JPS5893834A - Manufacture of inorganic fiber reinforced metallic composite material - Google Patents

Manufacture of inorganic fiber reinforced metallic composite material

Info

Publication number
JPS5893834A
JPS5893834A JP19083381A JP19083381A JPS5893834A JP S5893834 A JPS5893834 A JP S5893834A JP 19083381 A JP19083381 A JP 19083381A JP 19083381 A JP19083381 A JP 19083381A JP S5893834 A JPS5893834 A JP S5893834A
Authority
JP
Japan
Prior art keywords
fibers
composite material
fiber
metal
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19083381A
Other languages
Japanese (ja)
Other versions
JPH0122331B2 (en
Inventor
Junichi Tanaka
淳一 田中
Haruo Teranishi
寺西 春夫
Tatsuya Okamura
達也 岡村
Tokuji Hayase
早瀬 登久治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP19083381A priority Critical patent/JPS5893834A/en
Publication of JPS5893834A publication Critical patent/JPS5893834A/en
Publication of JPH0122331B2 publication Critical patent/JPH0122331B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture an inorg. fiber reinforced metallic composite material with high mechanical strength by forming Al films having a specified thickness on inorg. fibers, arranging the fibers and a powdered or foil-shaped metal to be combined in a mold, and heating and molding them under pressure. CONSTITUTION:A films having 0.5-10mum thickness are formed on the surface of inorg. fibers. The preferred inorg. fibers are carbon fibers, boron fibers, alumina fibers or silicon carbide fibers having about 5-140mum diameter. The fibers and a powdered or foil-shaped metal to be combined are arranged in a mold, heated and press-molded under pressure. Ti, Ni or an alloy thereof is effectively used as the metal to be combined. The thickness of the foil-shaped metal is about 50-100mum, the particle size of the powdered metal is <= about 40mum, and the molding is carried out at about 800-1,000 deg.C under about 100-1,000kg/cm<2> pressure in about 0.5-6hr to obtain a composite material.

Description

【発明の詳細な説明】 本発明は無機1維強化金@複合材料に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inorganic single fiber reinforced gold@composite material.

近時装置で、耐熱性にすぐれ、かつ圧縮強度、引張強度
などの機械強度が大きい材料がタービンブレード航空機
部材などの材料として要望されるようになった。
In recent years, materials with excellent heat resistance and high mechanical strength such as compressive strength and tensile strength have become desired as materials for turbine blade aircraft parts and the like.

この種の材料としてチタン又はニッケルなどの金属を炭
素繊維、ポロン繊維、アルミナ繊維又はシリコンカーバ
イド繊維などの無機繊維で強化した無機繊維強化複合材
料が提案されている。
As this type of material, an inorganic fiber reinforced composite material has been proposed in which a metal such as titanium or nickel is reinforced with inorganic fibers such as carbon fiber, poron fiber, alumina fiber, or silicon carbide fiber.

従来、この無機繊維強化複合材料はチタン、ニッケルな
どの金属粉を無機繊維とともに成形型内に配列して加熱
することにより得られていた。しかしこの方法で得た無
機繊維強化金属複合材料は例えば無機繊維にシリコンカ
ー、<イドを用い、金属にニッケルを用いた場合には焼
結工程においてのニッケルがニッケルカーバイド及びニ
ッケルけい素に転化するので、得られる製品の強度が低
下し脆くなる欠点を有している。
Conventionally, this inorganic fiber-reinforced composite material has been obtained by arranging metal powders such as titanium, nickel, etc. together with inorganic fibers in a mold and heating them. However, in the inorganic fiber-reinforced metal composite material obtained by this method, for example, if silicon carbide or oxide is used as the inorganic fiber and nickel is used as the metal, the nickel is converted into nickel carbide and nickel silicon during the sintering process. Therefore, the strength of the resulting product decreases and it becomes brittle.

また、無機繊維に炭素繊維を、金属にチタンを用いた場
合には、得られる製品はチタンが炭化されるので、上述
の複合材料と同じように強度が弱く脆い欠点がある。
Furthermore, when carbon fiber is used as the inorganic fiber and titanium is used as the metal, the titanium in the resulting product is carbonized, so the resulting product has the disadvantage of low strength and brittleness, similar to the above-mentioned composite materials.

