 (en)
JPS59150113A (en) Amorphous metal short fiber
JP7233040B1 (en) THERMOPLASTIC RESIN WELDING METHOD AND THERMOPLASTIC RESIN WELDED STRUCTURE
JP3399056B2 (en) Manufacturing method of anisotropic magnet
JPH1067032A (en) Manufacture of hollow injection-molded product
US20210170486A1 (en) Metal part, metal article, and preparation method of the metal part
JPS5989109A (en) Composite material of synthetic resin and low melting-point alloy
JPS60182710A (en) Magnetic-force sizing method and magnetic-force sizing die
JPS6056604B2 (en) Filled thermoplastic resin injection molded product
JPS62212052A (en) Joining method for foaming metal member
JPH02254707A (en) Manufacture of permanent magnet
JP2004300483A (en) Material having structure composed of crystalline substance and amorphous substance
JPS63117188A (en) Molding of roots type pump rotor
JPH02297912A (en) Manufacture of anisotropic resin bond magnet