JP2862677B2 - Copper alloy melting and casting methods - Google Patents

Copper alloy melting and casting methods

Info

Publication number
JP2862677B2
JP2862677B2 JP40680890A JP40680890A JP2862677B2 JP 2862677 B2 JP2862677 B2 JP 2862677B2 JP 40680890 A JP40680890 A JP 40680890A JP 40680890 A JP40680890 A JP 40680890A JP 2862677 B2 JP2862677 B2 JP 2862677B2
Authority
JP
Japan
Prior art keywords
copper
melting point
melting
casting
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP40680890A
Other languages
Japanese (ja)
Other versions
JPH04224640A (en
Inventor
元久 宮藤
功 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP40680890A priority Critical patent/JP2862677B2/en
Publication of JPH04224640A publication Critical patent/JPH04224640A/en
Application granted granted Critical
Publication of JP2862677B2 publication Critical patent/JP2862677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、銅の融点よりも高い融
点の成分元素を添加してなる銅合金の溶解、鋳造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting and casting a copper alloy to which a component element having a melting point higher than that of copper is added.

【0002】[0002]

【従来の技術】従来、銅合金の溶解、鋳造方法として
は、銅原料および合金成分元素原料を冷塊の状態で原料
配合して溶解炉に投入し、溶解、鋳造する方法、または
銅原料を先に溶製し、その溶解炉あるいは受け湯した炉
内の銅溶湯温度を銅融点より 100℃以上高い温度に保持
した後、固体の合金成分元素原料を投入して目的の成分
組成に調整した後、鋳造する方法等が通常行われ、銅の
融点よりも高い融点の成分元素(例えば鉄、コバルト、
クロム等,以下高融点元素と言う)を添加してなる銅合
金の溶解、鋳造方法も同様の方法が採用されている。
2. Description of the Related Art Conventionally, as a method of melting and casting a copper alloy, a method of blending a raw material of a copper raw material and an alloy component element in a state of a cold lump and putting the raw material into a melting furnace, and melting and casting, or a method of melting and casting the copper raw material After maintaining the temperature of the molten copper in the melting furnace or the receiving furnace at 100 ° C or more higher than the copper melting point, a solid alloy component element raw material was added to adjust the target component composition. Thereafter, a casting method or the like is usually performed, and component elements having a melting point higher than the melting point of copper (eg, iron, cobalt,
A similar method is employed for melting and casting a copper alloy to which chromium or the like (hereinafter, referred to as a high melting point element) is added.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した銅
合金の溶解、鋳造方法により、高融点元素を添加してな
る銅合金の溶解、鋳造を行うと、高融点元素が銅溶湯中
に均一に溶解するまでに多くの時間を要する。その上、
たとえ溶解したとしても、未固溶の元素が残留すること
がしばしば発生する。また銅の溶湯温度を鋳造温度より
も高い温度で長時間維持し高融点元素の溶解均質化を促
進するため、溶湯中に水素ガスが多く吸蔵され健全な鋳
塊が得難くなる。
By the way, when the copper alloy obtained by adding the high melting point element is melted and cast by the above-described copper alloy melting and casting method, the high melting point element is uniformly dispersed in the molten copper. It takes a lot of time to dissolve. Moreover,
Even if dissolved, undissolved elements often remain. In addition, since the temperature of the molten copper is maintained at a temperature higher than the casting temperature for a long time to promote the homogenization of the high-melting element, a large amount of hydrogen gas is occluded in the molten metal, making it difficult to obtain a sound ingot.

【0004】このように、従来の、高融点元素を添加し
てなる銅合金の溶解、鋳造方法では、銅溶湯を比較的高
い温度で長時間維持しなければならないため、エネルギ
的に経済的でない上、高融点元素が銅溶湯中に未固溶の
まま残留したり、溶湯中に水素ガスが多く吸蔵される問
題がある。
[0004] As described above, in the conventional method of melting and casting a copper alloy to which a high melting point element is added, the copper melt must be maintained at a relatively high temperature for a long time, which is not economical in terms of energy. In addition, there are problems that the high melting point element remains undissolved in the molten copper and that a large amount of hydrogen gas is absorbed in the molten metal.