また、ボロン繊維、アルミナ繊維の複合も繊維と金属界
面でやはや反応が起こり十分な複合がなされない。
In addition, even in the case of composites of boron fibers and alumina fibers, reactions occur at the interface between the fibers and the metal, resulting in insufficient composites.

本発明者らはこのような欠点を排除した無機繊維強化金
属複合材料を製造する方法を提−供方るよう研究した結
果、無機繊維と金属との間に限定された厚みのアルミニ
ウム層を介在させて複合させれば、複合すべき金属は無
機繊維と反応する時間が激減されて複合全開の炭化物又
はけい素化物等が生成せず得られる無機繊維金量複合材
は高度に強化されるとの知見を得て、本発明を完成する
にいたった。
The present inventors conducted research to provide a method for manufacturing an inorganic fiber-reinforced metal composite material that eliminates such drawbacks, and as a result, they found that an aluminum layer of a limited thickness is interposed between the inorganic fibers and the metal. If the composite metal is combined with the inorganic fibers, the time for the metal to react with the inorganic fibers is drastically reduced, and the resulting inorganic fiber-gold composite material is highly reinforced without producing any carbides or silicides. This knowledge led to the completion of the present invention.

本発明の要旨は無機繊維の表面に0,5〜lOμ厚みの
アルミニウムの皮膜を形成し、その無機繊維と粉末又は
箔状の複合する金属とを成形型内に配列し、ついで加圧
下で加熱成形して無機繊維強化金属複合材料を製造する
ものである。
The gist of the present invention is to form an aluminum film with a thickness of 0.5 to 10μ on the surface of inorganic fibers, arrange the inorganic fibers and composite metal in the form of powder or foil in a mold, and then heat under pressure. It is molded to produce an inorganic fiber-reinforced metal composite material.

1維の径が5〜140μ程度の炭素繊維、アルミナ繊維
、シリコンカーバイド繊維が好適に使用される。
Carbon fibers, alumina fibers, and silicon carbide fibers each having a diameter of about 5 to 140 μm are preferably used.

複合する金属にはチタン、ニッケル、及びこれらを主体
とした合金が有効である。
Titanium, nickel, and alloys based on these are effective as composite metals.

アルミニウムを無機繊維に皮膜を形成するにはイオンブ
レーティング法(蒸着法)、含浸法又は浸漬法によって
得られる。  。
A film of aluminum can be formed on an inorganic fiber by an ion-blating method (vapor deposition method), an impregnation method, or a dipping method. .

含浸法はアルミニウムの溶湯の中に無機繊維を浸し、加
圧する方法でありこの場合溶湯の湿度は700〜750
℃、圧力は50〜l OOkjl−/cm″が目安とな
る。溶湯中域圧下で無機繊維表面に低溶融点金属の薄膜
が形成する場合には溶湯の温度は700〜750℃で1
 torr以下で行なう。
The impregnation method is a method in which inorganic fibers are immersed in molten aluminum and pressurized. In this case, the humidity of the molten metal is 700 to 750.
℃, the pressure is 50~lOOkjl-/cm''.When a thin film of low melting point metal is formed on the surface of the inorganic fiber under the pressure in the middle range of the molten metal, the temperature of the molten metal is 1.
Perform at torr or less.

アルミニウム皮膜の厚みは0.5〜10μテすることが
好ましい。この範囲の皮膜を形成させる程度ではアルミ
ニウムと繊維とはカーバイドを形成しない。厚みは溶湯
の温度又は蒸着法の場合には蒸着量によって調整される
。厚みが0゜5μ以下であると金属と無機、繊維とが反
応し合うので好ましくなく、厚みがlθμ以上であると
低溶融点金属が多くなり、複合する金属の接着効果が薄
れるので好ましくない。
The thickness of the aluminum film is preferably 0.5 to 10 μm. Aluminum and fibers do not form carbide to the extent that a film is formed within this range. The thickness is adjusted by the temperature of the molten metal or, in the case of a vapor deposition method, the amount of vapor deposition. If the thickness is less than 0°5μ, the metal, inorganic material, and fibers will react with each other, which is undesirable, and if the thickness is more than lθμ, the amount of low melting point metal will increase, which will reduce the adhesive effect of the composite metals, which is not preferred.

