JPS609568A - Production of fiber-reinforced composite metallic material - Google Patents

Production of fiber-reinforced composite metallic material

Info

Publication number
JPS609568A
JPS609568A JP11578483A JP11578483A JPS609568A JP S609568 A JPS609568 A JP S609568A JP 11578483 A JP11578483 A JP 11578483A JP 11578483 A JP11578483 A JP 11578483A JP S609568 A JPS609568 A JP S609568A
Authority
JP
Japan
Prior art keywords
fibers
short fibers
mold
matrix
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11578483A
Other languages
Japanese (ja)
Inventor
Atsushi Kitamura
厚 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11578483A priority Critical patent/JPS609568A/en
Publication of JPS609568A publication Critical patent/JPS609568A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a fiber-reinforced composite metallic material in which short fibers are uniformly distributed and which has high strength by mixing short fibers for reinforcement, mild fibers, whiskers and matrix metallic powder, putting the mixture into a mold and pouring a molten matrix metal under pressure into the mold. CONSTITUTION:Short fibers such as carbon fibers and metallic fibers, mild fibers or whiskers and matrix metallic powder are mixed at a prescribed ratio and the mixture thereof is put into a mold. The melt of the same or different kind of the matrix metal as or from the matrix metal is pressurized and poured into the mold to form a fiber-reinforced composite metallic powder. The matrix is formed of both of the initially mixed powder and the molten metal to be poured later in this method and therefore the ratio of the matrix metal is easily adjustable. The composite material is uniformly distributed with the short fibers, has uniform and high strength and is easily workable.

Description

【発明の詳細な説明】 この発明は、繊維強化金属後゛合材料の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fiber-reinforced metal composite material.

補強繊維の短m維、ミルドファイバーまたはウィスカー
(以下、これらを総称する場合には短繊維等という)で
マトリクス金属を強化してなる、いわゆる繊維強化金属
複合材料(以下、繊維強化金属複合材料をFRMという
)は、補強lIi雑の連続繊維を一方向に引き揃えた状
態で配置してなるFRMや、そのような一方向引揃え連
続繊維を、いわゆる交差積層配置してなるFRMにくら
べて、特定の方向のみに高い強度を発現させることは難
しいものの、短繊維等をランダムな方向に配置できるこ
とから等方性に優れ、また製造が比較的簡単であること
もあって、強度をそれほど必要としないような部材を構
成する場合に重宝されている。
So-called fiber-reinforced metal composite materials (hereinafter referred to as fiber-reinforced metal composite materials) are made by reinforcing matrix metal with reinforcing fibers such as short fibers, milled fibers, or whiskers (hereinafter collectively referred to as short fibers, etc.). Compared to FRM, which is made by arranging reinforcing miscellaneous continuous fibers aligned in one direction, and FRM, which is made by arranging such unidirectionally aligned continuous fibers in a so-called cross-layered arrangement, Although it is difficult to develop high strength only in a specific direction, it has excellent isotropy because short fibers can be arranged in random directions, and it is relatively easy to manufacture, so it does not require much strength. It is useful when configuring parts that will not be used.

そのような、短繊維等を補強繊維とするFRMを製造す
る方法としては、従来、短繊維等のみを型に入れた後、
その型内にマトリクス金属の溶湯を加圧、注入する方法
が知られている。しかしながら、この従来の方法は、以
下において説明するような欠点を有している。
Conventionally, the method for producing FRM using short fibers as reinforcing fibers is to place only the short fibers in a mold, and then
A known method is to pressurize and inject molten matrix metal into the mold. However, this conventional method has drawbacks as explained below.

