KR100256851B1 - Manufacturing method for cu-ni-mn-sn-si alloy and same product - Google Patents

Manufacturing method for cu-ni-mn-sn-si alloy and same product Download PDF

Info

Publication number
KR100256851B1
KR100256851B1 KR1019970067642A KR19970067642A KR100256851B1 KR 100256851 B1 KR100256851 B1 KR 100256851B1 KR 1019970067642 A KR1019970067642 A KR 1019970067642A KR 19970067642 A KR19970067642 A KR 19970067642A KR 100256851 B1 KR100256851 B1 KR 100256851B1
Authority
KR
South Korea
Prior art keywords
nickel
copper
alloy
tin
manganese
Prior art date
Application number
KR1019970067642A
Other languages
Korean (ko)
Other versions
KR19990048844A (en
Inventor
김창주
이정무
정윤철
육점국
이상주
김경선
한승전
오충섭
황인철
Original Assignee
정정원
주식회사엘지금속
오충섭
영일특수금속주식회사
윤영상
다산금속주식회사
황해웅
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정정원, 주식회사엘지금속, 오충섭, 영일특수금속주식회사, 윤영상, 다산금속주식회사, 황해웅, 한국기계연구원 filed Critical 정정원
Priority to KR1019970067642A priority Critical patent/KR100256851B1/en
Publication of KR19990048844A publication Critical patent/KR19990048844A/en
Application granted granted Critical
Publication of KR100256851B1 publication Critical patent/KR100256851B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: Provided is a process for preparing the titled wire material and alloy by adding manganese in place of a part of nickel, tin in proportion to a content of nickel and silicon to nickel as a main element. Whereby, the obtained alloy has excellent tensile force, drawing rate and electrical specific resistivity. CONSTITUTION: This Cu-Ni-Mn-Su-Si alloy for plate comprises 1.0 to 8.0% by weight of nickel, 0.5 to 5.0% by weight of manganese, 0.1 to 0.8% by weight of tin, 0.1 to 0.5% by weight of silicon and the balance of copper. The process for producing high strength wire material and the alloy contains an alloy material discharging process, a melting process, an alloying process, a bar and plate continuous casting process, a solution treatment process and an ageing process.

Description

고강도 선재 및 판재용 구리(Cu)-니켈(Ni)- 망간(Mn)-주석(Sn)- 실리콘 (Si) 합금과 그 제조방법Copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn)-silicon (Si) alloys for high-strength wire and plate and its manufacturing method

본 발명은 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-실리콘(Si)합금과 그 제조방법에 관한 것이다.The present invention relates to a copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloy for high-strength wire and plate and a method of manufacturing the same.

종래의 구리합금 중에는 스피노달 분해효과로서 고강도를 나타내는 구리(Cu)-니켈(Ni)-주석(Sn)계 3원합금이 있으며, 이 합금의 대표적인 조성은 중량 퍼센트로 9%의 니켈(Ni)과 6%의 주석(Sn)을 함유하고 나머지는 85%는 구리(Cu)로 구성된다.Conventional copper alloys include copper (Cu) -nickel (Ni) -tin (Sn) ternary alloys, which exhibit high strength as a spinodal decomposition effect, and the typical composition of this alloy is 9% by weight of nickel (Ni). And 6% tin (Sn), with the remainder consisting of 85% copper (Cu).

구리(85%)-니켈(9%)-주석(6%)계 3원합금은 스피노달 분해강화 효과를 이용한 가공열처리를 통하여 인장강도를 1,000MPa 이상 얻을 수 있어서, 전기부품이나 특수 목적용 고강도 스프링 합금인 베릴륨동(Cu-Be)을 대체할 수 있을 정도의 높은 강도와 낮은 제조원가가 가능하며, 특히 베릴륨(Be)과 같은 유독성 금속을 사용하지 않는 장점을 가지고 있다.Copper (85%)-nickel (9%)-tin (6%)-based ternary alloys can obtain tensile strength of 1,000 MPa or more through processing heat treatment using spinodal decomposition strengthening effect. High strength and low manufacturing cost are possible to replace the copper alloy beryllium (Cu-Be), in particular has the advantage of not using toxic metals such as beryllium (Be).