【0005】本発明は、上記の問題点に鑑みてなされた
もので、その目的は、未固溶の高融点元素の無い且つ吸
蔵水素ガス量の少ない健全な鋳塊を得るための、改善さ
れた高融点元素を添加してなる銅合金の溶解、鋳造方法
を提供することである。
The present invention has been made in view of the above problems, and an object thereof is to provide an improved ingot for obtaining a sound ingot with no undissolved high melting point element and a small amount of stored hydrogen gas. It is an object of the present invention to provide a method for melting and casting a copper alloy to which a high melting point element is added.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係わる銅合金の溶解、鋳造方法は、銅を
主成分とする溶湯と、銅の融点よりも高い融点の成分元
素(高融点元素)の溶湯とを別々の炉で溶製し、鋳造前
に銅を主成分とする溶湯に高融点元素の溶湯を注入混合
し目標成分組成に調整した後、鋳造するものである。
In order to achieve the above object, a method for melting and casting a copper alloy according to the present invention comprises the steps of: melting a molten metal containing copper as a main component; and a component element having a melting point higher than the melting point of copper. (Melting element) and a molten metal in a separate furnace, and before casting, a molten metal containing copper as a main component is poured and mixed with the molten metal of a high melting element to adjust to a target component composition and then cast. .

【0007】[0007]

【作用】本発明では、銅合金の主成分である銅と高融点
元素とを別々の溶解炉で溶解するので、銅および高融点
元素をそれぞれ必要以上の高い温度にすることなく溶解
することができ、しかも溶解後の両溶湯を適宜目標成分
組成になるように注入混合するものであるから、溶解後
の銅溶湯を長時間高い温度に保持することなく完全溶解
した状態で高融点元素を添加でき、またこのように銅溶
湯を長時間高い温度に保持する必要がないので水素ガス
の吸蔵も少なくできる。然るに、その後の鋳造により、
未固溶の高融点元素の無い且つ吸蔵水素ガス量の少ない
健全な鋳塊を得ることができる。
According to the present invention, copper and the high melting point element, which are the main components of the copper alloy, are melted in separate melting furnaces. It is possible to mix both molten metals after melting, so that the desired composition of the components is obtained.Therefore, the high melting point element is added in a state where the molten copper is completely melted without holding it at a high temperature for a long time. In addition, since it is not necessary to maintain the copper melt at a high temperature for a long time, occlusion of hydrogen gas can be reduced. However, by the subsequent casting,
It is possible to obtain a sound ingot with no undissolved high melting point element and a small amount of stored hydrogen gas.

【0008】また、銅と高融点元素とを別々の溶解炉で
溶解するので、銅溶湯を長時間高い温度に保持する必要
がない上、高融点元素の溶解については、それぞれの物
性値に応じた最適な小型溶解炉、例えば高周波誘導炉あ
るいはガス炉等を適宜使用でき、エネルギ的に経済的に
銅合金溶湯を得ることができる。
Further, since copper and the high melting point element are melted in separate melting furnaces, it is not necessary to maintain the copper melt at a high temperature for a long time, and the melting of the high melting point element depends on the respective physical properties. An optimal compact melting furnace, for example, a high-frequency induction furnace or a gas furnace can be used as appropriate, and a copper alloy melt can be obtained economically with energy.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。本実施例
では、表1に示す高融点元素(鉄、ニッケル、コバル
ト)の含有割合の各銅合金を、以下の手順で溶製、鋳造
してその鋳塊を得た。
Embodiments of the present invention will be described below. In the present example, each copper alloy having the content ratio of the high melting point elements (iron, nickel, and cobalt) shown in Table 1 was melted and cast by the following procedure to obtain an ingot.

【0010】先ず、電気銅および銅スクラップを原料と
し小型電気炉を使用して銅溶湯を得る。この時銅溶湯の
温度を表1に示す高融点元素の含有割合における液相線
より約50℃高い温度(表1には溶湯保持温度として示
す)に保持する。次いでこの銅溶湯に、別の高周波誘導
炉で溶解した鉄、ニッケルまたはコバルトの高融点元素
の溶湯を表1に示す含有量になるように注入するととも
に、脱酸等その他の成分を加えた後5分以内に残りの電
気銅を投入して鋳込温度を補正する。得られた合金溶湯
を幅85mm×厚さ50mm×高さ 200mmのブックモールドに鋳
造した。この要領で表1に示す各合金組成の鋳塊を得
た。
First, a molten copper is obtained by using a small electric furnace with electrolytic copper and copper scrap as raw materials. At this time, the temperature of the molten copper is maintained at a temperature approximately 50 ° C. higher than the liquidus line in the content ratio of the high melting point element shown in Table 1 (shown as a molten metal holding temperature in Table 1). Next, into this molten copper, a molten metal of a high melting point element of iron, nickel or cobalt dissolved in another high-frequency induction furnace was poured so as to have a content shown in Table 1, and other components such as deoxidation were added. Add the remaining electrolytic copper within 5 minutes to correct the casting temperature. The obtained molten alloy was cast into a book mold having a width of 85 mm, a thickness of 50 mm and a height of 200 mm. In this manner, ingots of each alloy composition shown in Table 1 were obtained.

