JPS62120447A - Manufacture of metallic matrix-fiber composite material - Google Patents

Manufacture of metallic matrix-fiber composite material

Info

Publication number
JPS62120447A
JPS62120447A JP26065785A JP26065785A JPS62120447A JP S62120447 A JPS62120447 A JP S62120447A JP 26065785 A JP26065785 A JP 26065785A JP 26065785 A JP26065785 A JP 26065785A JP S62120447 A JPS62120447 A JP S62120447A
Authority
JP
Japan
Prior art keywords
metal
matrix
fiber
fibers
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26065785A
Other languages
Japanese (ja)
Other versions
JPH07818B2 (en
Inventor
Hideo Arakawa
英夫 荒川
Shogo Morimoto
森本 庄吾
Yoshimichi Numata
義道 沼田
Toshimi Sasaki
佐々木 敏美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60260657A priority Critical patent/JPH07818B2/en
Publication of JPS62120447A publication Critical patent/JPS62120447A/en
Publication of JPH07818B2 publication Critical patent/JPH07818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To strengthen the interface between matrix-forming metal and fibers and to improve heat resistance by allowing trace amounts of additive elements which enter into solid solution in a metal for forming matrix and react with fibers to enter into solid solution uniformly with the metal for forming matrix. CONSTITUTION:A coating layer 2 of the metal for forming matrix is formed on a fiber 1, and plural pieces of the fibers are bundled,and then a fine wire 3 of the metal containing the additive elements which enter into solid solution in the metal for forming matrix and react with the fiber 1 is wound round the above bundle. This bundle of fibers is woven into prescribed fiber blending, and the resulting woven fabrics are alternately laminated so that they are perpendicular to each other. When the above is subjected to hot pressing, the additive elements contained in the metallic fine wire 3 are diffused into the base metal in the coating layer 2 of the fiber 1 to form a solid solution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属マトリックス−繊維複合材の製造方法に
関する6本発明によって製造される金属マトリックス−
繊維複合材は、例えば部材間の熱膨張係数の調整に用い
られ、セラミックスと金MCの接合体である半導体基板
の間に装着、接合し、ろう付けあるいは冷熱サイクルの
さい、放熱板金属と絶縁板セラミックスとの熱膨張差に
よるセラミックスと金属の剥れ、あるいはセラミックス
の反り、割れを防止することができる。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing a metal matrix-fiber composite material.
Fiber composite materials are used, for example, to adjust the coefficient of thermal expansion between members, and are installed and bonded between semiconductor substrates, which are ceramics and gold MC, and are insulated with heat sink metal during brazing or cooling/heating cycles. It is possible to prevent the ceramic from peeling off from the metal, or from warping or cracking of the ceramic due to the difference in thermal expansion with the plate ceramic.

〔従来の技術〕[Conventional technology]

金属をマトリックスとし、このマトリックス中に金属あ
るいはセラミックの繊維を埋め込んだ金属マトリックス
−繊維複合材(以下r FRM Jという)は、繊維と
マトリックスの両方の特性を具備し、さらに繊維の配向
を一方向、網状、うず巻状、あるいは無方向にすること
により、方向による特性の+g整ができるため各種機器
の構造用あるいは機能用部材として用いられている。こ
のようなF” RMの一つに炭素[C)繊維と銅(Cu
 )のFRMがある。炭素繊維は、黒鉛&11#或はカ
ーボン繊維とも呼ばれるが、以下ではこれらを総称して
炭素繊維という、このC繊維とC1,1のl” RMは
、炭素の負の熱膨張係数と、Cuの正の膨張係数の中間
の膨張係数を有し9部材間の熱膨張係数の調整をおこな
うことができる。
Metal matrix-fiber composites (hereinafter referred to as rFRMJ), which have metal as a matrix and metal or ceramic fibers embedded in this matrix, have the characteristics of both fibers and matrix, and furthermore, the fibers are oriented in one direction. By forming it into a net shape, a spiral shape, or a non-directional shape, it is possible to adjust the characteristics depending on the direction, so it is used as a structural or functional member of various devices. One such F''RM is carbon [C] fiber and copper (Cu).
) FRM is available. Carbon fiber is also called graphite &11# or carbon fiber, but below, these are collectively referred to as carbon fiber. This C fiber and C1,1 l"RM are the negative thermal expansion coefficient of carbon and the negative thermal expansion coefficient of Cu. It has an expansion coefficient between the positive expansion coefficients and can adjust the thermal expansion coefficient among the nine members.