그러나 구리(Cu)-니켈(Ni)-주석(Sn)계 스피노달 분해강화 합금은 빌렛 주괴상태에서 열간가공이 불가능하여 판재, 봉재 및 선재 등의 제조가 어렵다는 단점이 있다.However, copper (Cu) -nickel (Ni) -tin (Sn) -based spinodal decomposition-reinforced alloys have a disadvantage in that it is difficult to manufacture plates, bars, wires, etc., because hot working is not possible in the billet ingot state.

따라서 분말야금에 의한 판재, 봉재 및 선재가 일부 생산되고 있으나 제조공정의 어려움과 고비용으로 매우 고가라는 문제점이 있다.Therefore, a part of the plate, bar and wire by powder metallurgy has been produced, but there is a problem that the manufacturing process is very expensive due to difficulty and high cost.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-실리콘(Si) 합금의 제조방법에 관한 것으로, 니켈을 주첨가원소로 하나 니켈(Ni)의 일부를 또 다른 고용원소인 저렴한 망간(Mn)을 첨가하여 고용강화효과를 얻고, 스피노달 분해강화효과를 위해서 니켈의 함량에 비례한 주석(Sn)을 첨가하였으며, 다소의 석출강화 효과를 얻는 외에 용탕 속에서 강력한 탈산작용에 의한 정련효과와 함께 용탕의 유동성도 개선토록 하기 위하여 실리콘(Si)을 첨가한 합금 및 그 제조방법을 제공하는데 있다.An object of the present invention for solving the above problems relates to a method for producing a copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloy for high strength wire and plate, Nickel is used as a main additive, but a part of nickel (Ni) is added to another solid solution, inexpensive manganese (Mn), to obtain a solid solution effect, and to increase spinoidal decomposition, tin (Sn) is proportional to the content of nickel. In addition to obtaining some precipitation strengthening effect, in order to improve the fluidity of the melt as well as the refining effect by the strong deoxidation in the molten metal to provide an alloy and a method for producing the silicon (Si).

본 발명의 합금조성범위는 1.0~5.0wt% 미만 니켈(Ni), 2.1~5.0wt% 망간 (Mn), 4.0~8.0wt% 주석(Sn), 0.1~.0.3wt%미만 실리콘(Si), 나머지는 구리(Cu)로 조성된다.The alloy composition range of the present invention is less than 1.0 ~ 5.0wt% nickel (Ni), 2.1 ~ 5.0wt% manganese (Mn), 4.0 ~ 8.0wt% tin (Sn), 0.1 ~ 0.3wt% less than silicon (Si), The remainder is composed of copper (Cu).

상기 합금성분 중에서 니켈(Ni)의 일부는 니켈(Ni)과 유사한 고용원소로서의 기능을 제공하는 망간(Mn)으로 그 일부를 대체하고 이에 비례하여 스피노달 분해생성물을 주도하는 주석(Sn)의 양도 제어하여 효과적인 스피노달 분해강화를 나타낼수 있도록 하였다.Among the alloying components, a portion of nickel (Ni) is replaced with a portion of manganese (Mn) which provides a function as a solid element similar to nickel (Ni), and proportionally transfers tin (Sn) which leads the spinodal decomposition product. Controlled to show effective spinodal degradation enhancement.

그리고 니켈(Ni)과 주석(Sn)의 함량 부족에 따른 강도가 저하하는 문제는 석출강화 효과를 나타내는 원소 중의 하나인 실리콘(Si)을 첨가하여 보완하였다.In addition, the problem of lowering the strength due to insufficient content of nickel (Ni) and tin (Sn) was supplemented by adding silicon (Si), which is one of the elements showing the precipitation strengthening effect.

여기서 실리콘(Si)은 고온의 용탕중에 투입하는 경우에 합금성도 좋으며 산화성이 높아 용탕 속에서 강력한 탈산작용도 하여 용탕을 맑게하는 정련효과에도 좋다.Here, silicon (Si) has good alloying property when it is put in a high temperature molten metal, and has a high oxidizing property, and also has a strong deoxidation effect in the molten metal, which is also good for the refining effect of clearing the molten metal.

이러한 본 발명을 단계별로 설명하면 다음과 같다.When explaining the present invention step by step as follows.

