KR20020024848A - Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate and its manufacturing method - Google Patents

Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate and its manufacturing method Download PDF

Info

Publication number
KR20020024848A
KR20020024848A KR1020000056620A KR20000056620A KR20020024848A KR 20020024848 A KR20020024848 A KR 20020024848A KR 1020000056620 A KR1020000056620 A KR 1020000056620A KR 20000056620 A KR20000056620 A KR 20000056620A KR 20020024848 A KR20020024848 A KR 20020024848A
Authority
KR
South Korea
Prior art keywords
copper
alloy
elements
nickel
tin
Prior art date
Application number
KR1020000056620A
Other languages
Korean (ko)
Other versions
KR100375306B1 (en
Inventor
김창주
한승전
오충섭
이주섭
서연태
손점부
김영찬
이상경
Original Assignee
황해웅
한국기계연구원
서일태
한국통산주식회사
오충섭
영일특수금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황해웅, 한국기계연구원, 서일태, 한국통산주식회사, 오충섭, 영일특수금속 주식회사 filed Critical 황해웅
Priority to KR10-2000-0056620A priority Critical patent/KR100375306B1/en
Publication of KR20020024848A publication Critical patent/KR20020024848A/en
Application granted granted Critical
Publication of KR100375306B1 publication Critical patent/KR100375306B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: A high strength alloy having new performance is provided in which some of principle alloy elements of Ni and Sn are reduced while elements having functions capable of supplementing material strength and controlling fine structure are added accordingly, and a method for manufacturing the Cu-Ni-Sn alloy is provided. CONSTITUTION: In a copper alloy for high strength wire rods and plates, the Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd and Pr based alloy comprises 1.0 to 10.0 wt.% of Ni, 0.1 to 10.0 wt.% of Mn, 0.1 to 10.0 wt.% of Sn, 0.1 to 5.0 wt.% of one or more elements selected from the group consisting of Al and Si, 0.01 to 1.0 wt.% of one or more elements selected from the group consisting of Ce, La, Nd and Pr, and a balance of Cu. The method for manufacturing the Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd and Pr based alloy for high strength wire rods and plates comprises the steps of weighing alloy elements; fusing the alloy elements by continuously injecting and agitating the elements well after the weighing step; manufacturing an ingot by continuously casting or die casting the sufficiently fused alloy elements into plates or rods; performing solution treatment on the manufactured ingot; and aging the solution treated rods or plates.

Description

고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-알루미늄(Al),실리콘(Si)-세리움(Ce),란탄(La), 니오디미움(Nd),프로메티움(Pr) 합금 및 그 제조방법{Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate and its manufacturing method}Copper (nick) -nickel (manganese) -manganese (Ni) -tin (nium) -aluminium (A), silicon (cerium), cerium (ce), lanthanum (La) and nidium Nd), Promethium (Pr) alloy and its manufacturing method {Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate and its manufacturing method}

본 발명은 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-알루미늄(Al), 실리콘(Si)-세리움(Ce), 란탄(La), 니오디미움(Nd), 프로메티움(Pr) 합금 및 그 제조방법에 관한 것이다.The present invention is a copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -aluminum (Al), silicon (Si)-cerium (Ce), lanthanum (La), ni Odium (Nd), promethium (Pr) alloys and a method for producing the same.

기존의 구리합금 중에서 스피노달 분해강화 효과로써 고강도를 나타내는 것으로는 구리(Cu)-니켈(Ni)-주석(Sn)계 3원합금이 있으며, 이 합금의 대표적인 조성은 중량 퍼센트로서 9%의 니켈(Ni)과 6%의 주석(Sn)을 함유하며 나머지 85%는 구리(Cu)로 구성된다.Among the existing copper alloys, copper (Cu) -nickel (Ni) -tin (Sn) -based ternary alloys exhibit high strength as a spinodal decomposition strengthening effect. The typical composition of this alloy is 9% nickel by weight. (Ni) and 6% tin (Sn), with the remaining 85% composed of copper (Cu).

85% 구리(Cu)-9% 니켈(Ni)-6% 주석(Sn)계 3원합금은 스피노달 분해강화 효과를 이용한 가공열처리를 통하여 인장강도를 1,000MPa 이상 얻을 수 있어서, 전기부품이나 특수 목적용 고강도 스프링용으로 사용되고 있다.85% copper (Cu)-9% nickel (Ni)-6% tin (Sn) -based ternary alloy can obtain tensile strength of 1,000 MPa or more through processing heat treatment using spinodal decomposition strengthening effect. It is used for the purpose high strength spring.

그러나 구리(Cu)-니켈(Ni)-주석(Sn)계 스피노달 분해강화 합금에서 주석의 함량이 6% 이상이 되면 주석의 주상정 입계석출로 인하여 주괴의 열간가공이 불가능하여 분말야금법에 의한 판재, 봉재 및 선재가 일부 생산되고 있으나 제조공정의 어려움, 품질의 안정성, 고비용 및 양산성에 문제가 있어서 매우 고가라는 문제점이 있다.However, in the case of copper (Cu) -nickel (tin) -tin (Sn) -based spinodal decomposition-reinforced alloys, when the tin content is 6% or more, the ingot is not available for hot working due to the precipitation of the columnar grain boundary of the tin. The plate, bar and wire rods are produced in part, but there are problems in manufacturing process difficulties, stability of quality, high cost, and mass production, which are very expensive.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 구리-니켈-주석 합금에 있어서, 니켈과 주석을 주 합금원소로 하나 고가인 니켈(Ni)과 주석(Sn)의 일부를 줄이고 이에 따른 재료강도의 보완과 미세조직을 제어할 수 있는 기능을 갖는 원소들을 첨가하여 새로운 성능의 고강도 합금 및 그 제조방법에 관한 것이다.An object of the present invention for solving the above problems, in the copper-nickel-tin alloy, nickel and tin as the main alloying element, but one part of the expensive nickel (Ni) and tin (Sn) reduced and thus the material strength The present invention relates to a new high-strength alloy and a method of manufacturing the same by adding elements having a function of complementing and controlling microstructure.

상기와 같은 본 발명의 합금 및 제조방법은 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-알루미늄(Al),실리콘(Si)-세리움(Ce),란탄(La),니오디미움(Nd),프로메티움(Pr)계 합금의 제조방법에 관한 것으로, 고가인 니켈(Ni)과 주석(Sn)의 일부를 줄이고 이에 따른 재료강도의 보완과 미세조직을 제어할 수 있는 기능을 갖는 원소들을 첨가함으로써 달성된다.As described above, the alloy and the manufacturing method of the present invention are copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -aluminum (Al), silicon (Si) -cerium (Ce) for high-strength wire and plate materials. ), Lanthanum (La), nidium (Nd), promethium (Pr) -based alloy manufacturing method, and to reduce some of the expensive nickel (Ni) and tin (Sn) and thereby complement the material strength And by adding elements having a function to control the microstructure.

즉, 본 발명에서는 망간을 첨가하여 고용강화효과, 알루미늄과 실리콘 등의 첨가에 의한 석출강화, 그리고 세리움, 란탄, 니오디미움, 프로메티움 등을 첨가하여 결정조직을 미세하게 제어함으로써 재료의 특성을 개선함으로써 달성된다.That is, in the present invention, by adding manganese, the solid-solution strengthening effect, precipitation strengthening by addition of aluminum and silicon, and the addition of cerium, lanthanum, nidium, promethium, etc. Is achieved by improving the properties.