これらのFRMの製法に、含浸法とホットプレス法が存
在する。含浸法は、マトリックス構成要金属を溶湯とし
、これを繊維に含浸させて複合体とするものである。ホ
ットプレス法は、あらかじめ繊維に[1的のマトリック
ス構成用金属をコーティングし、これを高温加圧にして
複合体とするものである。このホットプレス法における
マトリックスのコーティングは、電気メッキ、化学蒸着
There are two methods for manufacturing these FRMs: an impregnation method and a hot press method. In the impregnation method, a matrix-constituting metal is made into a molten metal, and fibers are impregnated with the molten metal to form a composite. In the hot press method, fibers are coated with a metal for forming a matrix in advance, and then the fibers are pressed at high temperature to form a composite. The matrix coating in this hot press method is electroplated and chemical vapor deposition.

イオンブレーティング、溶射等による。そのほか、種々
の製法があり、対象となる金属マトリックス繊維のVi
i類によって適宜製法が選定される。たとえば、Cuマ
トリックスにCJ14!維を埋め込んだCu −C&l
維複合材は、ホットプレス法でsli造され、含浸法は
適用されない、これは、CとCuが全くぬれず、本質的
に含浸できないことによる。
By ion brating, thermal spraying, etc. In addition, there are various manufacturing methods, and the Vi
The manufacturing method is selected as appropriate depending on category i. For example, CJ14 in Cu matrix! Cu-C&l with embedded fibers
The fiber composite is sli-formed by hot pressing method and impregnating method is not applied because C and Cu are not wettable at all and essentially cannot be impregnated.

他方、CuにW繊維を埋め込んだC11−W繊維複合材
はホットプレス法によっても複合化が可能であるが、C
uとWはぬれ性に優れ、かつ化合物も生成しないので一
般的には含浸法が用いられている。
On the other hand, C11-W fiber composite material in which W fibers are embedded in Cu can also be made into a composite material by hot pressing method;
Since U and W have excellent wettability and do not generate compounds, impregnation is generally used.

以−Hのごとく、複合系に適した任意製法が選ばれ、特
に繊維とマトリックスがぬれ性を持たないか、あるいは
繊維とマトリックスの1tiに化合物を生成するような
複合系では、マトリックスを固相として扱うホットプレ
ス法が用いられる。このホットプレス法は、繊維とマト
リックスを確実に複合できる等の好ましい点を有する。
As shown in H-H, any manufacturing method suitable for the composite system is selected. In particular, in composite systems where the fibers and the matrix do not have wettability or where a compound is formed between the fibers and the matrix, the matrix is formed into a solid phase. The hot press method is used. This hot press method has favorable points such as being able to reliably composite fibers and matrix.

上記FRMの製造法の違いは、耐熱性の差にも表われる
。たとえばCuとcm維のぬれ性のないCu−CA4I
維複合材は、加熱するとCuマトリックスが軟化すると
共に、C繊維とCuマトリックスが剥離し、複合材自体
に脹れ現象が生ずるなど耐熱性に十分でない、そこで、
 c u −CMRJI;m合材の耐熱性を向−1ニさ
せるため、CuマトリックスにTi、Zr、Cr、Nb
等が添加されたC u −C繊維複合材が存在する。上
記C11にTi等を添加することによってCu−CJl
維FRMの耐熱性が向上するのは、CとTiの間に金属
間化合物が形成されること、およびCuとT iの間で
固溶体が形成されCuとC界面の強化がされることによ
るものである。
The difference in the FRM manufacturing method described above is also reflected in the difference in heat resistance. For example, Cu-CA4I has no wettability between Cu and cm fibers.
Fiber composite materials do not have sufficient heat resistance, as when heated, the Cu matrix softens, the C fibers and the Cu matrix separate, and a swelling phenomenon occurs in the composite material itself.
c u -CMRJI; m In order to improve the heat resistance of the composite material, Ti, Zr, Cr, and Nb are added to the Cu matrix.
There are Cu-C fiber composites to which Cu-C is added. By adding Ti etc. to the above C11, Cu-CJl
The heat resistance of fiber FRM is improved because an intermetallic compound is formed between C and Ti, and a solid solution is formed between Cu and Ti, which strengthens the Cu-C interface. It is.