고강도 선재 및 판재용 동합금으로 합금조성범위를 1.0~5.0wt%미만 니켈 (Ni), 2.1~5.0wt% 망간(Mn), 4.0~8.0wt% 주석(Sn), 0.1~0.3wt%미만 실리콘 (Si), 나머지는 구리(Cu)로 평량하는 단계와,Copper alloy for high-strength wire and plate, alloy composition range of less than 1.0 ~ 5.0wt% nickel (Ni), 2.1 ~ 5.0wt% manganese (Mn), 4.0 ~ 8.0wt% tin (Sn), less than 0.1 ~ 0.3wt% silicon ( Si), the remainder being weighed with copper (Cu),

평량한 후, 용해로 바닥에 구리(Cu)를 깔고 그 위에 니켈(Ni), 구리(Cu), 니켈 (Ni), 구리(Cu)순서로 반복하여 적층으로 장입하되 마직막에는 구리(Cu)로써 두껍게 덮고, 용해를 시작하여 구리와 니켈이 모두 용해하면 슬래그를 제거하고 난 후, 망간(Mn)을 첨가하여 용해하고 용탕의 온도가 점차 증가하여 용탕의 온도가 약 1,250℃ 정도가 되었을 때, 가열을 중단하거나 매우 낮은 열원을 공급하는 정도로 하고 주석(Sn)과 실리콘(Si)을 연속적으로 투입하고 잘 교반하여 용해시키는 용해합금단계와,After weighing, place copper (Cu) at the bottom of the furnace and load it in a stack in order of nickel (Ni), copper (Cu), nickel (Ni), and copper (Cu) in sequence, but thicken it with copper (Cu) at the end. Cover, start dissolving, if both copper and nickel dissolve, remove the slag, add manganese (Mn) to dissolve, and when the temperature of the molten metal increases gradually, the temperature of the molten metal reaches about 1,250 ℃. A dissolution alloy step of discontinuing or supplying a very low heat source and continuously adding tin (Sn) and silicon (Si) and stirring to dissolve it;

합금원소들이 충분히 용해하고 용탕온도로 1250℃ 정도로서 용탕의 유동성이 좋아지면, 열간가공이 가능한 합금방안의 경우에는 주괴의 살두께가 70㎜ 이상의 두꺼운 판재나 직경이 φ100mm 이상의 큰 대경봉으로 연속주조나 금형주조로 인고트를 제조하고, 냉간가공이 유리한 합금방안의 경우에는 주괴의 살두께가 30mm 이하의 얇은 판재나 직경이 φ20mm 이하의 작은 소경봉으로 연속주조하여 주괴를 만드는 단계와,When the alloying elements are sufficiently dissolved and the flowability of the molten metal is improved at the melting temperature of about 1250 ° C, in the case of an alloy method that can be hot worked, continuous casting is performed with a thick sheet of ingot having a thickness of 70 mm or more and a large diameter rod having a diameter of 100 mm or more. Ingot manufacturing by ingot casting, and in the case of alloying method where cold working is advantageous, ingot is produced by continuous casting with thin plate of ingot thickness of 30mm or less or small diameter rod of diameter of 20mm or less,

이렇게 제조된 주괴 중에서 판재나 소경봉 상태의 주괴는 균질화처리 후, 냉간압연 또는 냉간인발에 의해 85% 이상의 소성가공으로 주조조직을 완전히 제거한 후, 이를 850±50℃의 온도에서 0.5~1.0 시간 유지한 후에 수냉하여 용체화 처리를 행하며, 열간압연이나 압출에 의해 제조된 판재나 선재의 경우도 850±50℃의 온도에서 0.5~1.0시간 유지한 후에 수냉하여 용체화처리를 행하는 단계와,In the ingot thus prepared, the ingot in the form of plate or small diameter rod is homogenized and completely removed from the cast structure by 85% or more plastic processing by cold rolling or cold drawing, and then maintained at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours. After cooling, the solution is subjected to the solution treatment, and in the case of a plate or wire produced by hot rolling or extrusion, the solution is subjected to solution cooling by maintaining the solution at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours, and then performing solution treatment.

이렇게 용체화처리된 중간 상태의 봉재나 판재는 목표로하는 물성의 목표에 따른 냉간가공량 만큼 압연이나 인발을 한 후에 시효처리로서 300~550℃에서 1~10hr유지한 후 공냉하면 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)계 합금에서 나타나는 (CuXNiy)zSn형 스피노달 분해생성물에 의한 강화효과와 구리(Cu)-니켈(Ni)- 실리콘 (Si)계 합금에서 나타나는 CuxSi CuyNizSi NixSi 형 석출에 의한 강화효과를 얻는 시효처리 단계를 가진다.The bar or plate in the intermediate state that has been solvated is rolled or drawn as much as the cold working amount according to the target physical property, and then maintained at 300 to 550 ° C for 1 to 10 hrs. Reinforcement effect of (Cu X Ni y ) z Sn-type spinoidal decomposition products in nickel (Ni) -manganese (Mn) -tin (Sn) -based alloys and copper (Cu) -nickel (Ni) -silicon (Si It has an aging treatment step to obtain the reinforcing effect by the Cu x Si Cu y Ni z Si Ni x Si type precipitation appearing in the) -based alloy.

그리고 단계별 공정에서 제시하는 온도와 시간의 한정에 있어서, 우선 용해시 용탕의 온도를 1250℃ 정도로 한정하는 이유는 순동의 융점이 1,080℃이며, 여기에 이보다 융점이 높은 니켈과 망간을 합금함에 있어서 먼저 용해된 순동의 용탕의 유동성과 활량을 높여서 니켈과 망간을 용해를 촉진시키되, 산화성이 강한 망간의 산화손실을 억제하기 위한 최적의 온도로 한정한다. 그리고 본 발명재료의 경우에서 구성된 합금성분을 고려한 상태도를 예측하여 보면 고용체화 및 재결정온도구간은 800~900℃, 유지시간은 0.5~1.0 시간이 가장 적합하였으며, 그 이하인 경우에는 합금원소의 균질화와 충분한 고용이 어려우며, 그 이상의 온도에서는 결정성장이 급격하여 조대화하여 향우 물성에 악영향을 초래하고 있다. 한편, 시효처리온도와 유지시간에 있어서도 과시효와 미시효의 처리조건을 시험한 결과, 시효처리 온도 범위는 300~550℃에서 1~10 시간이 최적의 조건이었다. 여기서 처리조건에 따른 물성의 변화를 보면, 시효온도가 높고 유지시간이 길면 강도는 다소 저하하나 연성이 증가하고, 시효온도가 낮고 유지시간이 짧으면 고강도이나 연성이 낮다. 그러나 미시효에 가까운 저온의 구간이라면, 석출강화효과가 적어 가공경화에서 잔류응력 만이 제거되는 수준이 될 것이다. 이상과 같은 제반의 이유에서 처리온도와 유지시간을 한정하게 되었다.In the limitation of temperature and time suggested in the step-by-step process, first, the melting temperature of molten metal is about 1250 ° C. The melting point of pure copper is 1,080 ° C. In the case of alloying nickel and manganese having higher melting point, In order to promote the dissolution of nickel and manganese by increasing the fluidity and activity of molten pure copper molten metal, it is limited to an optimal temperature for suppressing oxidation loss of manganese having high oxidative properties. In the case of the present invention, the solid state and recrystallization temperature range of 800 ~ 900 ℃, the holding time of 0.5 ~ 1.0 hours was most suitable, and in the case of less than that, if the state diagram considering the alloy composition composed of the material of the present invention, Sufficient employment is difficult, and at higher temperatures, the crystal growth rapidly and coarsens, which adversely affects the fragrance properties. On the other hand, in the aging treatment temperature and the holding time, as a result of testing the overaging and unaging treatment conditions, the aging treatment temperature range was 300 to 550 ° C for 1 to 10 hours. In view of the change in physical properties according to the treatment conditions, when the aging temperature is high and the holding time is long, the strength decreases slightly, but the ductility is increased. When the aging temperature is low and the holding time is short, the strength or ductility is low. However, in the low temperature range close to the unaging age, the precipitation strengthening effect is small and only residual stress is removed from the work hardening. For the above reasons, the treatment temperature and the holding time have been limited.