【0011】[0011]

【表1】 [Table 1]

【0012】一方、比較例として、表1に示す各銅合金
と同じ成分組成に配合した電気銅および銅スクラップと
固体状態の高融点元素からなる原料を小型電気炉に投入
し表1に示す溶湯保持温度に保持して溶解した後、脱酸
等その他の成分を加え、さらに鋳込温度を調整した後、
得られた合金溶湯を幅85mm×厚さ50mm×高さ 200mmのブ
ックモールドに鋳造した。
On the other hand, as a comparative example, a raw material consisting of electrolytic copper and copper scrap mixed with the same composition as each of the copper alloys shown in Table 1 and a solid-state high-melting element was charged into a small electric furnace and the molten metal shown in Table 1 was obtained. After melting at the holding temperature, after adding other components such as deoxidation, and further adjusting the casting temperature,
The obtained molten alloy was cast into a book mold having a width of 85 mm, a thickness of 50 mm and a height of 200 mm.

【0013】上述した本発明法により得られた鋳塊と比
較法で得られた鋳塊の、それぞれの断面ミクロ組織を観
察し高融点元素の未固溶物を調査し、また水素ガスの吸
蔵状態を調査した。またそれぞれのXMAによる表面分
析を行った。これらの調査結果について、未固溶物を調
査と水素ガスの吸蔵状態の調査結果を表2に合わせて示
す、また試料 No.2の鉄のXMAによる表面分析結果を
図1(倍率:×1000)に示す。
The cross-sectional microstructures of the ingot obtained by the above-described method of the present invention and the ingot obtained by the comparative method are observed, and the undissolved material of the high melting point element is investigated. The condition was investigated. In addition, surface analysis was performed using each XMA. Table 2 shows the results of the investigation of undissolved materials and the state of occlusion of hydrogen gas. Table 1 shows the results of XMA surface analysis of iron of sample No. 2 (magnification: × 1000). ).

【0014】[0014]

【表2】 [Table 2]

【0015】表2により明らかなように、本発明方法に
より得た銅合金鋳塊では、高融点元素の銅マトリックス
内への固溶は完全であり1μm以上の大きさの未固溶物
は認められなかった。また水素ガスの吸蔵状態も No.1
およびNo.5の試料について調査した結果では各々0.5pp
m、0.3ppmと少ない量で、健全な鋳塊であった。これに
対し、比較法により得た銅合金鋳塊では、高融点元素の
銅マトリックス内への固溶は不完全であり、いずれの銅
合金も10μm前後乃至20μm前後の大きさの未固溶物が
多量に認められた。また水素ガスの吸蔵状態も各々4.2p
pm、3.8ppmと極めて高い量で、鋳塊の健全性が劣るもの
であった。
As is apparent from Table 2, in the copper alloy ingot obtained by the method of the present invention, the solid solution of the high melting point element in the copper matrix is complete, and an unsolid solution having a size of 1 μm or more is recognized. I couldn't. No.1 hydrogen storage condition
And No.5 sample showed 0.5pp each.
m, 0.3 ppm, a small amount, it was a sound ingot. On the other hand, in the copper alloy ingot obtained by the comparative method, the solid solution of the high melting point element in the copper matrix is incomplete, and any copper alloy has an unsolid solution having a size of about 10 μm to about 20 μm. Was found in large quantities. The hydrogen gas storage state is 4.2p each.
At extremely high amounts of pm and 3.8 ppm, the soundness of the ingot was poor.

【0016】また図1から明らかなように、本発明方法
により得た銅合金鋳塊では、鋳塊中のFeが1μm以下で
均一に分布しているのに対し、比較法により得た銅合金
鋳塊では未固溶物の粗大なFeが多数認められる。
As is apparent from FIG. 1, in the copper alloy ingot obtained by the method of the present invention, Fe in the ingot is uniformly distributed at 1 μm or less. In the ingot, a large number of unsolidified coarse Fe is recognized.