このような界面が強化されたFRMを製造する従来例と
して、特公昭52−53720号に記載されるように、
添加元素(Ti等)を粉末とし、これにメチルセルロー
ス等を加えてスラリとしたのち、繊維間に媒体させ、こ
れをホットプレスする方法が知られている。この従来例
では、cm維に対してぬれ性に関係なく、また反応も温
度2時間によって制御し得るので任意の元素の添加が可
能である利点をもつ。
As a conventional example of manufacturing FRM with such a reinforced interface, as described in Japanese Patent Publication No. 52-53720,
A method is known in which an additive element (such as Ti) is powdered, methyl cellulose or the like is added thereto to form a slurry, the slurry is made to be a medium between fibers, and the slurry is hot-pressed. This conventional example has the advantage that arbitrary elements can be added regardless of the wettability of the cm fibers and the reaction can be controlled by controlling the temperature for 2 hours.

[発明が解決しようとする問題点〕 しかし、上記従来例では、粉末を用いているところから
粉末の粒径、メチルセルロースと添加元素粉による流動
性等の要因から、均一に添加元素を分散するのに高度の
技術を特徴とする特に、微量元素の均一化は難しく、粉
末粒径が大きいと均質なマトリックスとならない虞れが
ある。添加元素の不均一な分散が存在すると、If’R
Mに耐熱性の劣る箇所が生じ、その結果熱上昇による脹
れ現象が発生する虞れがある。
[Problems to be Solved by the Invention] However, in the conventional example described above, it is difficult to uniformly disperse the additive elements due to factors such as the particle size of the powder and the fluidity of the methylcellulose and additive element powder. In particular, it is difficult to homogenize trace elements, and if the powder particle size is large, there is a risk that a homogeneous matrix may not be obtained. If there is non-uniform dispersion of additive elements, If'R
There may be a portion of M that has poor heat resistance, and as a result, a swelling phenomenon may occur due to a rise in heat.

また、上記従来例のようにスラリによって添加元素をC
uマトリックスに均一に分散させようとすると、多量の
添加元素を必要とする。その結果、FRMの熱伝導性及
び導伝性の低下が著しくなる。
In addition, as in the conventional example above, additional elements can be added using slurry.
In order to uniformly disperse it in the u matrix, a large amount of additive elements is required. As a result, the thermal conductivity and conductivity of the FRM are significantly reduced.

そこで、繊維にTi等の添加元素とCuの合金をコーテ
ィングしてホットプレスをおこなう方法も考えられるが
、合金の場合はコーティング可能な成分が限定され、ま
たその添加元素の含有量の制御等の点で製造上の難点を
有する。
Therefore, it is possible to hot press the fiber by coating it with an alloy of Cu and other additive elements such as Ti, but in the case of an alloy, the components that can be coated are limited, and it is difficult to control the content of the additive element. There are some manufacturing difficulties.

本発明は、係る問題点を解決するために、導伝性、熱伝
導性を低下させることなく繊維と金属マトリックスとの
界面を強化し、耐熱性に優れたFRMを提供することを
目的とする。
In order to solve such problems, the present invention aims to provide an FRM with excellent heat resistance by strengthening the interface between the fibers and the metal matrix without reducing conductivity and thermal conductivity. .

〔問題点を解決するための技術的手段〕本発明は、マト
リックス構成用金属がコーティングされた繊維に、前記
マトリックス構成用台Jti≦に固溶し、かつ前記繊維
と反応する添加元素を含んでなる金属細線を巻きつけ、
これを高温高圧にすることによりマトリックス構成用金
属と繊維との複合体とすることを特徴とする金属マトリ
ックス−繊維複合材の製造方法である。
[Technical means for solving the problem] The present invention provides that the fiber coated with the matrix-forming metal contains an additive element that is dissolved in the matrix-forming base Jti≦ and that reacts with the fiber. Wrapping thin metal wire,
This is a method for producing a metal matrix-fiber composite material, which is characterized in that a composite material of matrix-constituting metal and fibers is made by subjecting the material to high temperature and high pressure.

〔作用〕[Effect]

上記本発明の構成において、添加元素はマトリックス構
成用金属中に固溶し、かつ繊維との間で反応し金属間化
合物を形成できる。したがってマトリックス構成用金属
と繊維との界面が強化され、耐熱性が向トする。マトリ
ックス構成用金属中に固溶する添加元素の址は、当該添
加元素が金属細線中から得られるものであるため*fで
すみ、かつマトリックス構成用金属中を均質に拡散する
In the configuration of the present invention described above, the additive element is dissolved in solid solution in the matrix-constituting metal, and can react with the fibers to form an intermetallic compound. Therefore, the interface between the matrix-constituting metal and the fibers is strengthened, and heat resistance is improved. Since the additive element is obtained from the thin metal wire, the amount of the additive element solid-dissolved in the matrix-constituting metal is only *f, and it is homogeneously diffused in the matrix-constituting metal.

したがって、熱伝導性、導伝性の低下をイぐことができ
る。
Therefore, a decrease in thermal conductivity and conductivity can be avoided.

〔実施例〕〔Example〕

次に本発明に係る金属マトリックス−繊維複合材の製造
方法の実施例について説明する。
Next, an example of the method for manufacturing a metal matrix-fiber composite material according to the present invention will be described.

まず、第1図に示すように繊維1に、マトリックス用金
属を電気メッキ等によりあらかじめコーティングし、コ
ーティング層2を形成する。他方、繊維にコーティング
されたマトリックス構成用金属の量を考慮し、別途当該
マトリックス構成用金属に固溶し、かつ繊維と反応する
添加元素を含む金属細線を製造する。金属細線は、必要
に応じて添加元素とマトリックス構成用金属との合金、
または添加元素を単独とした金属細線とする4金属細線
は、熱間あるいは冷間等により細線化する。
First, as shown in FIG. 1, a fiber 1 is coated with a matrix metal in advance by electroplating or the like to form a coating layer 2. On the other hand, in consideration of the amount of the matrix-constituting metal coated on the fibers, a metal thin wire containing an additional element that is solid-dissolved in the matrix-constituting metal and reacts with the fibers is manufactured separately. Fine metal wires are made by alloying additive elements and matrix-constituting metals as necessary.
Alternatively, a four-metal thin wire containing only an additive element is thinned by hot or cold heating.

第2図に示すように、金属細線:3をマトリックス構成
用金属がコーティングされた繊維束に巻きつける。金属
細線2(が巻きつけられろ繊維束数は細線の元素含有量
、細線の機械的特性を考慮して選ばれ、たとえばCu 
−CJljl絶複合体では、通常500〜6000本で
ある。合金の細線は、伸線が容易なO,1m程度が好ま
しく、巻付密度は作業性の点から15〜20タ一ン/m
の条件が望ましい。
As shown in FIG. 2, a thin metal wire 3 is wound around a fiber bundle coated with a metal for forming a matrix. The number of fiber bundles around which the metal thin wire 2 is wound is selected in consideration of the element content of the thin wire and the mechanical properties of the thin wire.
-CJljl In the absolute complex, there are usually 500 to 6000. The thin alloy wire is preferably about 0.1 m, which is easy to draw, and the winding density is 15 to 20 tan/m from the viewpoint of workability.
The following conditions are desirable.

金属細線が巻きつけられた繊維束は、所定の繊維配向に
織られる。たとえば網状にしたり、交互に直交するよう
に積層する重ね状にするにれらを高温高圧(ホットプレ
ス)下におく。金属細線に含まれる添加元素は、ホット
プレスの際の高温で繊維にコーティングされた主成分金
属中に拡散し、主成分金属との間で固溶体を形成する。
A fiber bundle around which thin metal wires are wound is woven in a predetermined fiber orientation. For example, the scallions are made into a net shape or layered in alternating orthogonal layers and placed under high temperature and pressure (hot press). The additive element contained in the thin metal wire diffuses into the main component metal coated on the fiber at high temperature during hot pressing, and forms a solid solution with the main component metal.

また繊維と反応し、添加金属と繊維との間で金属間化合
物が形成される。この結果織縁と金属マトリックスの界
面が強化され、第3図に示すような複合体が形成される
。第4図において:3は金属細線を示し、4は繊維を示
す。そして、金属細線が巻きつけられた繊維は網状にな
るように織り込まれている。第:3図に示すような複合
体では金属細線から固溶する添加元素量が微景であり、
かつ均一に十分マトリックス構成用金属中に拡散するた
め。
It also reacts with the fibers, forming intermetallic compounds between the added metal and the fibers. As a result, the interface between the woven edge and the metal matrix is strengthened, and a composite as shown in FIG. 3 is formed. In FIG. 4: 3 indicates a thin metal wire, and 4 indicates a fiber. The fibers wrapped around the thin metal wires are woven into a net-like structure. Figure: In the composite shown in Figure 3, the amount of added elements dissolved in solid solution from the thin metal wire is minute;
and uniformly enough to diffuse into the matrix-constituting metal.

複合体の熱伝導性及び導伝性の劣化を防ぐことができる
Deterioration of thermal conductivity and conductivity of the composite can be prevented.

1−記金属細線中の添加元素量は次のようにして決めら
れる。すなオ)ち、金属細線中の添加元素は、マトリッ
クス構成用金属すなわち主成分金属に固溶する固溶体で
あることから、その主成分金属に対する最大固溶限を上
限として固溶するような量にすることが好ましい。なぜ
なら、最大固溶限を越えた添加元素量が主成分金属中に
固溶すると、マトリックス中に晶出相が析出し、マトリ
ックスの本質的な均一性が得られないことによる。最大
固溶限以内の添加元素量であれば、繊維にコーティング
された成分金属に、ホットプレスの際の温度および時間
により、添加元素は容易に拡散し繊維と金属マトリック
スとの複合体となる。ただし、添加元素が最大固溶限以
ヒ金属細線に含まれていた場合に発生するマトリックス
中の部分的析出相が、複合体中に介在しても、複合体の
特性が著しい劣化を受けない場合には最大固溶限を越え
た添加元素量が含まれていても特別問題はない、あるい
は、部分的な晶出相の介在により他の特性が発揮される
場合もある。なお、実質的に発生する晶出相の分散は、
繊維束と細線の線径によって$+1整できる。
1- The amount of added elements in the thin metal wire is determined as follows. In other words, since the additive element in the thin metal wire is a solid solution that dissolves in the matrix-constituting metal, that is, the main component metal, the amount of the additive element in the metal wire is such that it dissolves in solid solution up to the maximum solid solubility limit in the main component metal. It is preferable to This is because if an amount of the added element exceeding the maximum solid solubility limit is dissolved in the main component metal, a crystallized phase will precipitate in the matrix, making it impossible to obtain essential uniformity of the matrix. If the amount of the added element is within the maximum solid solubility limit, the added element will easily diffuse into the component metal coated on the fiber depending on the temperature and time during hot pressing, forming a composite of the fiber and the metal matrix. However, even if the partially precipitated phase in the matrix that occurs when the additive element is included in the metal wire beyond the maximum solid solubility limit is present in the composite, the properties of the composite will not deteriorate significantly. In some cases, there may be no particular problem even if the amount of added elements exceeds the maximum solid solubility limit, or other properties may be exhibited due to the presence of a partially crystallized phase. In addition, the dispersion of the crystallized phase that actually occurs is
It can be adjusted by $+1 depending on the diameter of the fiber bundle and thin wire.

金属細線が巻きつけられろ繊維束の繊維束数は、部分的
な晶出相の析出を防ぐ意味からあるいは添加元素のマト
リックス中への分散を均一にするために少ないほうが良
好である。また、金属細線の直径も小さいほど繊維束に
巻きつけが容易となり、かつ金属細線の添加元素のマト
リックス中への分散も均一となるために、好ましい。
It is better to have a smaller number of fiber bundles around which the thin metal wire is wound in order to prevent partial precipitation of crystallized phases or to uniformly disperse the additive element in the matrix. Further, the smaller the diameter of the thin metal wire, the easier it is to wind around the fiber bundle, and the more uniform the dispersion of the additive element in the thin metal wire into the matrix, which is preferable.

次に具体的な実施例について説明する。Next, specific examples will be described.

(実施例1) 網状Cu−CJI維複合材の耐熱性を向」;させるため
、Crが添加元素である網状Cu−Cr−C繊細複合材
を作製した。
(Example 1) In order to improve the heat resistance of the reticulated Cu-CJI fiber composite material, a reticulated Cu-Cr-C delicate composite material containing Cr as an additive element was prepared.

第1図に示すように、直径7μのC繊維1に、厚さ1.
7μのC112を電気メッキによりコーティングをほど
こした。
As shown in FIG. 1, C fiber 1 with a diameter of 7 μm has a thickness of 1.
A 7μ C112 coating was applied by electroplating.

他方、Cu−0,7wt%Crの合金を高周波加熱によ
り溶解し、直径30−のインゴットを作製した。これを
熱間および冷間圧延をぼどこし直細線を、第2図に示す
ように、3000本からなるCuメッキC繊繊維束1当
当に合金細線3の1本をCM!維束1mにつき15同の
頻度で巻きつけをおこなった0次いで、織り密度(1イ
ンチ当り10個)の値で手織りにし、織布化して織布を
形成した。この織布を2枚重ねて黒鉛製の鋳型に装入し
、温度1000℃、圧力250 kgf /cs”を1
時間かけ、ホットプレスをおこなった。この結果第3図
に示すように、Cuマトリックスに約0.16重量%の
Crを含み、C#!維敏が35容斌%の網状のCu−C
r−C複合体が作製できた。
On the other hand, a Cu-0.7 wt % Cr alloy was melted by high frequency heating to produce an ingot with a diameter of 30 mm. This is hot- and cold-rolled to form a straight fine wire, and as shown in Figure 2, one of the alloy fine wires 3 is CM for one Cu-plated C fiber bundle consisting of 3000 pieces! The fibers were wound at a frequency of 15 per meter of fibers, and then hand-woven at a weaving density (10 pieces per inch) to form a woven fabric. Two sheets of this woven fabric were stacked and charged into a graphite mold, and a temperature of 1000°C and a pressure of 250 kgf/cs were applied to
I spent a lot of time hot pressing it. As a result, as shown in FIG. 3, the Cu matrix contains about 0.16% by weight of Cr, and C#! Reticulated Cu-C with 35% volume
An r-C complex was successfully produced.