すなわち、上記従来の方法は、短繊維等のみを型内に入
れているので、マトリクス金属の溶湯を加圧、注入覆る
際に、短繊維等が直接静的な力を受【プ、特にマトリク
ス金属との濡れ性の悪い短繊維等を使用する場合にその
短繊維等が一方向に押しやられ、短繊維等が過多な部分
とマトリクス金属が過多な部分とができ、均一なFRM
を製造づるのが難しい。また、短繊維等に直接静的な力
が加わることから、m帷体積含有率が異常に高くなる傾
向が現われやすく、上記含有率のコントロールが難しい
という欠点もある。含有率が異常に高くなると、変形に
対する抵抗が増し、FRMは大変脆いものになってしま
うばかりか、圧延や押出しなどの後加工も困難になる。
In other words, in the conventional method described above, only the short fibers, etc. are placed in the mold, so when the molten matrix metal is pressurized, poured, and covered, the short fibers, etc. are directly subjected to static force. When using short fibers that have poor wettability with metals, the short fibers are pushed in one direction, creating areas with too much short fibers and areas with too much matrix metal, resulting in uniform FRM.
is difficult to manufacture. Furthermore, since a static force is directly applied to the short fibers, etc., the m-thickness volume content tends to become abnormally high, and there is also the drawback that it is difficult to control the content. If the content is abnormally high, the resistance to deformation increases and the FRM not only becomes very brittle, but also becomes difficult to perform post-processing such as rolling or extrusion.

この発明の目的は、従来の方法の上記欠点を解決し、短
繊維等の分布が一様であるばかりか、その含有率のコン
トロールが容易で、均質で強度が高く、また加工が容易
なFRMを製造する方法を提供するにある。
The purpose of this invention is to solve the above-mentioned drawbacks of the conventional method, and to produce an FRM that not only has a uniform distribution of short fibers, but also has easy control of the content, is homogeneous, has high strength, and is easy to process. The purpose is to provide a method for manufacturing.

上記目的を達成するために、この発明においては、補強
繊維の短繊維、ミルドファイバーまたはウィスカーとマ
トリクス金属の粉末との混合物を型に入れた後、その型
内に前記マトリクス金属と同種または異種のマトリクス
金属の溶湯を加圧、注入することを特徴とする、繊維強
化金属複合材料の製造方法が提供される。
In order to achieve the above object, in the present invention, a mixture of reinforcing short fibers, milled fibers or whiskers and matrix metal powder is placed in a mold, and then a mixture of the same type or different type as the matrix metal is placed in the mold. A method for manufacturing a fiber-reinforced metal composite material is provided, which comprises pressurizing and injecting a molten matrix metal.

この発明の方法を詳細に説明するに、この発明において
は、まず、所望の混合割合の短繊維等とマトリクス金属
の粉末との混合物を作り、その混合物を所望の形をした
型の中に充填する。次に、上記型の中に、71〜リクス
金属の溶湯を、好ましくは200〜2000Kに]/C
l112 (1)圧力で注入する。つまり、鋳込むわけ
である。溶湯の温度は、マトリクス金属の融点から、融
点以上250℃までの範囲であるのが好ましい。
To explain the method of this invention in detail, in this invention, first, a mixture of short fibers etc. and matrix metal powder in a desired mixing ratio is made, and the mixture is filled into a mold having a desired shape. do. Next, in the above mold, a molten metal of 71 to 60% is added, preferably at a temperature of 200 to 2000K]/C
l112 (1) Inject with pressure. In other words, it is cast. The temperature of the molten metal is preferably in the range from the melting point of the matrix metal to 250° C. above the melting point.

上記において、短繊維等は、FRMの補強繊維を構成す
る、たとえば炭素、炭化ケイ素、アルミナ、アルミナ−
シリカ、ボロン、金属などからなる。短繊維等が短繊維
からなる場合、その長さは、要するにマトリクス金属の
粉末との均一な混合が可能であればよいのであって、通
常10111111以下のものが使用される。好ましい
長さは、平均長で1〜5mmである。また、ミルドファ
イバーの場合には、平均長30〜1000μ程度である
のが好ましい。さらに、ウィスカーの場合には、平均長
50〜200μ程度である。また、短繊維やミルドファ
イバーの直径は、通常、5〜20μ程度である。ウィス
カーは、これよりも細いのが普通である。
In the above, short fibers etc. are carbon, silicon carbide, alumina, alumina, etc., which constitute reinforcing fibers of FRM.
It consists of silica, boron, metal, etc. When the short fibers etc. are short fibers, the length thereof may be short as long as it can be uniformly mixed with the matrix metal powder, and a length of 10111111 or less is usually used. The preferred length is 1 to 5 mm in average length. Moreover, in the case of milled fibers, the average length is preferably about 30 to 1000 μm. Furthermore, in the case of whiskers, the average length is about 50 to 200 microns. Further, the diameter of short fibers and milled fibers is usually about 5 to 20 μm. Whiskers are usually thinner than this.

マトリクス金属の粉末は、FRMのマトリクス金属とし
て通常使用される、たとえばアルミニウム、マグネシウ
ム、銅、チタン、ニッケル、錫、鉛や、これらの少なく
とも1種を主成分とづる合金からなっている。このよう
な粉末の平均粒径は、特に制限があるわけではないが、
通常、10〜60μ程痕のものが使用される。
The matrix metal powder is made of aluminum, magnesium, copper, titanium, nickel, tin, lead, or an alloy containing at least one of these as a main component, which are commonly used as matrix metals for FRM. The average particle size of such powder is not particularly limited, but
Usually, one with a trace of 10 to 60 μm is used.

短繊維等とマトリクス金属の粉末との混合(ま、たとえ
ばミキサーやボールミルなどを使用して行えばよい。こ
の場合、両者の混合割合は、製造したいFRMの繊維体
積含有率を育成して適宜法められる。
Mixing of short fibers, etc. and matrix metal powder (for example, this can be done using a mixer or a ball mill. In this case, the mixing ratio of the two can be determined as appropriate depending on the fiber volume content of the FRM to be manufactured. I can't stand it.

マトリクス金属の溶湯もまた、上記粉末と同種の金属ま
たは合金からなるものであるのが好ましい。しかしなが
ら、両者は異なっていてもよいものでおる。すなわち、
同一種類の場合には互に融り合って一体化するし、異な
る種類の場合には合金を形成したり、粉末が析出物とし
てマl−リクス中に分散した状態になる。
Preferably, the molten matrix metal is also made of the same type of metal or alloy as the powder. However, the two may be different. That is,
If they are of the same type, they will fuse together and become integrated; if they are of different types, they will form an alloy, or the powder will be dispersed as precipitates in the matrix.

この発明においては、マトリクスが、当初混合した粉末
と、後に注入する溶湯の双方によって形成される結果、
71〜リクス金属の割合、換言すればli維体積含有率
のコントロールが大変容易である。
In this invention, as a result of the matrix being formed by both the initially mixed powder and the molten metal that is subsequently injected,
It is very easy to control the ratio of 71 to Lix metal, in other words, the Li fiber volume content.

また、この発明の方法によれば、短繊維等とマトリクス
金属の粉末との混合物に、たとえばアルミナ粉末などの
レラミックス粉末をさらに混合づ゛るなどして、いわゆ
る第三成分を含むFRMを製造することも可能になる。
Furthermore, according to the method of the present invention, an FRM containing a so-called third component is produced by further mixing Reramix powder such as alumina powder into a mixture of short fibers and matrix metal powder. It will also be possible to do so.

以下、実施例に基づいてこめ発明の方法をさらに詳細に
説明する。
Hereinafter, the method of the present invention will be explained in more detail based on Examples.

実施例 東し株式会社製炭素繊維゛トレカ” M 40を長さ約
2111mに切断し、短繊維を得た。
Example Carbon fiber "Trading Card" M40 manufactured by Toshi Co., Ltd. was cut into a length of about 2111 m to obtain short fibers.

次に、上記mmuと、平均粒径20μのアルミニウム粉
末とを、体積で炭素繊維1に対してアルミニウム粉末が
2になるように混合し、この混合物を円柱状のキャビテ
ィを有する型に入れた後、その型内にアルミニウム合金
(J ts AC4C)の溶湯(温度750℃)を50
0K(j/cm2の圧力で注入し、FRMを得た。この
FRMの繊維体積含有率は、約25%であった。
Next, the above mmu and aluminum powder with an average particle size of 20μ are mixed in a volume of 1 part carbon fiber to 2 parts aluminum powder, and this mixture is placed in a mold having a cylindrical cavity. , 50% of the molten aluminum alloy (Jts AC4C) (temperature 750°C) was placed in the mold.
The FRM was obtained by injection at a pressure of 0 K (j/cm2). The fiber volume content of this FRM was about 25%.

次に、上記FRMの断面を光学顕微鏡で観察したところ
、アルミニウム粉末とアルミニウム合金とが完全に一体
化しており、両者の判別ができなかった。また、短繊維
の分散が極めて均一で、著しい短繊維過多の部分は認め
られなかった。
Next, when the cross section of the above FRM was observed using an optical microscope, it was found that the aluminum powder and the aluminum alloy were completely integrated, and it was not possible to distinguish between the two. In addition, the short fibers were dispersed extremely uniformly, and no areas with a significant excess of short fibers were observed.

次に、上記FRMを、500℃で、かつ押出比1:10
で熱間押出し加工をしたところ、ひび割れのない良好な
丸棒状のFRMが得られた。
Next, the above FRM was heated at 500°C and at an extrusion ratio of 1:10.
When hot extrusion was carried out, a good round bar-shaped FRM with no cracks was obtained.

次に、3点曲げ試験機を用い、上記丸棒(長さ約85m
m、直径約10IllIIl)の曲げ試験を行ったとこ
ろ、曲げ強度は約17K(]/1111112であった
Next, using a three-point bending tester, the above round bar (length approximately 85 m
When a bending test was conducted with a diameter of approximately 10IllIIl), the bending strength was approximately 17K(]/1111112).

比較例 上記実施例と同様にして、しかし短繊維のみを型に入れ
、短繊維とマトリクス金属の粉末との混合物は使用しな
いでFRMを得た。このFRMの繊維体積含有率は、約
60%と大変高かった。
Comparative Example An FRM was obtained in the same manner as in the above example, but only short fibers were placed in the mold and no mixture of short fibers and matrix metal powder was used. The fiber volume content of this FRM was very high at about 60%.

」−記FRMを実施例と同様に熱間押出し加工したが、
繊維体積含有率が高すぎて変形しにくいためにひび割れ
がひどく、良好な丸棒状のFRMが得られなかった。こ
の丸棒について上記実施例と同様に試験した曲げ強度は
、わずか約0.3Kg/aun2にずぎなかった。
”-The FRM was hot extruded in the same manner as in the example, but
Since the fiber volume content was too high and it was difficult to deform, cracks were severe and a good round bar-shaped FRM could not be obtained. The bending strength of this round bar was tested in the same manner as in the above example and was only about 0.3 kg/aun2.

特許出願人 東し株式会社Patent applicant: Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 補強繊維の短繊維、ミルドファイバーまたはウィスカー
とマトリクス金属の粉末との混合物を型に入れた後、そ
の型内に前記マトリクス金属と同種または異種のマトリ
クス金属の溶湯を加圧、注入づ−ることを特徴とする、
m維強化金属複合材料の製造方法。
After placing a mixture of short reinforcing fibers, milled fibers, or whiskers and matrix metal powder into a mold, pressurizing and injecting a molten metal of the same type or different type as the matrix metal into the mold. characterized by
A method for manufacturing a fiber-reinforced metal composite material.
JP11578483A 1983-06-29 1983-06-29 Production of fiber-reinforced composite metallic material Pending JPS609568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11578483A JPS609568A (en) 1983-06-29 1983-06-29 Production of fiber-reinforced composite metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11578483A JPS609568A (en) 1983-06-29 1983-06-29 Production of fiber-reinforced composite metallic material

Publications (1)

Publication Number Publication Date
JPS609568A true JPS609568A (en) 1985-01-18

Family

ID=14670975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11578483A Pending JPS609568A (en) 1983-06-29 1983-06-29 Production of fiber-reinforced composite metallic material

Country Status (1)

Country Link
JP (1) JPS609568A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597424A (en) * 1979-01-22 1980-07-24 Nippon Steel Corp Preparation of heat-treated steel with excellent low temperature toughness
JPH02173225A (en) * 1988-12-26 1990-07-04 Nissan Motor Co Ltd Fiber reinforced composite material
US5000248A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5000247A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Method for forming metal matrix composite bodies with a dispersion casting technique and products produced thereby
US5007475A (en) * 1988-11-10 1991-04-16 Lanxide Technology Company, Lp Method for forming metal matrix composite bodies containing three-dimensionally interconnected co-matrices and products produced thereby
US5020584A (en) * 1988-11-10 1991-06-04 Lanxide Technology Company, Lp Method for forming metal matrix composites having variable filler loadings and products produced thereby
US5236032A (en) * 1989-07-10 1993-08-17 Toyota Jidosha Kabushiki Kaisha Method of manufacture of metal composite material including intermetallic compounds with no micropores
US5301738A (en) * 1988-11-10 1994-04-12 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5518061A (en) * 1988-11-10 1996-05-21 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5803153A (en) * 1994-05-19 1998-09-08 Rohatgi; Pradeep K. Nonferrous cast metal matrix composites

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893834A (en) * 1981-11-30 1983-06-03 Nippon Carbon Co Ltd Manufacture of inorganic fiber reinforced metallic composite material
JPS5931837A (en) * 1982-08-12 1984-02-21 Tokai Carbon Co Ltd Production of sic wisker reinforced al composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893834A (en) * 1981-11-30 1983-06-03 Nippon Carbon Co Ltd Manufacture of inorganic fiber reinforced metallic composite material
JPS5931837A (en) * 1982-08-12 1984-02-21 Tokai Carbon Co Ltd Production of sic wisker reinforced al composite material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597424A (en) * 1979-01-22 1980-07-24 Nippon Steel Corp Preparation of heat-treated steel with excellent low temperature toughness
US5000248A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5000247A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Method for forming metal matrix composite bodies with a dispersion casting technique and products produced thereby
US5007475A (en) * 1988-11-10 1991-04-16 Lanxide Technology Company, Lp Method for forming metal matrix composite bodies containing three-dimensionally interconnected co-matrices and products produced thereby
US5020584A (en) * 1988-11-10 1991-06-04 Lanxide Technology Company, Lp Method for forming metal matrix composites having variable filler loadings and products produced thereby
US5301738A (en) * 1988-11-10 1994-04-12 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5518061A (en) * 1988-11-10 1996-05-21 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5620804A (en) * 1988-11-10 1997-04-15 Lanxide Technology Company, Lp Metal matrix composite bodies containing three-dimensionally interconnected co-matrices
JPH02173225A (en) * 1988-12-26 1990-07-04 Nissan Motor Co Ltd Fiber reinforced composite material
US5236032A (en) * 1989-07-10 1993-08-17 Toyota Jidosha Kabushiki Kaisha Method of manufacture of metal composite material including intermetallic compounds with no micropores
US5803153A (en) * 1994-05-19 1998-09-08 Rohatgi; Pradeep K. Nonferrous cast metal matrix composites

Similar Documents

Publication Publication Date Title
JPS609568A (en) Production of fiber-reinforced composite metallic material
JPS58167736A (en) Manufacture of composite body containing dispersed particle
US3441392A (en) Preparation of fiber-reinforced metal alloy composites by compaction in the semimolten phase
CN112974773B (en) Method for preparing high-strength plastic beryllium-aluminum composite material by pressure infiltration
Kang et al. The influence of fabrication parameters on the deformation behaviour of the preform of metal-matrix composites during the squeeze-casting processes
JPH03177532A (en) Lightweight low expansion composite material
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
SE447126B (en) FORMAT FOREMAL INCLUDING A BASKET OF NON-RESPONSIBLE METAL PARTICLES AND AN INFILTRATED CONTINUOUS METAL PHASE AS WELL AS MANUFACTURING THIS
JPS62218527A (en) Manufacture of extruded magnesium alloy material having superior modulus of elasticity
EP0028670B1 (en) Process for preparing bodies containing highly radioactive wastes
US3674472A (en) Method for producing iron base sintered alloys containing copper
CH689012A5 (en) Method and apparatus for the production of metal matrix composites.
RU2177047C1 (en) Method of preparing aluminum-based alloy
JPS6012269A (en) Production of fiber reinforced composite metallic material
JPH0672271B2 (en) Method for producing extruded aluminum alloy having excellent elastic modulus
JPS59136437A (en) Preparation of fiber reinforced metal composite material
CN116475411B (en) High-strength high-toughness low-oxygen component and preparation method thereof
NO175267B (en) Particle reinforced composite material and process for its preparation
JP2862677B2 (en) Copper alloy melting and casting methods
DE2745781C2 (en)
JPS6137315A (en) Manufacture of aluminum extruding material
CA1207565A (en) Method for inducing superplastic properties in nonsuperplastic metal and alloy powders
JPS596339A (en) Preparation of aluminum alloy
JPH05277705A (en) Production of metal matrix composite material reinforced by vls silicon carbide whisker
JPS62235437A (en) Production of aluminum alloy extruded material having excellent neutron absorptivity