【0017】[0017]

【発明の効果】以上説明したように、本発明に係わる銅
合金の溶解、鋳造方法によれば、未固溶の高融点元素を
残留させることなく且つ水素ガスの吸蔵量を増加させる
ことなく溶解、鋳造ができ、延いては未固溶の高融点元
素の無い且つ吸蔵水素ガス量の少ない健全な鋳塊を得る
ことができる。
As described above, according to the method for melting and casting a copper alloy according to the present invention, the copper alloy is melted without leaving undissolved high melting point elements and without increasing the amount of hydrogen gas absorbed. In addition, a sound ingot free of undissolved high melting point elements and having a small amount of stored hydrogen gas can be obtained.

【0018】[0018]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1(A) は、本発明法の鉄のXMAによる
属組織図、図1(B) は、比較法の鉄のXMAによる金属
組織図である。
1] Fig. 1 (A), gold by XMA iron present invention method
Genus organization chart, FIG. 1 (B), a metal by XMA iron comparison method
It is an organization chart.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅の融点よりも高い融点の成分元素を添
加してなる銅合金の溶解、鋳造方法であって、銅を主成
分とする溶湯と、銅の融点よりも高い融点の成分元素の
溶湯とを別々の炉で溶製し、鋳造前に銅を主成分とする
溶湯に銅の融点よりも高い融点の成分元素の溶湯を注入
混合し目標成分組成に調整した後、鋳造することを特徴
とする銅合金の溶解、鋳造方法。
1. A method for melting and casting a copper alloy by adding a component element having a melting point higher than the melting point of copper, comprising: a molten metal containing copper as a main component; and a component element having a melting point higher than the melting point of copper. Melt in a separate furnace, and before casting, inject and mix a melt of a component element with a melting point higher than the melting point of copper into the melt containing copper as the main component, adjust to the target component composition, and then cast. Melting and casting methods for copper alloys.
JP40680890A 1990-12-26 1990-12-26 Copper alloy melting and casting methods Expired - Fee Related JP2862677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40680890A JP2862677B2 (en) 1990-12-26 1990-12-26 Copper alloy melting and casting methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40680890A JP2862677B2 (en) 1990-12-26 1990-12-26 Copper alloy melting and casting methods

Publications (2)

Publication Number Publication Date
JPH04224640A JPH04224640A (en) 1992-08-13
JP2862677B2 true JP2862677B2 (en) 1999-03-03

Family

ID=18516433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40680890A Expired - Fee Related JP2862677B2 (en) 1990-12-26 1990-12-26 Copper alloy melting and casting methods

Country Status (1)

Country Link
JP (1) JP2862677B2 (en)

Also Published As

Publication number Publication date
JPH04224640A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
US3194656A (en) Method of making composite articles
EP0079755B1 (en) Copper base spinodal alloy strip and process for its preparation
JP2003521582A (en) Steel grain refining method, steel grain refining alloy and method for producing grain refining alloy
CN109022925A (en) A method of reducing Laves phase in nickel base superalloy steel ingot
KR20020024848A (en) Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate and its manufacturing method
IE52603B1 (en) Process for the production of amorphous metal alloys based on iron,phosphorus,carbon and chromium
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
JP2862677B2 (en) Copper alloy melting and casting methods
US6210460B1 (en) Strontium-aluminum intermetallic alloy granules
JPH04305353A (en) Method for casting beryllium-copper alloy
JPH05140669A (en) Low oxygen ti-al alloy and its manufacture
JP2989053B2 (en) Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
KR100438409B1 (en) Composite solders and process method of composite solders
US4014689A (en) Method of fabricating a contact material for high-power vacuum circuit breakers
JPS60228651A (en) Hydrogen storage substance and increase of storage capacity
CN112359247A (en) Cu-Hf-Si-Ni-Ce copper alloy material and preparation method thereof
JPH0356295B2 (en)
KR100278117B1 (en) High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it's manufacturing method
US4014688A (en) Contact material for high-power vacuum circuit breakers
JPH0681068A (en) Method for casting heat resistant mg alloy
US3993481A (en) Contact material for high-power vacuum circuit breakers
JP3666822B2 (en) Master alloy for adding Zr into Mg alloy
CN116043150A (en) Method for improving copper alloy segregation
Panov et al. Influence of the Degree of Oxidation of Magnesium Master Alloys on the Mechanical Properties of Nodular Irons

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981117

LAPS Cancellation because of no payment of annual fees