(′A施例2) 上記実施例1で作製したFRMを、Orを含まないCu
−C&1ml;’RMと比較して耐熱性試験をおこなっ
た。その結果を第4図に示す、―・を熱性試験は約0.
16重景%のCrを含むFRMとCrを含まないFRM
を800℃に加熱し、FRM表面の脹れの状態を観察す
ることによっておこなった。上記実施例1のCrを含む
FRM(t)では、800℃に加熱しても表面の脹れが
生じなかった。
('A Example 2) The FRM produced in Example 1 above was
A heat resistance test was conducted in comparison with -C&1ml;'RM. The results are shown in Figure 4. - The thermal test was approximately 0.
FRM containing 16% Cr and FRM containing no Cr
This was done by heating the FRM to 800°C and observing the state of swelling on the FRM surface. In the Cr-containing FRM(t) of Example 1, the surface did not swell even when heated to 800°C.

一方、Crt&含まない従来のト’ T< Mでは60
0”Cで被合材表面の脹れがw4察された。
On the other hand, in the conventional case that does not include Crt &T< M, it is 60
At 0''C, swelling on the surface of the material to be bonded w4 was observed.

また−上記実施例1のCrを含むF T< Mは導伝率
が48%で、RT−200℃の平均熱膨張係数は8.8
 X 10−@/’Cで高導伝性低熱膨張の特性に示し
た。
Furthermore, - F T < M containing Cr in Example 1 above has a conductivity of 48% and an average coefficient of thermal expansion at RT-200°C of 8.8.
It exhibits characteristics of high conductivity and low thermal expansion at X 10-@/'C.

さらにFPMAによる検討結果によれば、CrはCuメ
ッキ中に均一に拡散し、CrがCu中に固溶した固溶体
Cuマトリックスであることが明ら1?d実施例1によ
九ば、Crを含む合金細線をcm維束に介在させること
により、CrをCu中に均一に拡散でき、Crと繊維と
の間で金属間化合物が形成されることなど等により金属
と繊維との界面が強化され耐熱性が向上する。この際添
加元素であるC uの量は機敏であるため、FRMに与
える導伝性および熱伝導率の低下の虞れがない。
Furthermore, according to the results of the study using FPMA, it is clear that Cr diffuses uniformly in Cu plating, and that Cr is a solid solution Cu matrix in which Cu is dissolved in solid solution1? d According to Example 1, by interposing a thin alloy wire containing Cr in the cm fiber bundle, Cr can be uniformly diffused into Cu, and an intermetallic compound is formed between Cr and the fiber. etc., the interface between metal and fiber is strengthened and heat resistance is improved. At this time, since the amount of the additive element Cu is flexible, there is no risk of deterioration of the conductivity and thermal conductivity of the FRM.

(実施例:3) 次に、実施例1でm造されたCu−Cr−cm維F R
Mと、従来のメチルセルロース+Cu粉スラリ法によっ
て得られたF RMとで導伝率、および熱伝導率の違い
について検討した。
(Example: 3) Next, the Cu-Cr-cm fiber F R manufactured in Example 1
The differences in conductivity and thermal conductivity between M and FRM obtained by the conventional methyl cellulose + Cu powder slurry method were investigated.

メチルセルロース+Cu粉スラリ法におけるCu粉は、
200メツシユのものを使用した。このようにメチルセ
ルロース+Cu粉スラリ法で形成されたFRM中のCr
含有量Cuマトリックスに対して25重量%である。一
方、上記実施例1で製造されたCu−Cr−C繊維1”
 RM中のCr含有量は0.16 重敏%である0両者
の導伝率の上記第1表かられかるように、実施例1によ
って製造されたFRMの導伝率48%は、従来のメチル
セルロース+Cu粉スラリ法によって製造されたF R
Mの導伝率27%に対して、かなりよい値を示している
ことがわかる。これは、Crを合金細線によってCu中
に拡散するようにすれば、Crが*iでかつ十分にCu
マトリックス中に拡散することによるものである。なt
?、熱伝導率はマトリックス中のCr(l加元Am) 
Ifに関係あり、導伝率と同様Cr bt (添加元素
量)が多くなれば熱伝導率も劣化することになるゆなお
、本実施例では双方のFRMの耐熱基準を800℃とし
、C11に対する0繊維欧の割合は35容蝋%のものを
使用した。
The Cu powder in the methyl cellulose + Cu powder slurry method is
A 200 mesh one was used. Cr in the FRM formed by the methyl cellulose + Cu powder slurry method in this way
The content is 25% by weight based on the Cu matrix. On the other hand, the Cu-Cr-C fiber 1'' produced in Example 1 above
The Cr content in the RM is 0.16%.As seen from Table 1 above, the conductivity of the FRM manufactured according to Example 1 was 48% compared to that of the conventional methyl cellulose. +F R manufactured by Cu powder slurry method
It can be seen that this value is quite good compared to the conductivity of M, which is 27%. This can be achieved by diffusing Cr into Cu using a thin alloy wire, so that Cr is *i and Cu is sufficiently
This is due to diffusion into the matrix. What?
? , the thermal conductivity is Cr in the matrix (l addition Am)
It is related to If, and as with conductivity, as Cr bt (amount of added elements) increases, thermal conductivity also deteriorates.In this example, the heat resistance standard for both FRMs was set to 800°C, and the The content of 0% fiber wax was 35% wax.

(実施例4) (1記実施例1と同様にCUメッキC繊維およびCυ〜
Cr合金の細線を準備し、C繊維t45容曖%を含む網
状のc: u −Cr  Cmm複合材を作製し、その
耐熱性を検fi、i [、た。その結果耐熱性は800
Cであり、すなわち800℃まで加熱しても表面の脹れ
がmi察されなかった。また、導伝率は36%、熱膨張
係数は6.2 X 10−’/’Cを示し、かつCuマ
トリックスにCrが固溶した組織が観察された。本実施
例によれば、Cuマトリックス量に対するC繊維含有量
が多い場合においても、実施例1と同様に導伝率および
熱伝導性を低下させることなく耐熱性を向上できる。
(Example 4) (Similar to Example 1, CU plated C fiber and Cυ~
A thin wire of Cr alloy was prepared, a reticular c: u -Cr Cmm composite material containing 45% C fiber was fabricated, and its heat resistance was examined. As a result, the heat resistance is 800
C, that is, no swelling of the surface was observed even when heated to 800°C. Further, the conductivity was 36%, the thermal expansion coefficient was 6.2 x 10-'/'C, and a structure in which Cr was solidly dissolved in the Cu matrix was observed. According to this example, even when the C fiber content is large relative to the Cu matrix amount, heat resistance can be improved without reducing conductivity and thermal conductivity, as in Example 1.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように本発明に係る金属マトリックス−
繊維複合材の12造か法によれば、マトリックス構成用
台mに固溶し、かつ繊維と反応する微駄の添加元素を均
一に71−リツクス構成用令属に固溶することができる
。そのために、マトリックス構成用台Jべと繊維との間
の界面が強化され、導伝性および熱伝導性を低下させる
ことなく耐熱性を向トさせることができる。
As explained below, the metal matrix according to the present invention
According to the 12-layer method for producing fiber composite materials, it is possible to uniformly dissolve the additive elements that are solid-dissolved in the matrix component and react with the fibers into the 71-trix component. Therefore, the interface between the matrix-forming base J and the fibers is strengthened, and heat resistance can be improved without reducing conductivity and thermal conductivity.

また、添加元素をマトリックス構成用金属か−」−テイ
ングされた繊維に巻きつけることにより、筒中に添加元
素をマトリックス中に固溶させることができる。
Further, by winding the additive element around the matrix-forming metal fiber, the additive element can be solid-dissolved in the matrix inside the tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマトリックス構成用金属がコーティングされた
繊維の断面図、第2図は添加元素を含んでなる金属細線
をマトリックス構成用金属がコーティングされた繊維に
巻きつけた状態を示す側面図、第3図は繊維が網状に織
られた状態を示す複合材の構成図、第4図は加熱温度と
複合材の板圧増加率の関係を示すグラフである。
FIG. 1 is a cross-sectional view of a fiber coated with a matrix-constituting metal, FIG. 2 is a side view showing a state in which a thin metal wire containing an additive element is wound around a fiber coated with a matrix-constituting metal, and FIG. FIG. 3 is a configuration diagram of a composite material showing a state in which fibers are woven into a net shape, and FIG. 4 is a graph showing the relationship between heating temperature and plate pressure increase rate of the composite material.

Claims (1)

【特許請求の範囲】[Claims] 1、マトリックス構成用金属がコーティングされた繊維
に、前記マトリックス構成用金属に固溶し、かつ前記繊
維と反応する添加元素を含んでなる金属細線を巻きつけ
、これを高温高圧にすることによりマトリックス構成用
金属と繊維との複合体とすることを特徴とする金属マト
リックス−繊維複合材の製造方法。
1. A matrix is formed by wrapping a fiber coated with a matrix-constituting metal with a thin metal wire containing an additive element that is dissolved in the matrix-constituting metal and reacting with the fiber, and subjecting it to high temperature and high pressure. 1. A method for producing a metal matrix-fiber composite material, comprising forming a composite material of a constituent metal and fibers.
JP60260657A 1985-11-20 1985-11-20 Method for producing metal matrix-fiber composite material Expired - Lifetime JPH07818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60260657A JPH07818B2 (en) 1985-11-20 1985-11-20 Method for producing metal matrix-fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60260657A JPH07818B2 (en) 1985-11-20 1985-11-20 Method for producing metal matrix-fiber composite material

Publications (2)

Publication Number Publication Date
JPS62120447A true JPS62120447A (en) 1987-06-01
JPH07818B2 JPH07818B2 (en) 1995-01-11

Family

ID=17350959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60260657A Expired - Lifetime JPH07818B2 (en) 1985-11-20 1985-11-20 Method for producing metal matrix-fiber composite material

Country Status (1)

Country Link
JP (1) JPH07818B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640195A1 (en) * 1988-12-14 1990-06-15 Rolls Royce Plc IMPROVEMENTS IN THE FIELD OF COILED COMPOSITE STRUCTURES
WO2008111285A1 (en) * 2007-03-12 2008-09-18 Taiheiyo Cement Corporation Metal/ceramic composite material and process for production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953119A (en) * 1972-07-10 1974-05-23
JPS5893834A (en) * 1981-11-30 1983-06-03 Nippon Carbon Co Ltd Manufacture of inorganic fiber reinforced metallic composite material
JPS60169534A (en) * 1984-02-10 1985-09-03 Hitachi Ltd Composite cu-c fiber material with cu foil containing non-ferrous metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953119A (en) * 1972-07-10 1974-05-23
JPS5893834A (en) * 1981-11-30 1983-06-03 Nippon Carbon Co Ltd Manufacture of inorganic fiber reinforced metallic composite material
JPS60169534A (en) * 1984-02-10 1985-09-03 Hitachi Ltd Composite cu-c fiber material with cu foil containing non-ferrous metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640195A1 (en) * 1988-12-14 1990-06-15 Rolls Royce Plc IMPROVEMENTS IN THE FIELD OF COILED COMPOSITE STRUCTURES
WO2008111285A1 (en) * 2007-03-12 2008-09-18 Taiheiyo Cement Corporation Metal/ceramic composite material and process for production thereof

Also Published As

Publication number Publication date
JPH07818B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
KR100331494B1 (en) Laminated Structures and Manufacturing Method Thereof
US3860443A (en) Graphite composite
JPS6240410B2 (en)
US3894677A (en) Method of preparing graphite reinforced aluminum composite
JPH029155A (en) Composite metal material
JPH028334A (en) Composite material and production thereof
CN107791616A (en) A kind of preparation method of the multiple-layer laminated block composite material of copper/graphite film
JPS62120447A (en) Manufacture of metallic matrix-fiber composite material
US3807041A (en) Method of fabricating a composite superconductor
US4202931A (en) Superconducting articles of manufacture and method of producing same
JPH0628122B2 (en) Superconductor cable
JP3716304B2 (en) Manufacturing method of Nb3Ga extra fine multi-core superconducting wire
JPH05117779A (en) Coating film of silicon-based intermetallic compound
JPH0364580B2 (en)
JPS6191341A (en) Fiber reinforced metallic composite body
JPS5893834A (en) Manufacture of inorganic fiber reinforced metallic composite material
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JPS6227035B2 (en)
JPS60221548A (en) Fiber reinforced composite metallic body and its production
CN114086047B (en) High-thermal-conductivity composite material and preparation method thereof
JPS59141393A (en) Brazing filler material
JPS5942062B2 (en) Manufacturing method of fiber reinforced composite material
JP2986972B2 (en) Radiation shield plate for superconducting magnet
JPS6324026A (en) Production of tungsten wire-reinforced composite material
JPS60235096A (en) Manufacture of material for shielding and absorbing neutron