複合する金属は箔状(厚み50〜100μ)あるいは粉
末状(粒径40μ以下)のものを使用し、その成形条件
は加熱泪変は800〜1000℃、圧力は100〜10
00kp/c1n’ 、時間は0、5 ’−a時間であ
ることが好ましい。
The composite metal is used in the form of foil (thickness: 50-100μ) or powder (particle size: 40μ or less), and the molding conditions are: heating temperature: 800-1000℃, pressure: 100-10℃.
00kp/c1n', and the time is preferably 0,5'-a hours.

本発明によれば、繊維と複合する金属との両者が反応し
てその金属のカーバイド又はけい素化物等を生成するこ
となく、また、繊維表面のアルミニウム皮膜と複合する
金属とが複合時金属間化合物(TiXAj’(1−x)
、N1YAl(1−Y)など)を形成するので繊維/金
属間は強固な結合となる。
According to the present invention, the fibers and the metal to be composited do not react to form carbides or silicides of the metal, and the aluminum film on the surface of the fiber and the metal to be composited are bonded between the metals during the composite. Compound (TiXAj'(1-x)
, N1YAl(1-Y), etc.), resulting in a strong bond between the fiber and metal.

得られる無機繊維強化金属複合材料は機械強度が大とな
る。
The resulting inorganic fiber-reinforced metal composite material has high mechanical strength.

つぎに本発明の実ms様を実施例について説明するが本
発明はこれらによって限定されるものではない。
Next, the practical aspects of the present invention will be explained with reference to examples, but the present invention is not limited to these.

実施例1) 単鐵維径10μのシリコンカーバイド繊維(商品名:ニ
カロンの、日本カーボン(株) 製)の束(単繊維50
0本の束)をオートクレーブ中にて720Cに溶融した
アルミニウムに浸漬し、70ky△1の圧力を加えて平
均厚み8μのアルミニウム皮膜を単繊維表面に形成した
シリコンカーバイド繊維束を得た。
Example 1) A bundle of silicon carbide fibers (trade name: Nicalon, manufactured by Nippon Carbon Co., Ltd.) with a single fiber diameter of 10 μm (50
A silicon carbide fiber bundle was obtained by immersing a bundle of 0 fibers in aluminum melted at 720C in an autoclave and applying a pressure of 70kyΔ1 to form an aluminum film with an average thickness of 8μ on the surface of the single fibers.

これをチタン箔(厚み50μ)上に繊維体積率約30%
になるように引きそろえてならべさらにそれを10層積
層して成形型中に充填し、850℃、800kP/cr
n″、1時間成形した。
This is placed on titanium foil (thickness 50μ) with a fiber volume percentage of approximately 30%.
10 layers were stacked and filled into a mold, heated at 850℃ and 800kP/cr.
n'', molded for 1 hour.

得られた複合材の特性を第1表に示す。Table 1 shows the properties of the composite material obtained.

実施例2) 実施例1で使用したと同一のアルミニウムみ50μ)上
に繊維体積率約30%になるように引きそ、ろえてなら
べさらにそれを1o層積層して成形型中に充填し850
℃、800ky / cm″、1時間成形した。
Example 2) The fibers were drawn on the same aluminum plate (50 μm) as used in Example 1 so that the fiber volume percentage was about 30%, and the fibers were laid out in a row, and then 10 layers were laminated and filled into a mold.
℃, 800ky/cm'', molding for 1 hour.

得られた複合材の特性を第1表に示す。Table 1 shows the properties of the composite material obtained.

比較例1〜2) 実施例1に用いたシリコンカーバイド繊維束の何らアル
ミニウム皮膜を形成させないもの、および実施例1に用
いたオートクレーブ中で平均厚み12μのアルミニウム
皮膜を形成させだもの各々をチタン箔(厚み50μ)上
に繊維体積率的80%になるように引きそろえてならべ
実施例1の方法により積層、成形したその結果を第1表
に示す。
Comparative Examples 1 to 2) The silicon carbide fiber bundles used in Example 1 that did not form any aluminum film, and the silicon carbide fiber bundles used in Example 1 that formed an aluminum film with an average thickness of 12μ in the autoclave were each coated with titanium foil. (Thickness: 50 μm) The fibers were arranged so that the fiber volume fraction was 80%, and then laminated and molded by the method of Example 1. The results are shown in Table 1.

比較例3〜4) 比較例1.〜・2と使用したと同一のシリコンカーバイ
ド繊維束をニッケル箔(厚み50μ)上に繊維体積率的
805%になるよう引きそろえてならべ実施例2と同一
方法にて積層、成形したその結果を第1表に示す。
Comparative Examples 3-4) Comparative Example 1. ~・The same silicon carbide fiber bundles used in Example 2 were arranged on a nickel foil (thickness 50μ) so that the fiber volume fraction was 805%, and the results were laminated and molded in the same manner as in Example 2. Shown in Table 1.

第  1  表 実施例8〜8) 第2表に示すそれぞれの繊維に第2表に示ス条件で数々
の厚みのアルミニウム皮膜を行った。
Table 1 Examples 8-8) Various thicknesses of aluminum coatings were applied to each of the fibers shown in Table 2 under the conditions shown in Table 2.

これらの繊維をT1粉末(40μ以下)、N1粉末(4
0μ以下)とそれぞれ積層して第2表に示す特性の複合
材を得た。
These fibers are mixed with T1 powder (40μ or less) and N1 powder (40μ or less).
0μ or less) to obtain a composite material having the properties shown in Table 2.

実施例9〜10) 実施例1で使用したと同一のアルミニウム皮膜を形成し
たシリコンカーバイド繊維束をTi−6kl−4V f
りy合金箔(厚み100μ)およびNi−0r合金(工
noonel×−550)箔(厚み100μ)上に繊維
体積率的85%になるよう各々引きそろえてならべこれ
を各々10層積層して850℃、1000kg/cm*
、1時間成形して、チタン合金複合材およびニッケル合
金複合材を得た。
Examples 9 to 10) Silicon carbide fiber bundles on which the same aluminum film as used in Example 1 was formed were made into Ti-6kl-4V f
Arrange them so that the fiber volume fraction is 85% on Ni-Y alloy foil (thickness 100μ) and Ni-0r alloy (Noonel x -550) foil (thickness 100μ). °C, 1000kg/cm*
, and molded for 1 hour to obtain a titanium alloy composite material and a nickel alloy composite material.

その引張り張度はチタン合金複合材150k)/wI1
11ニッケル合金複合材155k)/W”であった。
Its tensile strength is titanium alloy composite material 150k)/wI1
11 nickel alloy composite material 155k)/W''.

特許出願人  日本カーボン株式会社 代理人弁理士 浸 野 豐 司Patent applicant: Nippon Carbon Co., Ltd. Representative Patent Attorney Tsukasa Ibino

Claims (1)

【特許請求の範囲】 (11表面に厚み0.5〜10μのアルミニウムの皮膜
を形成した無機繊維と粉末又は箔状の複合する合間とを
成形型内に配列し、ついで加圧下で加熱成型することを
特徴とする無機繊維強化金属複合材料の製造法。 (2、特許請求の範囲第1項において無機1維が炭素1
維、ポロン繊維、アルミナ繊維又はシリコンカーバイド
繊維である無機繊維強化金属複合材料の製造方法〇 (3)特許請求の範囲第1項又は第2項において、複合
する金−がチタン、ニッケル、及びこれらを主体とした
合金である無機繊維強化金属複合材料の製造方法。
[Claims] (11) Inorganic fibers with an aluminum film of 0.5 to 10 μm in thickness formed on their surfaces and composite interstices in the form of powder or foil are arranged in a mold, and then heated and molded under pressure. A method for manufacturing an inorganic fiber-reinforced metal composite material, characterized in that (2. In claim 1, one inorganic fiber is one carbon
Method for producing an inorganic fiber-reinforced metal composite material that is fiber, poron fiber, alumina fiber, or silicon carbide fiber〇(3) In claim 1 or 2, the composite gold is titanium, nickel, or A method for manufacturing an inorganic fiber-reinforced metal composite material, which is an alloy mainly composed of.
JP19083381A 1981-11-30 1981-11-30 Manufacture of inorganic fiber reinforced metallic composite material Granted JPS5893834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19083381A JPS5893834A (en) 1981-11-30 1981-11-30 Manufacture of inorganic fiber reinforced metallic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19083381A JPS5893834A (en) 1981-11-30 1981-11-30 Manufacture of inorganic fiber reinforced metallic composite material

Publications (2)

Publication Number Publication Date
JPS5893834A true JPS5893834A (en) 1983-06-03
JPH0122331B2 JPH0122331B2 (en) 1989-04-26

Family

ID=16264517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19083381A Granted JPS5893834A (en) 1981-11-30 1981-11-30 Manufacture of inorganic fiber reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS5893834A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609568A (en) * 1983-06-29 1985-01-18 Toray Ind Inc Production of fiber-reinforced composite metallic material
JPS62120447A (en) * 1985-11-20 1987-06-01 Hitachi Ltd Manufacture of metallic matrix-fiber composite material
US5891249A (en) * 1994-10-31 1999-04-06 Board Of Trustees Operating Michigan State University Apparatus for the preparation of metal matrix fiber composites
US6086688A (en) * 1997-07-28 2000-07-11 Alcan International Ltd. Cast metal-matrix composite material and its use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111427U (en) * 1989-02-23 1990-09-06

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334083A (en) * 1976-09-10 1978-03-30 Matsushita Electric Works Ltd Time-multi multiplex transmission system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334083A (en) * 1976-09-10 1978-03-30 Matsushita Electric Works Ltd Time-multi multiplex transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609568A (en) * 1983-06-29 1985-01-18 Toray Ind Inc Production of fiber-reinforced composite metallic material
JPS62120447A (en) * 1985-11-20 1987-06-01 Hitachi Ltd Manufacture of metallic matrix-fiber composite material
US5891249A (en) * 1994-10-31 1999-04-06 Board Of Trustees Operating Michigan State University Apparatus for the preparation of metal matrix fiber composites
US6086688A (en) * 1997-07-28 2000-07-11 Alcan International Ltd. Cast metal-matrix composite material and its use

Also Published As

Publication number Publication date
JPH0122331B2 (en) 1989-04-26

Similar Documents

Publication Publication Date Title
US3419952A (en) Method for making composite material
US4746374A (en) Method of producing titanium aluminide metal matrix composite articles
JP4115521B2 (en) Method of coating, method of manufacturing ceramic-metal structure, bonding method, and structure formed by them
WO1996036746A1 (en) Process for producing sputtering target
US3991928A (en) Method of fabricating titanium alloy matrix composite materials
JPS6235996B2 (en)
EP0699642A2 (en) Whisker or fiber reinforced polycrystalline cubic boron nitride and diamond
JPS59182249A (en) Silicon carbide fiber reinforced glass-ceramic composite material and manufacture
JPS58217435A (en) Manufacture of fiber reinforced glass matrix composite material article
US3894677A (en) Method of preparing graphite reinforced aluminum composite
WO2002081405A1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JPS5893834A (en) Manufacture of inorganic fiber reinforced metallic composite material
US3993818A (en) Resin bonded composite articles and process for fabrication thereof
US3915781A (en) Resin bonded composite articles and process for fabrication thereof
US4428523A (en) Metallic solder composite bonding
Palazotto et al. Introduction to metal matrix composites in aerospace applications
JPS6357734A (en) Fiber reinforced metal and its production
US3979244A (en) Resin bonded composite articles and process for fabrication thereof
JPS5942064B2 (en) Manufacturing method of fiber reinforced composite material
US5697421A (en) Infrared pressureless infiltration of composites
CN109321882A (en) Improve diamond/magnesium composite electron encapsulating material interface cohesion coating and method
RU2731699C1 (en) Method of producing composite materials based on carbon fiber and metal
RU2283727C1 (en) Composition metallic material article production process
JPH09153666A (en) Board for chip mounting and manufacture thereof
SE461847B (en) PROCEDURES FOR SURFACE TREATMENT OF INORGANIC FIBERS AND APPLICATION OF THESE FOOD REINFORCEMENT OF TITAN OR NICKEL