상기와 같은 본 발명은 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-망간 (Mn)-주석(Sn)-실리콘(Si) 합금의 제조방법에 관한 것으로, 니켈을 주첨가원소로 하나 니켈(Ni)의 일부를 또 다른 고용원소인 저렴한 망간(Mn)을 첨가하여 고용강화 효과를 얻고, 스피노달 분해강화효과를 위해서 니켈의 함량에 비례한 주석(Sn)을 첨가하였으며, 다소의 석출강화 효과를 얻는 외에 용탕 속에서 강력한 탈산작용에 의한 정련효과와 함께 용탕의 유동성도 개선토록 하기 위하여 실리콘(Si)을 첨가한 합금으로서 적당한 가공과 열처리를 거치면 인장강도를 1100Mpa 이상, 연신율은 5%이상, 전기비저항치는 11~20 μΩ㎝범위를 얻을 수 있는 합금 및 그 제조방법을 제공하였다.The present invention as described above relates to a method for producing a copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloy for high-strength wire and plate, nickel as the main additive element Some of nickel (Ni) was added to another solid solution element, inexpensive manganese (Mn), to obtain a solid solution effect, and for the spinodal decomposition enhancement effect, tin (Sn) in proportion to the content of nickel was added, and some precipitation In addition to obtaining reinforcing effect, it is an alloy containing silicon (Si) to improve the flowability of molten metal as well as the refining effect by strong deoxidation in the molten metal. After proper processing and heat treatment, tensile strength is over 1100Mpa and elongation is 5%. Thus, the electrical resistivity was provided with an alloy and a method for producing the 11 ~ 20 μΩcm range.

다음의 표 1은 본 발명에서 제시하는 합금들의 예이며, 표 2와 표 3은 가공열처리에 따른 인장강도와 연신율의 변화이며, 표 4는 가공열처리에 따른 전기비저항치의 변화이다.The following Table 1 is an example of the alloys presented in the present invention, Tables 2 and 3 are changes in tensile strength and elongation according to the processing heat treatment, Table 4 is a change in the electrical resistivity value according to the processing heat treatment.

표 2에서 보면, 기존의 85% 구리(Cu)-9% 니켈(Ni)-6% 주석(Sn) 3원합금의 경우에 300~400℃에서 3시간 시효처리하면 인장강도는 1,043~1,195MPa, 연신율은 7~9%를 얻을 수 있으며, 전기비저항치는 10~14μΩ㎝를 나타내고 있다.In Table 2, the tensile strength of the existing 85% copper (Cu)-9% nickel (Ni)-6% tin (Sn) ternary alloy is aged from 1043 to 1,195 MPa after three hours of aging at 300 to 400 ° C. The elongation can be obtained from 7 to 9%, and the electrical resistivity value is 10 to 14 µΩcm.

그리고 구리(Cu)-9% 니켈(Ni)-6% 주석(Sn)계 합금에서 고용원소인 9% 니켈(Ni)의 일부를 망간(Mn)으로 대체한 구리(Cu)-9% [니켈(Ni)+망간(Mn)]-6% 주석(Sn)3원합금 경우에 같은 시효조건에서 인장강도는 837~1,156 MPa, 연신율은 6~12%의 범위를 얻을 수 있으며, 전기비저항치는 11~26μΩ㎝를 나타낸다.And copper (Cu) -9% nickel (Ni) -6% tin (Sn) alloy in the copper (Cu) -9% of the part of 9% nickel (Ni), which is a solid solution, replaced with manganese (Mn) [nickel (Ni) + Manganese (Mn)]-6% Tin (Sn) tri-alloy alloys have tensile strengths ranging from 837 to 1,156 MPa and elongation 6 to 12% under the same aging conditions. ˜26 μΩcm is shown.

그리고 구리(Cu)-9% 니켈(Ni)-6% 주석(Sn) 3원합금에서 고용원소인 니켈 (Ni)의 일부를 망간(Mn)으로 대체하고 스피노달 분해생성물을 주도하는 주석 (Sn)의 함량을 2~4%로 줄인 대신에 실리콘(Si)를 0.1~0.3% 첨가한 경우는 인장강도가 733~857MPa 정도였다.In the copper (Cu) -9% nickel (Ni) -6% tin (Sn) ternary alloy, a part of nickel (Ni), an element of employment, is replaced with manganese (Mn), and tin (Sn) leads the spinodal decomposition product. Tensile strength was about 733 ~ 857MPa when 0.1 ~ 0.3% of silicon (Si) was added instead of 2 ~ 4%.

그리고 기존의 구리(Cu)-9% 니켈(Ni)-6% 주석(Sn) 3원합금에 석출강화 원소인 실리콘(Si)을 첨가한 경우와 첨가하지 않은 경우에 인장강도나 전기비저항치의 변화는 크지않으며, 연신율의 감소도 크지않은 경향을 나타내고 있다.The change in tensile strength or electrical resistivity of the copper (Cu) -9% nickel (Ni) -6% tin (Sn) ternary alloy with and without the addition of precipitated strengthening silicon (Si) Is not large and the decrease in elongation tends to be insignificant.

한편, 본 발명의 경우인 구리(Cu)-니켈(Ni)-주석(Sn)-실리콘(Si) 합금의 예에서는, 구리(Cu)-6% 니켈(Ni)-3% 망간(Mn)-6% 주석(Sn)-0.1~0.3% 실리콘(Si) 합금의 경우에는 인장강도가 1000~1088Mpa, 연신율이 4~7%를 얻고 있으며, 전기비저항치도 13~27 μΩ㎝를 나타내고 있다.On the other hand, in the example of copper (Cu) -nickel (Ni) -tin (Sn) -silicon (Si) alloy which is a case of this invention, copper (Cu) -6% nickel (Ni) -3% manganese (Mn)- In the case of 6% tin (Sn) -0.1 to 0.3% silicon (Si) alloy, the tensile strength is 1000 to 1088 Mpa, the elongation is 4 to 7%, and the electrical resistivity is 13 to 27 μΩcm.

이같은 결과는 인장강도를 1000MPa 이상 얻을 수 있는 새로운 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-실리콘(Si)계 합금을 개발하는 효과를 가져오게 되었다.This result has led to the development of a new copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) -based alloy that can obtain a tensile strength of 1000 MPa or more.

Figure kpo00001
Figure kpo00001

Figure kpo00002
Figure kpo00002

Figure kpo00003
Figure kpo00003

Figure kpo00004
Figure kpo00004

Claims (2)

고강도 선재 및 판재용 구리합금에 있어서, 1.0~5.0wt% 미만 니켈(Ni), 2,1~5.0wt% 망간(Mn), 4.0~8.0wt% 주석(Sn), 0.1~0.3wt%미만 실리콘(Si), 나머지는 구리(Cu)로 조성된 것을 특징으로 하는 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-실리콘(Si)합금.Copper alloy for high strength wire and sheet metal, less than 1.0 ~ 5.0wt% nickel (Ni), 2,1 ~ 5.0wt% manganese (Mn), 4.0 ~ 8.0wt% tin (Sn), less than 0.1 ~ 0.3wt% silicon (Si), the remainder is copper (Cu), characterized in that the copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloy for high strength wire and plate. 고강도 선재 및 판재를 위한 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)-실리콘(Si)합금의 제조방법에 있어서, 고강도 선재 및 판재용 동합금으로 합금조성범위를 1.0~5.0wt% 미만 니켈(Ni), 2.1~5.0wt% 망간(Mn), 4.0~8.0wt% 주석(Sn), 0.1~0.3wt%미만 실리콘(Si), 나머지는 구리(Cu)로 평량하는 단계와, 평량한 후, 용해로 바닥에 구리(Cu)를 깔고 그 위에 니켈(Ni), 구리(Cu), 니켈(Ni), 구리(Cu)순서로 반복하여 적층으로 장입하되 마직막에는 구리(Cu)로써 두껍게 덮고, 용해를 시작하여 구리와 니켈이 모두 용해하면 슬래그를 제거하고 난후, 망간(Mn)을 첨가하여 용해하고 용탕의 온도가 점차 증가하여 용탕의 온도가 약 1,250℃ 정도가 되었을 때, 가열을 중단하거나 매우 낮은 열원을 공급하는 정도로 하고 주석(Sn)과 실리콘(Si)을 연속적으로 투입하고 잘 교반하여 용해시키는 용해 합금 단계와, 합금원소들이 충분히 용해하고 용탕온도도 1250℃ 정도로서 용탕의 유동성이 좋아지면, 열간가공이 가능한 합금방안의 경우에는 주괴의 살두께가 70mm 이상의 두꺼운 판재나 직경이 φ100mm 이상의 큰 대경봉으로 연속주조나 금형주조로 인고트를 제조하고, 냉간가공이 유리한 합금방안의 경우에는 주괴의 살두께가 30mm 이하의 얇은 판재나 직경이 φ20mm 이하의 작은 소경봉으로 연속주조하여 주괴를 만드는 단계와, 이렇게 제조된 주괴 중에서 판재나 소경봉 상태의 주괴는 균질화처리 후, 냉간압연 또는 냉간인발에 의해 85% 이상의 소성가공으로 주조조직을 완전히 제거한 후, 이를 850℃±50℃의 온도에서 05~1.0 시간 유지한 후에 수냉하여 용체화 처리를 행하며, 열간압연이나 압출에 의해 제조된 판재나 선재의 경우도 850±50℃의 온도에서 0.5~1.0 시간 유지한 후에 수냉하여 용체화처리를 행하는 단계와, 이렇게 용체화 처리된 중간 상태의 봉재나 판재는 목표로하는 물성의 목표에 따른 냉간가공량 만큼 압연이나 인발을 한 후에 시효처리로서 300~550℃에서 1~10hr 유지한 후 공냉하면 구리(Cu)-니켈(Ni)-망간(Mn)-주석(Sn)계 합금에서 나타나는 (CuxNiy)ZSn 형 스피노달 분해생성물에 의한 강화효과와 구리(Cu)-니켈 (Ni)-실리콘(Si)계 합금에서 나타나는 CuxSi CuyNizSi NixSi형 석출에 의한 강화효과를 얻는 시효처리 단계를 거치는 방법을 특징으로 하는 고강도 선재 및 판재용 구리(Cu)-니켈 (Ni)-망간(Mn)-주석(Sn)-실리콘(Si) 합금의 제조방법.In the manufacturing method of copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloy for high strength wire and plate, the alloy composition range from 1.0 to Less than 5.0 wt% nickel (Ni), 2.1 to 5.0 wt% manganese (Mn), 4.0 to 8.0 wt% tin (Sn), less than 0.1 to 0.3 wt% silicon (Si), the remainder being weighed with copper (Cu) After weighing, lay copper (Cu) at the bottom of the melting furnace, and load nickel (Ni), copper (Cu), nickel (Ni), and copper (Cu) in this order in the order of lamination, and finally, copper (Cu) Cover with thick, start melting and dissolve both slag and copper, and then remove slag, add manganese (Mn) to dissolve, and gradually increase the temperature of the molten metal and heat it up to about 1,250 ℃. Melted alloy stage that discontinues or supplies a very low heat source and adds tin (Sn) and silicon (Si) continuously and stirs well to dissolve When the alloying elements are sufficiently dissolved and the melt temperature is about 1250 ° C, the flowability of the molten metal is improved. In the case of the alloying method that can be hot worked, continuous casting is performed with a thick plate of ingot thickness of 70 mm or more or a large diameter rod of diameter 100 mm or more. B. Ingots are manufactured by die casting, and in the case of an alloy scheme in which cold working is advantageous, ingots are made by continuous casting with a thin plate having a thickness of 30 mm or less or a small diameter rod having a diameter of 20 mm or less. Among the ingots, the ingots in the form of plate or small diameter rods are homogenized and completely removed from the cast structure by plastic working over 85% by cold rolling or cold drawing, and then maintained at a temperature of 850 ° C ± 50 ° C for 05 to 1.0 hours. After cooling with water, solution treatment is carried out. In the case of a plate or wire produced by hot rolling or extrusion, 0.5 to 1.0 hours at a temperature of 850 ± 50 ° C After cooling, the solution is cooled and subjected to solution treatment, and the bar or plate in the intermediate state subjected to the solution treatment is then rolled or drawn as much as the cold working amount according to the target physical properties, and then aged at 300 to 550 ° C. as an aging treatment. When air-cooled after 1 ~ 10hr, the reinforcing effect and (Cu x Ni y ) Z Sn type spinoidal decomposition products in copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) alloys High-strength wire and sheet material characterized by a method of undergoing an aging treatment step to obtain reinforcement effect of Cu x Si Cu y Ni z Si Ni x Si type precipitation in (Cu) -nickel (Ni) -silicon (Si) -based alloys Method for producing a copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloy.
KR1019970067642A 1997-12-11 1997-12-11 Manufacturing method for cu-ni-mn-sn-si alloy and same product KR100256851B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970067642A KR100256851B1 (en) 1997-12-11 1997-12-11 Manufacturing method for cu-ni-mn-sn-si alloy and same product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970067642A KR100256851B1 (en) 1997-12-11 1997-12-11 Manufacturing method for cu-ni-mn-sn-si alloy and same product

Publications (2)

Publication Number Publication Date
KR19990048844A KR19990048844A (en) 1999-07-05
KR100256851B1 true KR100256851B1 (en) 2000-05-15

Family

ID=19527000

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970067642A KR100256851B1 (en) 1997-12-11 1997-12-11 Manufacturing method for cu-ni-mn-sn-si alloy and same product

Country Status (1)

Country Link
KR (1) KR100256851B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371128B1 (en) * 2000-07-25 2003-02-05 한국통산주식회사 Cu-Ni-Sn-Al, Si, Sr, Ti, B alloys for high strength wire or plate
KR100375306B1 (en) * 2000-09-27 2003-03-10 한국통산주식회사 Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311664B1 (en) * 1999-04-07 2001-11-14 황해웅 Cu-Ni-Mn-Sn alloy for high strength wire and plate and it's manufacturing process
KR101382141B1 (en) * 2012-02-21 2014-04-07 한국기계연구원 Ni-base superalloy having coating layer with excellent thermal stability at high temperature and method of manufacturing the same
JP7194145B2 (en) * 2020-04-01 2022-12-21 Koa株式会社 Alloys for resistors and use of alloys for resistors in resistors
CN114981459A (en) * 2020-12-23 2022-08-30 韩国材料研究院 Copper-nickel-silicon-manganese alloy containing G phase and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177328A (en) * 1988-01-06 1989-07-13 Sanpo Shindo Kogyo Kk High strength copper-based alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177328A (en) * 1988-01-06 1989-07-13 Sanpo Shindo Kogyo Kk High strength copper-based alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371128B1 (en) * 2000-07-25 2003-02-05 한국통산주식회사 Cu-Ni-Sn-Al, Si, Sr, Ti, B alloys for high strength wire or plate
KR100375306B1 (en) * 2000-09-27 2003-03-10 한국통산주식회사 Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate

Also Published As

Publication number Publication date
KR19990048844A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
KR100921311B1 (en) Casting method of modified copper alloy using the master alloy for use in modifying copper alloy
JP4950584B2 (en) Copper alloy with high strength and heat resistance
JP3999676B2 (en) Copper-based alloy and method for producing the same
JP2501275B2 (en) Copper alloy with both conductivity and strength
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
KR100375306B1 (en) Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate
JP2007126739A (en) Copper alloy for electronic material
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
EP0023362B2 (en) A method for manufacturing an electrically conductive copper alloy material
KR100256851B1 (en) Manufacturing method for cu-ni-mn-sn-si alloy and same product
KR100371128B1 (en) Cu-Ni-Sn-Al, Si, Sr, Ti, B alloys for high strength wire or plate
JP2012136746A (en) Copper alloy for electric and electronic parts, and method for manufacturing the same
KR100256852B1 (en) Manufacturing method for cu-ni-mn-sn-al alloy and same product
NL8702171A (en) METAL ALLOY BASED ON COPPER OF IMPROVED TYPE, IN PARTICULAR FOR THE CONSTRUCTION OF ELECTRICAL COMPONENTS AND METHOD OF PREPARING THEREOF.
CN111118356A (en) Aluminum alloy material, aluminum alloy molded part, preparation method of aluminum alloy molded part and terminal equipment
KR100278117B1 (en) High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it's manufacturing method
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
KR100264233B1 (en) High strength wire and plate of cu-ni-mn-sn-ti alloy and it's manufacturing process
US4883112A (en) Method of casting and mold making
JP3941308B2 (en) Copper alloy with excellent hot workability
JPH06248375A (en) High strength and conductive copper alloy
JPH01165733A (en) High strength and high electric conductive copper alloy
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090224

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee