JPH04224640A - Method for melting and casting copper alloy - Google Patents

Method for melting and casting copper alloy

Info

Publication number
JPH04224640A
JPH04224640A JP40680890A JP40680890A JPH04224640A JP H04224640 A JPH04224640 A JP H04224640A JP 40680890 A JP40680890 A JP 40680890A JP 40680890 A JP40680890 A JP 40680890A JP H04224640 A JPH04224640 A JP H04224640A
Authority
JP
Japan
Prior art keywords
copper
casting
melting point
molten metal
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40680890A
Other languages
Japanese (ja)
Other versions
JP2862677B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Isao Hosokawa
功 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP40680890A priority Critical patent/JP2862677B2/en
Publication of JPH04224640A publication Critical patent/JPH04224640A/en
Application granted granted Critical
Publication of JP2862677B2 publication Critical patent/JP2862677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To offer a method for melting and casting a copper alloy mixed with improved refractory elements not entering into solid soln. for obtaining a sound ingot contg. no refractory elements and small in the amt. of a hydrogen gas to be occluded. CONSTITUTION:A molten metal consisting essentially of copper and a molten metal of componental elements having the m.p. higher than that of copper are melted by separate furnaces, and before casting, the molten metal of componental elements having the m.p. higher than that of copper is poured and mixed into the molten metal consisting essentially of copper to regulate the componental compsn. of the mixture to an objective one, and after that, casting is executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、銅の融点よりも高い融
点の成分元素を添加してなる銅合金の溶解、鋳造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting and casting a copper alloy containing a component element having a melting point higher than that of copper.

【0002】0002

【従来の技術】従来、銅合金の溶解、鋳造方法としては
、銅原料および合金成分元素原料を冷塊の状態で原料配
合して溶解炉に投入し、溶解、鋳造する方法、または銅
原料を先に溶製し、その溶解炉あるいは受け湯した炉内
の銅溶湯温度を銅融点より 100℃以上高い温度に保
持した後、固体の合金成分元素原料を投入して目的の成
分組成に調整した後、鋳造する方法等が通常行われ、銅
の融点よりも高い融点の成分元素(例えば鉄、コバルト
、クロム等,以下高融点元素と言う)を添加してなる銅
合金の溶解、鋳造方法も同様の方法が採用されている。
[Prior Art] Conventionally, methods for melting and casting copper alloys include mixing copper raw materials and alloying element raw materials in the form of cold blocks, charging them into a melting furnace, melting and casting, or melting and casting copper raw materials. The copper was first melted, and the temperature of the molten copper in the melting furnace or the receiving furnace was maintained at a temperature 100°C or more higher than the copper melting point, and then solid alloying element raw materials were added to adjust the desired composition. After that, a method such as casting is usually performed, and there is also a method of melting and casting a copper alloy made by adding component elements with a melting point higher than that of copper (for example, iron, cobalt, chromium, etc., hereinafter referred to as high melting point elements). A similar method has been adopted.

【0003】0003

【発明が解決しようとする課題】ところで、上述した銅
合金の溶解、鋳造方法により、高融点元素を添加してな
る銅合金の溶解、鋳造を行うと、高融点元素が銅溶湯中
に均一に溶解するまでに多くの時間を要する。その上、
たとえ溶解したとしても、未固溶の元素が残留すること
がしばしば発生する。また銅の溶湯温度を鋳造温度より
も高い温度で長時間維持し高融点元素の溶解均質化を促
進するため、溶湯中に水素ガスが多く吸蔵され健全な鋳
塊が得難くなる。
[Problems to be Solved by the Invention] By the way, when a copper alloy to which a high melting point element is added is melted and cast using the method for melting and casting a copper alloy described above, the high melting point element is uniformly distributed in the molten copper. It takes a lot of time to dissolve. On top of that,
Even if dissolved, undissolved elements often remain. Furthermore, since the temperature of the molten copper is maintained for a long time at a temperature higher than the casting temperature to promote homogenization of the melting of high melting point elements, a large amount of hydrogen gas is occluded in the molten metal, making it difficult to obtain a healthy ingot.

【0004】このように、従来の、高融点元素を添加し
てなる銅合金の溶解、鋳造方法では、銅溶湯を比較的高
い温度で長時間維持しなければならないため、エネルギ
的に経済的でない上、高融点元素が銅溶湯中に未固溶の
まま残留したり、溶湯中に水素ガスが多く吸蔵される問
題がある。
[0004] As described above, in the conventional method of melting and casting copper alloys made by adding high-melting-point elements, the molten copper must be maintained at a relatively high temperature for a long period of time, which is not economical in terms of energy. Moreover, there are problems in that high-melting-point elements remain undissolved in the molten copper, and a large amount of hydrogen gas is occluded in the molten metal.

【0005】本発明は、上記の問題点に鑑みてなされた
もので、その目的は、未固溶の高融点元素の無い且つ吸
蔵水素ガス量の少ない健全な鋳塊を得るための、改善さ
れた高融点元素を添加してなる銅合金の溶解、鋳造方法
を提供することである。
The present invention has been made in view of the above-mentioned problems, and its object is to provide an improved ingot that is free of undissolved high melting point elements and has a small amount of occluded hydrogen gas. An object of the present invention is to provide a method for melting and casting a copper alloy containing a high melting point element.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係わる銅合金の溶解、鋳造方法は、銅を
主成分とする溶湯と、銅の融点よりも高い融点の成分元
素(高融点元素)の溶湯とを別々の炉で溶製し、鋳造前
に銅を主成分とする溶湯に高融点元素の溶湯を注入混合
し目標成分組成に調整した後、鋳造するものである。
[Means for Solving the Problems] In order to achieve the above object, the method for melting and casting a copper alloy according to the present invention uses a molten metal whose main component is copper and a component element having a melting point higher than that of copper. The molten metal (high melting point element) is melted in a separate furnace, and before casting, the molten metal with the high melting point element is injected and mixed into the molten metal whose main component is copper, adjusted to the target composition, and then cast. .

【0007】[0007]

【作用】本発明では、銅合金の主成分である銅と高融点
元素とを別々の溶解炉で溶解するので、銅および高融点
元素をそれぞれ必要以上の高い温度にすることなく溶解
することができ、しかも溶解後の両溶湯を適宜目標成分
組成になるように注入混合するものであるから、溶解後
の銅溶湯を長時間高い温度に保持することなく完全溶解
した状態で高融点元素を添加でき、またこのように銅溶
湯を長時間高い温度に保持する必要がないので水素ガス
の吸蔵も少なくできる。然るに、その後の鋳造により、
未固溶の高融点元素の無い且つ吸蔵水素ガス量の少ない
健全な鋳塊を得ることができる。
[Operation] In the present invention, since copper, which is the main component of the copper alloy, and the high melting point element are melted in separate melting furnaces, it is possible to melt the copper and the high melting point element without raising the temperature to an unnecessarily high temperature. Moreover, since both molten metals are injected and mixed to suit the target composition after melting, high melting point elements can be added while the molten copper is completely melted without having to hold the molten copper at a high temperature for a long time. In addition, since there is no need to maintain the molten copper at a high temperature for a long time, hydrogen gas storage can be reduced. However, with subsequent casting,
A healthy ingot with no undissolved high melting point elements and a small amount of absorbed hydrogen gas can be obtained.

【0008】また、銅と高融点元素とを別々の溶解炉で
溶解するので、銅溶湯を長時間高い温度に保持する必要
がない上、高融点元素の溶解については、それぞれの物
性値に応じた最適な小型溶解炉、例えば高周波誘導炉あ
るいはガス炉等を適宜使用でき、エネルギ的に経済的に
銅合金溶湯を得ることができる。
Furthermore, since the copper and the high melting point element are melted in separate melting furnaces, there is no need to hold the molten copper at a high temperature for a long time. An optimal small-sized melting furnace such as a high-frequency induction furnace or a gas furnace can be used as appropriate, and a molten copper alloy can be obtained economically in terms of energy.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。本実施例
では、表1に示す高融点元素(鉄、ニッケル、コバルト
)の含有割合の各銅合金を、以下の手順で溶製、鋳造し
てその鋳塊を得た。
[Examples] Examples of the present invention will be described below. In this example, copper alloys having the content ratios of high melting point elements (iron, nickel, cobalt) shown in Table 1 were melted and cast according to the following procedure to obtain ingots.

【0010】先ず、電気銅および銅スクラップを原料と
し小型電気炉を使用して銅溶湯を得る。この時銅溶湯の
温度を表1に示す高融点元素の含有割合における液相線
より約50℃高い温度(表1には溶湯保持温度として示
す)に保持する。次いでこの銅溶湯に、別の高周波誘導
炉で溶解した鉄、ニッケルまたはコバルトの高融点元素
の溶湯を表1に示す含有量になるように注入するととも
に、脱酸等その他の成分を加えた後5分以内に残りの電
気銅を投入して鋳込温度を補正する。得られた合金溶湯
を幅85mm×厚さ50mm×高さ 200mmのブッ
クモールドに鋳造した。この要領で表1に示す各合金組
成の鋳塊を得た。
First, molten copper is obtained using electrolytic copper and copper scrap as raw materials in a small electric furnace. At this time, the temperature of the copper molten metal is maintained at a temperature approximately 50° C. higher than the liquidus line at the content ratio of high melting point elements shown in Table 1 (shown as molten metal holding temperature in Table 1). Next, a molten metal of high melting point elements such as iron, nickel, or cobalt melted in another high-frequency induction furnace is poured into this molten copper to have the content shown in Table 1, and other components such as deoxidation are added. Add the remaining electrolytic copper within 5 minutes to correct the casting temperature. The obtained molten alloy was cast into a book mold with a width of 85 mm, a thickness of 50 mm, and a height of 200 mm. In this way, ingots having the alloy compositions shown in Table 1 were obtained.

【0011】[0011]

【表1】[Table 1]

【0012】一方、比較例として、表1に示す各銅合金
と同じ成分組成に配合した電気銅および銅スクラップと
固体状態の高融点元素からなる原料を小型電気炉に投入
し表1に示す溶湯保持温度に保持して溶解した後、脱酸
等その他の成分を加え、さらに鋳込温度を調整した後、
得られた合金溶湯を幅85mm×厚さ50mm×高さ 
200mmのブックモールドに鋳造した。
On the other hand, as a comparative example, raw materials consisting of electrolytic copper and copper scrap mixed with the same composition as each copper alloy shown in Table 1 and a solid state high melting point element were put into a small electric furnace, and the molten metal shown in Table 1 was prepared. After melting at a holding temperature, adding other ingredients such as deoxidizing, and adjusting the casting temperature,
The obtained molten alloy was 85 mm wide x 50 mm thick x height
It was cast into a 200 mm book mold.

【0013】上述した本発明法により得られた鋳塊と比
較法で得られた鋳塊の、それぞれの断面ミクロ組織を観
察し高融点元素の未固溶物を調査し、また水素ガスの吸
蔵状態を調査した。またそれぞれのXMAによる表面分
析を行った。これらの調査結果について、未固溶物を調
査と水素ガスの吸蔵状態の調査結果を表2に合わせて示
す、また試料 No.2の鉄のXMAによる表面分析結
果を図1(倍率:×1000)に示す。
[0013] The cross-sectional microstructures of the ingots obtained by the method of the present invention and the ingots obtained by the comparative method described above were observed, and the presence of undissolved high melting point elements was investigated, and the occlusion of hydrogen gas was investigated. The condition was investigated. In addition, each surface was analyzed by XMA. Regarding these investigation results, the investigation results for unsolid solution and the hydrogen gas occlusion state are shown in Table 2. The surface analysis results of No. 2 iron by XMA are shown in FIG. 1 (magnification: ×1000).

【0014】[0014]

【表2】[Table 2]

【0015】表2により明らかなように、本発明方法に
より得た銅合金鋳塊では、高融点元素の銅マトリックス
内への固溶は完全であり1μm以上の大きさの未固溶物
は認められなかった。また水素ガスの吸蔵状態も No
.1およびNo.5の試料について調査した結果では各
々0.5ppm、0.3ppmと少ない量で、健全な鋳
塊であった。これに対し、比較法により得た銅合金鋳塊
では、高融点元素の銅マトリックス内への固溶は不完全
であり、いずれの銅合金も10μm前後乃至20μm前
後の大きさの未固溶物が多量に認められた。また水素ガ
スの吸蔵状態も各々4.2ppm、3.8ppmと極め
て高い量で、鋳塊の健全性が劣るものであった。
[0015] As is clear from Table 2, in the copper alloy ingot obtained by the method of the present invention, solid solution of high melting point elements in the copper matrix is complete, and no undissolved particles with a size of 1 μm or more are observed. I couldn't. Also, the storage state of hydrogen gas is No.
.. 1 and no. As a result of investigating sample No. 5, the amount was small at 0.5 ppm and 0.3 ppm, respectively, and it was a healthy ingot. On the other hand, in the copper alloy ingots obtained by the comparative method, the solid solution of high melting point elements into the copper matrix is incomplete, and all copper alloys contain undissolved solid solution with a size of around 10 μm to around 20 μm. were observed in large amounts. Furthermore, the hydrogen gas occlusion state was extremely high at 4.2 ppm and 3.8 ppm, respectively, and the soundness of the ingot was poor.

【0016】また図1から明らかなように、本発明方法
により得た銅合金鋳塊では、鋳塊中のFeが1μm以下
で均一に分布しているのに対し、比較法により得た銅合
金鋳塊では未固溶物の粗大なFeが多数認められる。
Furthermore, as is clear from FIG. 1, in the copper alloy ingot obtained by the method of the present invention, Fe in the ingot is uniformly distributed within 1 μm, whereas in the copper alloy ingot obtained by the comparative method, In the ingot, a large amount of undissolved coarse Fe is observed.

【0017】[0017]

【発明の効果】以上説明したように、本発明に係わる銅
合金の溶解、鋳造方法によれば、未固溶の高融点元素を
残留させることなく且つ水素ガスの吸蔵量を増加させる
ことなく溶解、鋳造ができ、延いては未固溶の高融点元
素の無い且つ吸蔵水素ガス量の少ない健全な鋳塊を得る
ことができる。
[Effects of the Invention] As explained above, according to the method for melting and casting copper alloys according to the present invention, melting is possible without leaving undissolved high melting point elements and without increasing the amount of hydrogen gas absorbed. , it is possible to cast, and as a result, it is possible to obtain a healthy ingot that is free of undissolved high melting point elements and has a small amount of occluded hydrogen gas.

【0018】[0018]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1(A) は、本発明法の鉄のXMAによる
表面分析結果の図、図1(B) は、比較法の鉄のXM
Aによる表面分析結果の図である。
[Figure 1] Figure 1 (A) is a diagram showing the surface analysis results by XMA of iron using the method of the present invention, and Figure 1 (B) is a diagram of the XMA surface analysis results of iron using the comparative method.
It is a figure of the surface analysis result by A.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  銅の融点よりも高い融点の成分元素を
添加してなる銅合金の溶解、鋳造方法であって、銅を主
成分とする溶湯と、銅の融点よりも高い融点の成分元素
の溶湯とを別々の炉で溶製し、鋳造前に銅を主成分とす
る溶湯に銅の融点よりも高い融点の成分元素の溶湯を注
入混合し目標成分組成に調整した後、鋳造することを特
徴とする銅合金の溶解、鋳造方法。
Claim 1: A method for melting and casting a copper alloy by adding a component element having a melting point higher than the melting point of copper, the method comprising: a molten metal mainly composed of copper; and a component element having a melting point higher than the melting point of copper. The molten metal is melted in separate furnaces, and before casting, the molten metal whose main component is copper is mixed with the molten metal whose melting point is higher than that of copper, adjusted to the target composition, and then cast. A method for melting and casting copper alloys.
JP40680890A 1990-12-26 1990-12-26 Copper alloy melting and casting methods Expired - Fee Related JP2862677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40680890A JP2862677B2 (en) 1990-12-26 1990-12-26 Copper alloy melting and casting methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40680890A JP2862677B2 (en) 1990-12-26 1990-12-26 Copper alloy melting and casting methods

Publications (2)

Publication Number Publication Date
JPH04224640A true JPH04224640A (en) 1992-08-13
JP2862677B2 JP2862677B2 (en) 1999-03-03

Family

ID=18516433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40680890A Expired - Fee Related JP2862677B2 (en) 1990-12-26 1990-12-26 Copper alloy melting and casting methods

Country Status (1)

Country Link
JP (1) JP2862677B2 (en)

Also Published As

Publication number Publication date
JP2862677B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP2003521582A (en) Steel grain refining method, steel grain refining alloy and method for producing grain refining alloy
CH375903A (en) Niobium alloy
CN109022925A (en) A method of reducing Laves phase in nickel base superalloy steel ingot
JP7471520B2 (en) Manufacturing method for low carbon nitrogen containing austenitic stainless steel rod
CN112281006B (en) Form regulation and control method for iron-rich phase in regenerated aluminum alloy
KR20020024848A (en) Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate and its manufacturing method
US4451430A (en) Method of producing copper alloy by melting technique
EP0317366A1 (en) Process for producing nodular cast iron
CN112593127A (en) Cast aluminum alloy and preparation method thereof
US1906567A (en) Metal alloy
CN109266886B (en) Method for refining intermetallic compound phase of manganese-iron-containing aluminum alloy
JPH05331572A (en) Copper-iron alloy
JPH04224640A (en) Method for melting and casting copper alloy
CN111518990B (en) Method for controlling alloy elements in free-cutting steel to be uniformly distributed
JPH04305353A (en) Method for casting beryllium-copper alloy
JP2003286533A (en) Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
JP2989053B2 (en) Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
JP2866147B2 (en) Method for producing steel in which fine oxides are dispersed
US4162159A (en) Cast iron modifier and method of application thereof
JPH0569902B2 (en)
RU2041967C1 (en) Method for production of hypereutectic aluminum-silicon alloys
LU502567B1 (en) Crystal-seed nodularizer, and preparation method and use thereof
US1775339A (en) Manufacture of irons and steels
US20240035126A1 (en) Method for increasing the quality of graphite balls
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981117

LAPS Cancellation because of no payment of annual fees