더 자세하게 설명하자면 동에 대하여 고용원소인 망간을 첨가하여 고용강화효과를 얻고, 알루미늄과 실리콘은 석출강화를 목적으로 첨가하나 용탕 속에서 강력한 탈산작용에 의한 정련효과와 함께 용탕의 유동성도 개선하며, 미량으로 첨가하는 세리움, 린탄, 니오디미움, 프로메티움 등은 접종효과로써 주상조직을 미세화 시킴과 아울러, 제조공정 중에서 소성가공 후, 소둔열처리시에 결정성장을 억제하여 기지조직을 미세화 시키는 효과를 나타내며, 특히, 고온 시효온도인 450℃ 이상의 온도에 노출되어도 열화되지 않고 고강도를 유지하였고, 합금조성범위를 1.0∼10.0 wt%(중량 백분율)니켈(Ni)과, 여기에 0.1∼10.0 wt%(중량백분율) 망간(Mn)과, 여기에 0.1∼10.0 wt%(중량 백분율)주석(Sn)과, 여기에 알루미늄(Al), 실리콘(Si)으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.1∼5.0 wt%(중량백분율) 첨가하며, 여기에 세리움, 란탄, 니오디미움, 프로메티움으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.01∼1.0 wt%(중량 백분율) 첨가하며, 나머지는 구리(Cu)로 조성함으로써, 인장강도를 1,000 Mpa 이상, 연신율을 5∼10%를 얻고 있으며, 전기 비저항치도 7∼14 цΩcm를 나타내는 고강도 동합금을 제조함으로써 달성된다.To explain in more detail, the solid solution of copper is added to obtain solid solution, and aluminum and silicon are added for the purpose of precipitation strengthening, but the refining effect of the strong deoxidation in the molten metal is improved and the fluidity of the molten metal is improved. Cerium, rintan, nidium, promethium, etc., added in a small amount, refine the columnar tissues by inoculation effect, and further refine the matrix structure by inhibiting crystal growth during annealing heat treatment after plastic processing in the manufacturing process. In particular, high strength was maintained without deterioration even when exposed to a temperature of 450 ° C. or higher, which is a high temperature aging temperature, and the alloy composition range was 1.0 to 10.0 wt% (% by weight) of nickel (Ni), and 0.1 to 10.0 wt. % Or 1% by weight of manganese (Mn), 0.1 to 10.0 wt% (wt. Percent) tin (Sn), and aluminum (Al) and silicon (Si). 0.1-5.0 wt% (weight percentage) is added by mixing and selecting the above elements, and one or more elements are mixed and selected from the group consisting of cerium, lanthanum, nidium, and promethium, and 0.01 to 1.0. wt% (weight percent) is added, and the remainder is made of copper (Cu) to obtain a high strength copper alloy having a tensile strength of 1,000 Mpa or more, an elongation of 5 to 10%, and an electrical resistivity of 7 to 14 dxcm. Is achieved.

상기한 바와 같은 목적을 달성하고 종래의 결점을 보완하기 위한 과제를 수행하는 본 발명의 실시예인 구성과 그 작용을 상세히 설명하면 다음과 같다.When explaining the configuration and the operation of the embodiment of the present invention to accomplish the object as described above and to perform the task for compensating the conventional drawbacks in detail as follows.

본 발명 고강도 선재 및 판재용 구리합금 조성은, 1.0 ∼ 10.0 wt%(중량 백분율)니켈(Ni)과, 여기에 0.1∼10.0 wt%(중량백분율) 망간(Mn)과, 여기에 0.1 ∼ 10.0 wt%(중량 백분율)주석(Sn)과, 여기에 알루미늄(Al), 실리콘(Si)으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.1∼5.0 wt%(중량백분율) 첨가하며, 여기에 세리움, 란탄, 니오디미움, 프로메티움으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.01∼1.0 wt%(중량 백분율) 첨가하며, 나머지는 구리(Cu)로 조성하였다.The copper alloy composition for the high strength wire rod and the plate according to the present invention is 1.0 to 10.0 wt% (weight percentage) nickel (Ni), 0.1 to 10.0 wt% (weight percentage) manganese (Mn), and 0.1 to 10.0 wt here. 0.1% to 5.0% by weight (% by weight) of tin (Sn) and one or more elements selected from the group consisting of aluminum (Al) and silicon (Si). 0.01-1.0 wt% (weight percent) was added by mixing one or more elements from the group consisting of cerium, lanthanum, nidium, and promethium, and the remainder was composed of copper (Cu).

상기에서 망간은 고용강화효과를 위해 첨가하였다.In the above, manganese was added to enhance the solid solution.

상기에서 알루미늄과 실리콘은 석출강화를 위해 첨가하였다.In the above, aluminum and silicon were added for precipitation strengthening.

상기에서 세리움, 란탄, 니오디미움, 프로메티움 등은 결정조직을 미세하게 제어함으로써 재료의 특성을 개선하기 위해서 첨가하였다.In the above, cerium, lanthanum, nidium, promethium and the like were added to improve the properties of the material by finely controlling the crystal structure.

보다 자세하게 설명하자면 동에 대하여 고용원소인 망간을 첨가하여 고용강화효과를 얻기 위하여 첨가하였다.In more detail, manganese, an employment element, was added to copper to obtain a solid solution strengthening effect.

또한 알루미늄과 실리콘은 석출강화를 목적으로 첨가하나 용탕 속에서 강력한 탈산작용에 의한 정련효과와 함께 용탕의 유동성도 개선하기 위해 첨가하였다.In addition, aluminum and silicon were added for the purpose of precipitation strengthening, but were also added to improve the fluidity of the molten metal as well as the refining effect of the strong deoxidation in the molten metal.

또한 미량으로 첨가하는 세리움, 란탄, 니오디미움, 프로메티움 등은 접종효과로써 주상조직을 미세화 시킴과 아울러, 제조공정 중에서 소성가공 후, 소둔열처리시에 결정성장을 억제하여 기지조직을 미세화 시키는 효과를 나타내며, 특히, 고온 시효온도인 450℃ 이상의 온도에 노출되어도 열화되지 않고 고강도를 유지하기 위하여 첨가하였다. 그 결과로서, 적당한 가공과 열처리를 거치면 인장강도를 1,000 Mpa 이상, 연신율을 5 ∼ 10%를 얻고 있으며, 전기비저항치도 9 ∼ 17 цΩcm를 나타내었다.In addition, cerium, lanthanum, nidium, promethium, etc., added in a small amount, refine the columnar tissues by the inoculation effect, and refine the matrix structure by inhibiting crystal growth during annealing heat treatment after plastic processing in the manufacturing process. In order to maintain the high strength without deterioration even when exposed to a temperature of 450 ° C. or higher, which is a high temperature aging temperature, it was added. As a result, the tensile strength of 1,000 Mpa or more and the elongation of 5-10% were obtained through appropriate processing and heat treatment, and the electrical resistivity was 9-17 dxcm.

실험한 결과에 의하여 보다 더 자세히 설명하자면, 구리합금에 고용하는 원소로서 우수한 니켈은 고가이나, 이의 일부를 유사한 성능을 발휘하는 저렴한 망간으로 대체가 가능하였습니다.As a result of the experiments, nickel, which is an excellent element employed in copper alloys, is expensive, but some of them can be replaced by inexpensive manganese having similar performance.

그리고 시효강화효과가 우수한 원소중에서 알루미늄과 실리콘은 효과가 우수하면서 정련효과도 나타나고 있습니다.Among the elements with excellent aging reinforcing effect, aluminum and silicon have excellent refining effect.

그리고 결정미세화 효과를 위한 방법으로써, 주괴상태에서부터 주상정을 미세하고 방향성이 없는 다면체의 형상으로 제어하는 접종효과를 위해 다양한 실험으로 선정한 것이 세리움, 란탄, 니오디미움, 프로메티움 등으로서 구하기도 용이하고, 가격도 저렴한 장점이 있습니다.As a method for crystallization effect, various experiments were selected as cerium, lanthanum, niodidium, promethium, etc. for the inoculation effect of controlling the columnar tablet from the ingot state to the shape of a fine, non-oriented polyhedron. It also has the advantage of being easy and affordable.

그리고 이들 원소는 복합적으로 합성된 모합금의 경우에 합금하기가 좋으며, 성분을 손실이 적습니다.And these elements are good for alloying in the case of composite composite master alloys, with low loss of components.

한편, 본 발명의 경우에 박판 및 세선까지의 가공성과 재료의 강도향상을 위해서 시효경화성 원소의 첨가와 아울러 인고트의 주조조직에서 가공조직에 이르기까지 결정립을 미세하게 제어할 필요가 있으며, 이를 위해 접종처리로써 주조 인고트 단계에서부터 효과를 얻을 수 있는 원소들을 발굴한 것입니다.On the other hand, in the case of the present invention, it is necessary to finely control the grains from the casting structure of the ingot to the processing structure as well as the addition of an age hardening element in order to improve the workability up to thin plates and thin wires and the strength of the material. As an inoculation treatment, the elements were found to be effective from the casting ingot stage.

상기 본 발명의 조성에서 니켈(Ni)을 1.0 ∼ 10.0 wt%(중량 백분율)로 한정한 이유는 한정 조성범위 이상에서는 열간 및 냉간가공어렵고 이를 위해서는 큰 힘을 필요로하는 철강용에 버금가는 용량의 설비를 사용해야하는 단점이 있고, 조성범위 이하에서는 목표로하는 재료의 특성을 만족하지 못하는 단점이 있어서, 본 발명의 조성범위로 수치 한정을 하였다.The reason for limiting the nickel (Ni) to 1.0 to 10.0 wt% (weight percentage) in the composition of the present invention is that it is difficult to hot and cold work over a limited composition range, and for this purpose, it has a capacity comparable to that of steel that requires a large force. There is a disadvantage in that the equipment must be used, and below the composition range, there is a disadvantage that does not satisfy the properties of the target material, the numerical range is limited to the composition range of the present invention.

상기 본 발명의 조성에서 망간(Mn)을 0.1∼10.0 wt%(중량백분율)로 한정한 이유는 한정 조성범위 이상에서는 용해정령시 용탕의 유동성이 나빠져서 작업성이 어렵고, 주괴공정 이후의 공정에서는 열간 및 냉간가공어렵고 이를 위해서는 큰 힘을 필요로하는 철강용에 버금가는 용량의 설비를 사용해야하는 단점이 있고, 조성범위 이하에서는 목표로하는 재료의 특성을 만족하지 못하는 단점이 있어서, 본 발명의 조성범위로 수치 한정을 하였다.The reason for limiting the manganese (Mn) to 0.1 to 10.0 wt% (weight percentage) in the composition of the present invention is that the meltability worsens the fluidity of the molten metal at the time of the dissolution spirit, the workability is difficult, hot process in the process after the ingot process And cold processing is difficult, and in order to achieve this, there is a disadvantage in that a facility having a capacity comparable to that of steel is required, and below the composition range, there is a disadvantage that does not satisfy the characteristics of the target material, and thus the composition range of the present invention. Numerical limitation was made.

상기 본 발명의 조성에서 주석(Sn)을 0.1 ∼ 10.0 wt%(중량 백분율)로 한정한 이유는 한정 조성범위 이상에서는 재료의 가격이 상승하고, 소성가공상에 문제가 발생하며, 재료의 물성도 나빠지는 경향이 나타나는 등의 단점이 있고, 조성범위 이하에서는 첨가효과가 전혀 없는 단점이 있어서, 본 발명의 조성범위로 수치 한정을 하였다.The reason for limiting the tin (Sn) to 0.1 to 10.0 wt% (weight percentage) in the composition of the present invention is that the price of the material rises above the limited composition range, problems occur in plastic processing, and the material properties are also deteriorated. There are disadvantages such as a tendency to appear, and below the composition range, there is a disadvantage that there is no additive effect, and the numerical range is limited to the composition range of the present invention.

상기 본 발명의 조성에서 알루미늄(Al), 실리콘(Si)으로 이루어진 군 중에서 1 종 또는 1종 이상의 원소를 혼합하여 선택한 원소를 0.1∼5.0 wt%(중량백분율)로 한정한 이유는 한정 조성범위 이상에서는 재료의 연성이 저하하여 소성가공에 문제가 발생하는 단점이 있고, 조성범위 이하에서는 첨가효과가 미흡한 단점이 있어서, 본 발명의 조성범위로 수치 한정을 하였다.In the composition of the present invention, the reason for limiting the selected element by mixing one or more elements from the group consisting of aluminum (Al) and silicon (Si) to 0.1 to 5.0 wt% (percent by weight) is more than a limited composition range. In this case, there is a disadvantage in that the ductility of the material decreases and a problem occurs in the plastic working, and in the below-mentioned composition range, there is a disadvantage in that the additive effect is insufficient.

상기 본 발명의 조성에서 세리움, 란탄, 니오디미움, 프로메티움으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.01 ∼ 1.0 wt%(중량 백분율)로 한정한 이유는 한정 조성범위 이상에서는 재료의 연성이 저하하여 소성가공에 문제가 발생하는 단점이 있고, 조성범위 이하에서는 재료의 연성이 저하하여 소성가공에 문제가 발생하는 단점이 있어서, 본 발명의 조성범위로 수치 한정을 하였다.In the composition of the present invention, the reason for limiting to 0.01 to 1.0 wt% (weight percent) by selecting one or more mixed elements from the group consisting of cerium, lanthanum, nidium, and promethium is limited. In the above, there is a disadvantage in that the ductility of the material is deteriorated and a problem occurs in the plastic working, and below the composition range, there is a disadvantage in that the ductility of the material is deteriorated and the problem occurs in the plastic working. .

즉, 상기와 같이 한정한 범위 이하에서는 효과가 거의 없으며, 그 이상에서는 오히려 기계적 성질에 악영향을 미치므로 수치를 청구범위 한도로 제한합니다.In other words, there is almost no effect under the above-mentioned range, and above that, the mechanical properties are adversely affected, so the numerical value is limited to the claims.

구리-니켈-주석 합금에서의 재료강도는 스피노달 분해강화효과에만 의존할 수 있으나, 본 발명에서는 스피노달 분해강화효과 외에 알루미늄, 실리콘, 세리움, 란탄, 니오디미움, 프로메티움 등을 첨가하여 석출강화 및 조직미세화 등을 도입하였다.The material strength in the copper-nickel-tin alloy may depend only on the spinodal cracking effect, but in the present invention, aluminum, silicon, cerium, lanthanum, nidium, promethium, etc. may be added in addition to the spinodal cracking effect. Precipitation strengthening and organizational micronization were introduced.

즉, 알루미늄과 실리콘은 석출강화를 목적으로 첨가하나 용탕 속에서 강력한 탈산작용에 의한 정련효과와 함께 용탕의 유동성도 개선하며, 미량으로 첨가하는 세리움, 란탄, 니오디미움, 프로메티움 등은 접종효과로써 주상조직을 미세화시키며, 제조공정 중에서 소성가공 후에 소둔열처리시에 결정성장을 억제하여 기지조직을 미세화 시키는 효과를 나타낸다.That is, aluminum and silicon are added for the purpose of precipitation strengthening, but the refining effect of the strong deoxidation in the molten metal is improved, and the fluidity of the molten metal is improved, and the small amount of cerium, lanthanum, nidium, promethium, etc. The inoculation effect makes the columnar tissues finer and suppresses the crystal growth during annealing heat treatment after plastic working in the manufacturing process to make the matrix tissues finer.

상기와 같은 조성을 가지는 본 발명의 제조방법은 고강도 선재 및 판재용 동합금으로 합금조성범위를 1.0∼10.0 wt%(중량 백분율)니켈(Ni)과, 여기에 0.1∼10.0 wt%(중량백분율) 망간(Mn)과, 여기에 0.1∼10.0 wt%(중량백분율)주석(Sn)과, 여기에 알루미늄(Al), 실리콘(Si)으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.1∼5.0 wt%(중량백분율) 첨가하며, 여기에 세리움, 란탄, 니오디미움, 프로메티움으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.01 ∼ 1.0 wt%(중량 백분율) 첨가하며, 나머지는 구리(Cu)로 평량하는 단계와,The production method of the present invention having the composition as described above is a copper alloy for high-strength wire and sheet metal alloy range of 1.0 to 10.0 wt% (weight percent) nickel (Ni), and 0.1 to 10.0 wt% (weight percent) manganese ( Mn), 0.1 to 10.0 wt% (weight percent) tin (Sn), and one or more elements selected from the group consisting of aluminum (Al) and silicon (Si) here, 0.1 to 5.0 wt% (% by weight) is added, and 0.01-1.0 wt% (weight percentage) is added by mixing one or more elements in a group consisting of cerium, lanthanum, niodidium, and promethium. The remainder is weighed with copper (Cu),

평량한 후, 용해로 바닥에 구리(Cu)를 적당량 깔고 그 위에 니켈(Ni)을 한 층 깔고 다시 구리(Cu)를 적당량 덮고 다시 니켈(Ni)을 깔고 구리(Cu)로 덮는 방법을 반복한 적층으로 장입하되 마지막에는 구리(Cu)로써 비교적 두껍게 덮은 후, 용해를 시작하여 구리와 니켈이 모두 용해하면 슬래그를 제거하고, 이 후 용탕의 온도가 약 1,250℃ 정도가 되었을 때, 가열을 중단하거나 매우 낮은 열원을 공급하는 정도로 하고 망간(Mn)을 장입하여 용해한 후, 이어서 주석(Sn)을 비롯하여, 세리움(Ce), 란탄(La), 니오디미움(Nd), 프로메티움(Pr)으로 이루어진 군중 중에서 첨가원소로 선정된 원소들을 연속적으로 투입하고 잘 교반하여 용해시키는 용해합금단계와,After weighing, lay the copper (Cu) at the bottom of the furnace, and add a layer of nickel (Ni) on it, cover the copper (Cu) again, cover the nickel (Ni) again, and then cover with copper (Cu). Charge it, and finally cover it with copper (Cu), and then start dissolution. When both copper and nickel are dissolved, slag is removed. Then, when the temperature of the molten metal reaches about 1,250 ℃, the heating is stopped or very After supplying and dissolving manganese (Mn) to a low heat source, and then to tin (Sn), cerium (Ce), lanthanum (La), nidium (Nd), and promethium (Pr) A molten alloy step of continuously adding and stirring the elements selected as additional elements from the crowd;

합금원소들이 충분히 용해하고 용탕온도도 1100∼1250℃ 정도로서 용탕의 유동성이 좋아지면, 주석이 4% 이하로 열간가공이 가능한 합금방안의 경우에는 주괴의 살두께가 70 mm 이상의 두꺼운 판재나 직경이 Ф 100 mm 이상의 큰 대경봉으로 연속주조나 금형주조로 인고트를 제조하고, 냉간가공이 유리한 주석이 4% 이상인 합금방안의 경우에는 주괴의 살두께가 30 mm 이하의 얇은 판재나 직경이 Ф 20 mm 이하의 작은 소경봉으로 연속주조하여 주괴를 만드는 단계와,When alloy elements are sufficiently dissolved and the melt temperature is about 1100 ~ 1250 ℃ and the flowability of the molten metal is improved, in the case of an alloy method where tin can be hot-processed to 4% or less, a thick plate or a diameter of 70 mm or more ingot Ingots are manufactured by continuous casting or mold casting with large diameter rods of 100 mm or more, and in the case of an alloy method having 4% or more of tin, which is advantageous for cold working, a thin plate having a thickness of ingot of 30 mm or less or a diameter of 20 mm Making a ingot by continuous casting with the following small diameter rods,

이렇게 제조된 주괴 중에서 판재나 소경봉 상태의 주괴는 균질화처리 후, 냉간압연 또는 냉간인발에 의해 85% 이상의 소성가공으로 주조조직을 완전히 제거한 후, 이를 850±50℃의 온도에서 0.5∼1.0 시간 유지한 후에 수냉하여 용체화처리를 행하며, 열간압연이나 압출에 의해 제조된 판재나 선재의 경우도 850±50℃의 온도에서 0.5∼ 1.0 시간 유지한 후에 수냉하여 용체화처리를 행하는 단계와,In the ingot thus prepared, the ingot in the form of plate or small diameter rod is completely homogenized, and then completely removed from the cast structure by 85% or more plastic processing by cold rolling or cold drawing, and then maintained at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours. After cooling, the solution is subjected to a solution treatment, and in the case of a plate or a wire produced by hot rolling or extrusion, the solution is subjected to a solution treatment by maintaining the solution at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours, followed by solution treatment.

이렇게 용체화처리된 중간 상태의 봉재나 판재는 목표로하는 물성의 목표에 따른 냉간가공량 만큼 압연이나 인발을 한 후에 시효처리로서 300∼550℃에서 1∼ 10 hr 유지한 후 공냉하면 구리(Cu)-니켈(Ni)-주석(Sn)계 합금에서 나타나는 (CuxNiy)zSn 형 스피노달 분해생성물에 의한 강화효과와 구리(Cu)-니켈(Ni)-알루미늄(Al), 실리콘(Si)계 합금에서 나타나는 CuxAl, CuyNizAl, NixAl, CuxSi, CuyNizSi, NixSi 형 석출물에 의한 강화효과를 얻는 시효처리 단계를 거친다.The bar or plate in the intermediate state, which has been solvated, is rolled or drawn as much as the cold working amount according to the target property, and then maintained at 300 to 550 ° C. for 1 to 10 hrs. Reinforcement effect of (Cu x Ni y ) z Sn type spinoidal decomposition products in) -nickel (Ni) -tin (Sn) -based alloys and copper (Cu) -nickel (Ni) -aluminum (Al), silicon ( It undergoes an aging treatment step to obtain reinforcing effect by Cu x Al, Cu y Ni z Al, Ni x Al, Cu x Si, Cu y Ni z Si and Ni x Si type precipitates in Si) alloy.

상기와 같은 본 발명은 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-알루미늄(Al), 실리콘(Si)-세리움(Ce), 란탄(La), 니오디미움(Nd), 프로메티움(Pr)계 합금의 제조방법에 관한 것으로, 니켈(Ni), 망간(Mn), 주석(Sn)을 주합금원소로하나, 고가인 니켈과 주석의 일부를 줄이고 이에 따른 재료강도의 보완과 미세조직을 제어할 수 있는 기능을 갖는 알루미늄(Al), 실리콘(Si), 세리움(Ce), 란탄(La) 등을 첨가하였다.As described above, the present invention is a copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -aluminum (Al), silicon (Si) -cerium (Ce), and lanthanum (La) for high-strength wire and plate. ), Nidium (Nd), Promethium (Pr) -based alloy manufacturing method, nickel (Ni), manganese (Mn), tin (Sn) as the main alloying elements, expensive nickel and tin Particularly, aluminum (Al), silicon (Si), cerium (Ce), and lanthanum (La) were added, which had a function of compensating the material strength and controlling the microstructure.

즉, 본 발명에서는 망간을 첨가하여 고용강화효과, 알루미늄과 실리콘 등의 첨가에 의한 석출강화, 그리고 세리움, 란탄, 니오디미움, 프로메티움 등을 첨가하여 결정조직을 미세하게 제어함으로써 재료의 특성을 개선한 점이다.That is, in the present invention, by adding manganese, the solid-solution strengthening effect, precipitation strengthening by addition of aluminum and silicon, and the addition of cerium, lanthanum, nidium, promethium, etc. This is an improvement in characteristics.

즉, 동에 대하여 고용원소인 망간을 첨가하여 고용강화효과를 얻고, 알루미늄과 실리콘은 석출강화를 목적으로 첨가하나 용탕 속에서 강력한 탈산작용에 의한 정련효과와 함께 용탕의 유동성도 개선하며, 미량으로 첨가하는 세리움, 란탄, 니오디미움, 프로메티움 등은 접종효과로써 주상조직을 미세화 시킴과 아울러, 제조공정 중에서 소성가공 후, 소둔열처리시에 결정성장을 억제하여 기지조직을 미세화 시키는 효과를 나타내며, 특히, 고온 시효온도인 450℃ 이상의 온도에 노출되어도 열화되지 않고 고강도를 유지하는 장점을 달성하였다.That is, the solid solution is added to copper to obtain solid solution strengthening effect. Aluminum and silicon are added for the purpose of precipitation strengthening, but the refining effect by the strong deoxidation effect in the molten metal improves the fluidity of the molten metal. The added cerium, lanthanum, nidium, promethium, etc. have the effect of miniaturizing columnar tissues as an inoculation effect, and minimizing the matrix structure by inhibiting crystal growth during annealing heat treatment after plastic processing in the manufacturing process. In particular, even when exposed to a temperature of 450 ° C. or higher, which is a high temperature aging temperature, an advantage of maintaining high strength without deterioration was achieved.

그 결과로서, 적당한 가공과 열처리를 거치면 인장강도를 1,000 Mpa 이상, 연신율을 5 ∼ 10%를 얻고 있으며, 전기비저항치도 9 ∼ 17 цΩcm를 나타내는 고강도 동합금 및 그 제조방법을 제공하였다.As a result, a high-strength copper alloy having a tensile strength of 1,000 Mpa or more and an elongation of 5 to 10% and an electrical resistivity of 9 to 17 dxcm was obtained as a result of proper processing and heat treatment.

다음의 표 1은 본 발명에서 제시하는 합금들의 예이며, 표 2와 표 3은 가공열처리에 따른 인장강도와 연신율의 변화이며, 표 4는 가공열처리에 따른 전기비저항치의 변화이다.The following Table 1 is an example of the alloys presented in the present invention, Tables 2 and 3 are changes in tensile strength and elongation according to the processing heat treatment, Table 4 is a change in the electrical resistivity value according to the processing heat treatment.

표 2, 표 3 및 표 4에서 보면, 본 발명의 경우에, 구리(Cu)-니켈(Ni)-주석(Sn)-알루미늄(Al), 실리콘(Si)-세리움(Ce), 란탄(La), 니오디미움(Nd), 프로메티움(Pr)계 합금은 인장강도를 1,000 Mpa 이상, 연신율을 5∼10%를 얻고 있으며, 전기비저항치도 9 ∼ 17 цΩcm를 나타내는 고강도 동합금을 제조할 수 있다.In Table 2, Table 3 and Table 4, in the case of the present invention, copper (Cu) -nickel (Ni) -tin (Sn) -aluminum (Al), silicon (Si) -cerium (Ce), lanthanum ( La), nidium (Nd), and promethium (Pr) -based alloys have a tensile strength of 1,000 Mpa or more and an elongation of 5 to 10%, and a high-strength copper alloy having an electrical resistivity of 9 to 17 dxcm can be produced. Can be.

그리고 특별히 주목되는 점은 알루미늄(Al), 실리콘(Si), 세리움(Ce), 란탄(La), 니오디미움(Nd), 프로메티움(Pr) 등의 합금원소를 첨가한 경우에는 450℃의 고온시효처리에도 많은 합금들이 900 MPa 이상의 고강도를 유지하고 있다.In particular, in the case where alloy elements such as aluminum (Al), silicon (Si), cerium (Ce), lanthanum (La), nidium (Nd), and promethium (Pr) are added, 450 is added. Even at high temperature aging treatment, many alloys maintain high strength over 900 MPa.

이상의 결과는 인장강도를 1000 MPa 이상 얻을 수 있는 새로운 고강도 재료인 구리(Cu)-니켈(Ni)-주석(Sn)-알루미늄(Al), 실리콘(Si)-세리움(Ce), 란탄(La), 니오디미움(Nd), 프로메티움(Pr)계 합금을 개발하는 효과를 가져오게 되었으며, 특히, 고온 시효온도인 450℃ 이상의 온도에 노출되어도 열화되지 않고 고강도를 유지하는 장점을 갖는 합금인 것이다.The above results show that new high strength materials such as copper (Cu) -nickel (Ni) -tin (Sn) -aluminum (Al), silicon (Si) -cerium (Ce), and lanthanum (La), which can obtain tensile strength of 1000 MPa or more ), Nidium (Nd), Promethium (Pr) -based alloys have the effect of developing, in particular, the alloy has the advantage of maintaining high strength without deterioration even when exposed to temperatures higher than 450 ℃ high temperature aging temperature It is

표 1 합금의 종류 및 합금성분(wt%)Table 1 Types of Alloys and Alloy Components (wt%)

합금종류Alloy type NiNi MnMn SnSn AlAl SiSi CeCe LaLa CuCu N6S4Ms.01N6S4Ms.01 66 -- 44 -- -- 0.0050.005 0.0020.002 나머지Remainder N6S4Ms.1N6S4Ms.1 66 -- 44 -- -- 0.050.05 0.0250.025 나머지Remainder N6S4A.5Ms.01N6S4A.5Ms.01 66 -- 44 0.50.5 -- 0.0050.005 0.0020.002 나머지Remainder N6S4A.5Ms.1N6S4A.5Ms.1 66 -- 44 0.50.5 -- 0.050.05 0.0250.025 나머지Remainder N6S4A.5S.5Ms.1N6S4A.5S.5Ms.1 66 -- 44 0.50.5 0.50.5 0.050.05 0.0250.025 나머지Remainder N4M2S6A.5S.5Ms.01N4M2S6A.5S.5Ms.01 44 22 66 0.50.5 0.50.5 0.0050.005 0.0020.002 나머지Remainder N4M2S6A.5S.5Ms.03N4M2S6A.5S.5Ms.03 44 22 66 0.50.5 0.50.5 0.0150.015 0.0070.007 나머지Remainder N4M2S6A.5S.5Ms.05N4M2S6A.5S.5Ms.05 44 22 66 0.50.5 0.50.5 0.0250.025 0.0120.012 나머지Remainder N4M2S6A.5S.5Ms.07N4M2S6A.5S.5Ms.07 44 22 66 0.50.5 0.50.5 0.0350.035 0.0170.017 나머지Remainder N6M2S4A.5S.5Ms.01N6M2S4A.5S.5Ms.01 66 22 44 0.50.5 0.50.5 0.0050.005 0.0020.002 나머지Remainder N6M2S4A.5S.5Ms.03N6M2S4A.5S.5Ms.03 66 22 44 0.50.5 0.50.5 0.0150.015 0.0070.007 나머지Remainder N6M2S4A.5S.5Ms.05N6M2S4A.5S.5Ms.05 66 22 44 0.50.5 0.50.5 0.0250.025 0.0120.012 나머지Remainder N6M2S4A.5S.5Ms.07N6M2S4A.5S.5Ms.07 66 22 44 0.50.5 0.50.5 0.0350.035 0.0170.017 나머지Remainder N6M2S2A2Ms.05N6M2S2A2Ms.05 66 22 22 22 -- 0.0250.025 0.0120.012 나머지Remainder

표 2 가공열처리에 따른 인장강도의 변화 (단위 : MPa)Table 2 Change in Tensile Strength by Heat Treatment (Unit: MPa)

시 료 명Sample Name 냉간가공상태73%Cold working condition 73% 3시간 시효처리 상태3 hours aging 300℃300 ℃ 350℃350 ℃ 400℃400 ℃ 450℃450 ℃ N6S4Ms.01N6S4Ms.01 781781 775775 869869 832832 730730 N6S4Ms.1N6S4Ms.1 764764 796796 857857 847847 806806 N6S4A.5Ms.01N6S4A.5Ms.01 755755 845845 952952 941941 912912 N6S4A.5Ms.1N6S4A.5Ms.1 814814 845845 914914 962962 905905 N6S4A.5S.5Ms.1N6S4A.5S.5Ms.1 970970 997997 1,0271,027 1,0301,030 970970 N4M2S6A.5S.5Ms.01N4M2S6A.5S.5Ms.01 996996 1,1311,131 1,2001,200 1,1401,140 1,0681,068 N4M2S6A.5S.5Ms.03N4M2S6A.5S.5Ms.03 1,0031,003 1,1661,166 1,1711,171 1,1801,180 1,0891,089 N4M2S6A.5S.5Ms.05N4M2S6A.5S.5Ms.05 1,0001,000 1,0591,059 1,1801,180 1,1321,132 1,0391,039 N4M2S6A.5S.5Ms.07N4M2S6A.5S.5Ms.07 1,0051,005 1,1111,111 1,1201,120 1,0901,090 1,0001,000 N6M2S4A.5S.5Ms.01N6M2S4A.5S.5Ms.01 932932 1,0101,010 1,1881,188 1,1001,100 1,0631,063 N6M2S4A.5S.5Ms.03N6M2S4A.5S.5Ms.03 930930 1,0161,016 1,1101,110 1,0801,080 1,0001,000 N6M2S4A.5S.5Ms.05N6M2S4A.5S.5Ms.05 933933 980980 1,0601,060 1,0551,055 1,0541,054 N6M2S4A.5S.5Ms.07N6M2S4A.5S.5Ms.07 930930 1,0001,000 1,0331,033 1,0821,082 1,0201,020 N6M2S2A2Ms.05N6M2S2A2Ms.05 719719 826826 867867 900900 --

표 3 가공열처리에 따른 연신율의 변화 (단위 : %)Table 3 Change in elongation due to heat treatment (Unit:%)

시 료 명Sample Name 냉간가공상태73%Cold working condition 73% 3시간 시효처리 상태3 hours aging 300℃300 ℃ 350℃350 ℃ 400℃400 ℃ 450℃450 ℃ N6S4Ms.01N6S4Ms.01 77 1111 1313 1010 1010 N6S4Ms.1N6S4Ms.1 66 1313 1212 1212 1212 N6S4A.5Ms.01N6S4A.5Ms.01 44 1111 99 1111 1010 N6S4A.5Ms.1N6S4A.5Ms.1 33 99 77 99 99 N6S4A.5S.5Ms.1N6S4A.5S.5Ms.1 44 33 44 44 77 N4M2S6A.5S.5Ms.01N4M2S6A.5S.5Ms.01 55 44 33 55 55 N4M2S6A.5S.5Ms.03N4M2S6A.5S.5Ms.03 55 55 55 44 99 N4M2S6A.5S.5Ms.05N4M2S6A.5S.5Ms.05 44 44 33 55 99 N4M2S6A.5S.5Ms.07N4M2S6A.5S.5Ms.07 44 44 44 44 33 N6M2S4A.5S.5Ms.01N6M2S4A.5S.5Ms.01 66 77 44 55 55 N6M2S4A.5S.5Ms.03N6M2S4A.5S.5Ms.03 66 88 44 33 55 N6M2S4A.5S.5Ms.05N6M2S4A.5S.5Ms.05 55 77 44 44 66 N6M2S4A.5S.5Ms.07N6M2S4A.5S.5Ms.07 55 66 44 33 77 N6M2S2A2Ms.05N6M2S2A2Ms.05 55 55 44 33 --

표 4 가공열처리에 따른 전기비저항의 변화 (단위 : цΩcm)Table 4 Variation of Electrical Resistivity by Heat Treatment (Unit: цΩcm)

시 료 명Sample Name 냉간가공상태73%Cold working condition 73% 3시간 시효처리 상태3 hours aging 300℃300 ℃ 350℃350 ℃ 400℃400 ℃ 450℃450 ℃ N6S4Ms.01N6S4Ms.01 1414 1212 1111 99 99 N6S4Ms.1N6S4Ms.1 1313 1212 1111 1010 99 N6S4A.5Ms.01N6S4A.5Ms.01 1414 1313 1212 1111 1010 N6S4A.5Ms.1N6S4A.5Ms.1 1414 1313 1212 1010 1010 N6S4A.5S.5Ms.1N6S4A.5S.5Ms.1 1717 1515 1414 1212 1010 N4M2S6A.5S.5Ms.01N4M2S6A.5S.5Ms.01 1919 1717 1515 1313 1313 N4M2S6A.5S.5Ms.03N4M2S6A.5S.5Ms.03 1919 1717 1515 1414 1414 N4M2S6A.5S.5Ms.05N4M2S6A.5S.5Ms.05 1919 1717 1515 1414 1414 N4M2S6A.5S.5Ms.07N4M2S6A.5S.5Ms.07 1919 1717 1515 1313 1414 N6M2S4A.5S.5Ms.01N6M2S4A.5S.5Ms.01 1919 1616 1414 1212 1010 N6M2S4A.5S.5Ms.03N6M2S4A.5S.5Ms.03 1818 1616 1515 1212 1111 N6M2S4A.5S.5Ms.05N6M2S4A.5S.5Ms.05 1919 1616 1515 1212 1111 N6M2S4A.5S.5Ms.07N6M2S4A.5S.5Ms.07 1818 1616 1313 1212 1010 N6M2S2A2Ms.05N6M2S2A2Ms.05 99 1010 99 99 --

Claims (2)

고강도 선재 및 판재용 구리합금에 있어서,In the copper alloy for high strength wire and plate, 1.0 ∼ 10.0 wt%(중량 백분율)니켈(Ni)과, 여기에 0.1∼10.0 wt%(중량백분율) 망간(Mn)과, 여기에 0.1 ∼ 10.0 wt%(중량 백분율)주석(Sn)과, 여기에 알루미늄(Al), 실리콘(Si)으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.1∼5.0 wt%(중량백분율) 첨가하며, 여기에 세리움, 란탄, 니오디미움, 프로메티움으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.01 ∼ 1.0 wt%(중량 백분율) 첨가하며, 나머지는 구리(Cu)로 조성한 것을 특징으로 하는 구리-니켈-주석-알루미늄, 실리콘-세리움, 란탄, 니오디미움, 프로메티움계 합금.1.0 to 10.0 wt% (wt%) nickel (Ni), 0.1 to 10.0 wt% (wt%) manganese (Mn), 0.1 to 10.0 wt% (wt%) tin (Sn), and 0.1-5.0 wt% (percent by weight) of one or more elements are mixed and selected from the group consisting of aluminum (Al) and silicon (Si), and cerium, lanthanum, nidium, and promethy are added thereto. 0.01-1.0 wt% (weight percent) is added by mixing and selecting one or more elements from a crowd of um, and the remainder is copper-nickel-tin-aluminum, silicon- Cerium, lanthanum, nidium, promethium-based alloys. 고강도 선재 및 판재용 구리합금의 제조방법에 있어서,In the manufacturing method of high strength wire rod and copper alloy for plate, 고강도 선재 및 판재용 동합금의 조성범위를 1.0∼10.0 wt%(중량 백분율)니켈(Ni)과, 여기에 0.1∼10.0 wt%(중량백분율) 망간(Mn)과, 여기에 0.1∼10.0 wt%(중량 백분율)주석(Sn)과, 여기에 알루미늄(Al), 실리콘(Si)으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.1∼5.0 wt%(중량백분율) 첨가하며, 여기에 세리움, 란탄, 니오디미움, 프로메티움으로 이루어진 군중에서 1종 또는 1종 이상의 원소를 혼합 선택하여 0.01 ∼ 1.0 wt%(중량 백분율) 첨가하며, 나머지는 구리(Cu)로 평량하는 단계와,The composition range of the copper alloy for high strength wire and sheet metal is 1.0 to 10.0 wt% (weight percentage) nickel (Ni), 0.1 to 10.0 wt% (weight percentage) manganese (Mn), and 0.1 to 10.0 wt% ( Weight percent) 0.1% to 5.0 wt% (weight percentage) of tin (Sn) and one or more elements selected from the group consisting of aluminum (Al) and silicon (Si) are added thereto. Mixing 0.01 to 1.0 wt% (weight percent) of one or more elements by mixing and selecting one or more elements from a crowd consisting of lithium, lanthanum, nidium, and promethium, and weighing the rest with copper (Cu), 평량한 후, 용해로 바닥에 구리(Cu)를 적당량 깔고 그 위에 니켈(Ni)을 한층 깔고 다시 구리(Cu)를 적당량 덮고 다시 니켈(Ni)을 깔고 구리(Cu)로 덮는 방법을 반복한 적층으로 장입하되 마지막에는 구리(Cu)로써 비교적 두껍게 덮은 후, 용해를 시작하여 구리와 니켈이 모두 용해하면 슬래그를 제거하고, 이 후 용탕의 온도가 약 1,250℃ 정도가 되었을 때, 가열을 중단하거나 매우 낮은 열원을 공급하는 정도로 하고 망간(Mn)을 장입하여 용해한 후, 이어서 주석(Sn)을 비롯하여, 세리움(Ce), 란탄(La), 니오디미움(Nd), 프로메티움(Pr)으로 이루어진 군중 중에서 첨가원소로 선정된 원소들을 연속적으로 투입하고 잘 교반하여 용해시키는 용해합금단계와,After weighing, lay a proper amount of copper (Cu) on the bottom of the melting furnace, add nickel (Ni) on top of it, cover copper (Cu) again, then add nickel (Ni) and cover with copper (Cu). Charge it, but at the end cover it relatively thickly with copper (Cu), start dissolution, and remove both slag when both copper and nickel dissolve, and then stop heating or lower when the temperature of the molten metal reaches about 1,250 ℃. After supplying and dissolving manganese (Mn) to the extent of supplying a heat source, it is then composed of tin (Sn), cerium (Ce), lanthanum (La), nidium (Nd), and promethium (Pr). A molten alloy step of continuously adding and stirring the elements selected as additive elements from the crowd; 합금원소들이 충분히 용해하고 용탕온도도 1100∼1250℃ 정도로서 용탕의 유동성이 좋아지면, 주석이 4% 이하로 열간가공이 가능한 합금방안의 경우에는 주괴의 살두께가 70 mm 이상의 두꺼운 판재나 직경이 Ф 100 mm 이상의 큰 대경봉으로 연속주조나 금형주조로 인고트를 제조하고, 냉간가공이 유리한 주석이 4% 이상인 합금방안의 경우에는 주괴의 살두께가 30 mm 이하의 얇은 판재나 직경이 Ф 20 mm 이하의 작은 소경봉으로 연속주조하여 주괴를 만드는 단계와,When alloy elements are sufficiently dissolved and the melt temperature is about 1100 ~ 1250 ℃ and the flowability of the molten metal is improved, in the case of an alloy method where tin can be hot-processed to 4% or less, a thick plate or a diameter of 70 mm or more ingot Ingots are manufactured by continuous casting or mold casting with large diameter rods of 100 mm or more, and in the case of an alloy method having 4% or more of tin, which is advantageous for cold working, a thin plate having a thickness of ingot of 30 mm or less or a diameter of 20 mm Making a ingot by continuous casting with the following small diameter rods, 이렇게 제조된 주괴 중에서 판재나 소경봉 상태의 주괴는 균질화처리 후, 냉간압연 또는 냉간인발에 의해 85% 이상의 소성가공으로 주조조직을 완전히 제거한 후, 이를 850±50℃의 온도에서 0.5∼1.0 시간 유지한 후에 수냉하여 용체화처리를 행하며, 열간압연이나 압출에 의해 제조된 판재나 선재의 경우도 850±50℃의 온도에서 0.5∼ 1.0 시간 유지한 후에 수냉하여 용체화처리를 행하는 단계와,In the ingot thus prepared, the ingot in the form of plate or small diameter rod is completely homogenized, and then completely removed from the cast structure by 85% or more plastic processing by cold rolling or cold drawing, and then maintained at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours. After cooling, the solution is subjected to a solution treatment, and in the case of a plate or a wire produced by hot rolling or extrusion, the solution is subjected to a solution treatment by maintaining the solution at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours, followed by solution treatment. 이렇게 용체화처리된 중간 상태의 봉재나 판재는 목표로하는 물성의 목표에따른 냉간가공량 만큼 압연이나 인발을 한 후에 시효처리로서 300∼550℃에서 1∼ 10 hr 유지한 후 공냉하면 구리(Cu)-니켈(Ni)-주석(Sn)계 합금에서 나타나는 (CuxNiy)zSn 형 스피노달 분해생성물에 의한 강화효과와 구리(Cu)-니켈(Ni)-알루미늄(Al), 실리콘(Si)계 합금에서 나타나는 CuxAl, CuyNizAl, NixAl, CuxSi, CuyNizSi, NixSi형 석출물에 의한 강화효과를 얻는 시효처리 단계를 거쳐 제조되는 것을 특징으로 하는 고강도 선재 및 판재용 구리-니켈-주석-알루미늄, 실리콘-세리움, 란탄, 니오디미움, 프로메티움계 합금 제조방법The bar or plate in the intermediate state, which is solvated, is rolled or drawn as much as the cold working amount according to the target property of the target, and then maintained at 300 to 550 ° C for 1 to 10 hours as an aging treatment. Reinforcement effect of (Cu x Ni y ) z Sn type spinoidal decomposition products in) -nickel (Ni) -tin (Sn) -based alloys and copper (Cu) -nickel (Ni) -aluminum (Al), silicon ( It is manufactured through an aging treatment step to obtain the strengthening effect by Cu x Al, Cu y Ni z Al, Ni x Al, Cu x Si, Cu y Ni z Si, Ni x Si type precipitates appearing in the Si) alloy Copper-nickel-tin-aluminum, silicon-cerium, lanthanum, nidium, and promethium-based alloys for high strength wire and plate
KR10-2000-0056620A 2000-09-27 2000-09-27 Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate KR100375306B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0056620A KR100375306B1 (en) 2000-09-27 2000-09-27 Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0056620A KR100375306B1 (en) 2000-09-27 2000-09-27 Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate

Publications (2)

Publication Number Publication Date
KR20020024848A true KR20020024848A (en) 2002-04-03
KR100375306B1 KR100375306B1 (en) 2003-03-10

Family

ID=19690621

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0056620A KR100375306B1 (en) 2000-09-27 2000-09-27 Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate

Country Status (1)

Country Link
KR (1) KR100375306B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444291B1 (en) * 2002-05-23 2004-08-12 창덕금속 주식회사 High strength phosphorous copper with fine grain structure
CN101880811A (en) * 2010-07-06 2010-11-10 南京信息工程大学 Copper alloy based sepiolite, ferric oxide, vermiculite and barium ferric oxide composite material and preparation method thereof
CN101886200A (en) * 2010-07-06 2010-11-17 南京信息工程大学 Fine-grained copper fiber, pumice and magnesium alloy composite material and preparation method thereof
CN101921974A (en) * 2010-07-06 2010-12-22 南京信息工程大学 Iron-nickel alloy fiber reinforced aluminum alloy composite material and preparation method thereof
CN101921943A (en) * 2010-07-06 2010-12-22 南京信息工程大学 Fine grain titanium fiber pumice magnesium alloy composite material and preparation method thereof
CN101921972A (en) * 2010-07-06 2010-12-22 南京信息工程大学 Iron-based amorphous-nanocrystalline fiber reinforced magnesium composite material and preparation method thereof
CN101921942A (en) * 2010-07-06 2010-12-22 南京信息工程大学 Finely crystalline iron-stibium fiber and pumice magnesium alloy composite material and preparation method thereof
CN101942595A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Magnesium-base copper-fiber pumice iron-barium oxide composite and preparation method thereof
CN101942588A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Magnesium alloy diatomite ferric oxide composite material and preparation method thereof
CN101942623A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Magnesium alloy vermiculite pumice ferric oxide composite material and preparation method thereof
CN101942625A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Light nanocrystalline titanium-based fiber reinforced magnesium alloy block composite material and preparation method thereof
CN101942594A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Aluminium alloys, pumice-ferric oxide and vermiculite-barium ferrate composite material and preparation method thereof
CN101942584A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Zinc alloys, sepiolite-ferric oxide and vermiculite-barium ferrate composite material and preparation method thereof
CN101942622A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Zinc alloy-sepiolite-pumice-ferric oxide composite material and preparation method thereof
EP3199236A4 (en) * 2014-09-28 2018-05-30 Changchun Meihe Science and Technology Development Co., Ltd. Acid-resistant alloy catalyst
US10464870B2 (en) 2014-09-28 2019-11-05 The Coca-Cola Company Methods for preparing diol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952964A (en) * 2012-11-20 2013-03-06 无锡常安通用金属制品有限公司 Corrosion-resisting and wear-resisting copper alloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616642A (en) * 1979-07-20 1981-02-17 Furukawa Kinzoku Kogyo Kk High-strength corrosion-resistant copper alloy
US5089057A (en) * 1989-09-15 1992-02-18 At&T Bell Laboratories Method for treating copper-based alloys and articles produced therefrom
KR100256851B1 (en) * 1997-12-11 2000-05-15 정정원 Manufacturing method for cu-ni-mn-sn-si alloy and same product
KR100256852B1 (en) * 1997-12-11 2000-05-15 정정원 Manufacturing method for cu-ni-mn-sn-al alloy and same product
KR100264233B1 (en) * 1998-05-19 2000-08-16 정정원 High strength wire and plate of cu-ni-mn-sn-ti alloy and it's manufacturing process
KR100278117B1 (en) * 1998-07-13 2001-06-01 정정원 High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it's manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444291B1 (en) * 2002-05-23 2004-08-12 창덕금속 주식회사 High strength phosphorous copper with fine grain structure
CN101880811A (en) * 2010-07-06 2010-11-10 南京信息工程大学 Copper alloy based sepiolite, ferric oxide, vermiculite and barium ferric oxide composite material and preparation method thereof
CN101886200A (en) * 2010-07-06 2010-11-17 南京信息工程大学 Fine-grained copper fiber, pumice and magnesium alloy composite material and preparation method thereof
CN101921974A (en) * 2010-07-06 2010-12-22 南京信息工程大学 Iron-nickel alloy fiber reinforced aluminum alloy composite material and preparation method thereof
CN101921943A (en) * 2010-07-06 2010-12-22 南京信息工程大学 Fine grain titanium fiber pumice magnesium alloy composite material and preparation method thereof
CN101921972A (en) * 2010-07-06 2010-12-22 南京信息工程大学 Iron-based amorphous-nanocrystalline fiber reinforced magnesium composite material and preparation method thereof
CN101921942A (en) * 2010-07-06 2010-12-22 南京信息工程大学 Finely crystalline iron-stibium fiber and pumice magnesium alloy composite material and preparation method thereof
CN101942595A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Magnesium-base copper-fiber pumice iron-barium oxide composite and preparation method thereof
CN101942588A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Magnesium alloy diatomite ferric oxide composite material and preparation method thereof
CN101942623A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Magnesium alloy vermiculite pumice ferric oxide composite material and preparation method thereof
CN101942625A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Light nanocrystalline titanium-based fiber reinforced magnesium alloy block composite material and preparation method thereof
CN101942594A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Aluminium alloys, pumice-ferric oxide and vermiculite-barium ferrate composite material and preparation method thereof
CN101942584A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Zinc alloys, sepiolite-ferric oxide and vermiculite-barium ferrate composite material and preparation method thereof
CN101942622A (en) * 2010-07-06 2011-01-12 南京信息工程大学 Zinc alloy-sepiolite-pumice-ferric oxide composite material and preparation method thereof
CN101880811B (en) * 2010-07-06 2011-09-21 南京信息工程大学 Copper alloy based sepiolite, ferric oxide, vermiculite and barium ferric oxide composite material and preparation method thereof
CN101886200B (en) * 2010-07-06 2012-08-22 南京信息工程大学 Fine-grained copper fiber, pumice and magnesium alloy composite material and preparation method thereof
CN101921943B (en) * 2010-07-06 2012-08-22 南京信息工程大学 Fine grain titanium fiber pumice magnesium alloy composite material and preparation method thereof
CN101942623B (en) * 2010-07-06 2012-08-22 南京信息工程大学 Magnesium alloy vermiculite pumice ferric oxide composite material and preparation method thereof
CN101942594B (en) * 2010-07-06 2012-08-22 南京信息工程大学 Aluminium alloys, pumice-ferric oxide and vermiculite-barium ferrate composite material and preparation method thereof
CN101942588B (en) * 2010-07-06 2012-08-22 南京信息工程大学 Magnesium alloy diatomite ferric oxide composite material and preparation method thereof
CN101942622B (en) * 2010-07-06 2012-08-22 南京信息工程大学 Zinc alloy-sepiolite-pumice-ferric oxide composite material and preparation method thereof
CN101942584B (en) * 2010-07-06 2012-08-22 南京信息工程大学 Zinc alloys, sepiolite-ferric oxide and vermiculite-barium ferrate composite material and preparation method thereof
CN101921942B (en) * 2010-07-06 2012-12-26 南京信息工程大学 Finely crystalline iron-stibium fiber and pumice magnesium alloy composite material and preparation method thereof
EP3199236A4 (en) * 2014-09-28 2018-05-30 Changchun Meihe Science and Technology Development Co., Ltd. Acid-resistant alloy catalyst
US10464870B2 (en) 2014-09-28 2019-11-05 The Coca-Cola Company Methods for preparing diol
US10556226B2 (en) 2014-09-28 2020-02-11 The Coca-Cola Company Acid-resistant alloy catalyst
US10940465B2 (en) 2014-09-28 2021-03-09 The Coca-Cola Company Acid-resistant alloy catalyst
US11104629B2 (en) 2014-09-28 2021-08-31 The Coca-Cola Company Methods for preparing diol
US11746074B2 (en) 2014-09-28 2023-09-05 Changchun Meihe Science And Technology Development Co., Ltd Methods for preparing diol

Also Published As

Publication number Publication date
KR100375306B1 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
KR100375306B1 (en) Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate
US20130209311A1 (en) Aluminum alloy, and aluminum alloy casting
CN111155000A (en) Rapid heat treatment strengthening high-strength and high-toughness aluminum alloy material for die-casting thin-walled piece and preparation method and application thereof
US4388270A (en) Rhenium-bearing copper-nickel-tin alloys
CN105568019B (en) Refining method for CuAlMn shape memory alloy grains
CN115094263B (en) Alterant alloy for copper-chromium-zirconium series alloy, preparation method and application thereof
US20220195563A1 (en) Die-cast aluminum alloy and preparation method and use thereof
CN111020303A (en) 4XXX series aluminum alloy and preparation method thereof
KR100371128B1 (en) Cu-Ni-Sn-Al, Si, Sr, Ti, B alloys for high strength wire or plate
CN110423928B (en) High-strength flame-retardant magnesium alloy
KR100413660B1 (en) Cu-Ni-Mn-Sn-Zr, Cr alloys for corrosion resistance to sea water
CN111118356A (en) Aluminum alloy material, aluminum alloy molded part, preparation method of aluminum alloy molded part and terminal equipment
US4605436A (en) Method of producing titanium alloys
KR100256851B1 (en) Manufacturing method for cu-ni-mn-sn-si alloy and same product
CN109536774B (en) Copper alloy material, preparation method and sliding bearing
CN112708807A (en) 4XXX series aluminum alloy and preparation method thereof
US4582533A (en) Method of and prealloy for the production of titanium alloys
KR100256852B1 (en) Manufacturing method for cu-ni-mn-sn-al alloy and same product
CN113846255A (en) Aluminum alloy, preparation method thereof and aluminum alloy structural part
KR100278117B1 (en) High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it's manufacturing method
US2555014A (en) Composition for addition to cast iron or steel
KR100444291B1 (en) High strength phosphorous copper with fine grain structure
CN113862539B (en) Casting process for reducing deformation activation energy of Mg-Gd-Zn magnesium alloy containing LPSO phase
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
EP3951000B1 (en) Zinc alloy and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120213

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee