JPS6227035B2 - - Google Patents

Info

Publication number
JPS6227035B2
JPS6227035B2 JP58010338A JP1033883A JPS6227035B2 JP S6227035 B2 JPS6227035 B2 JP S6227035B2 JP 58010338 A JP58010338 A JP 58010338A JP 1033883 A JP1033883 A JP 1033883A JP S6227035 B2 JPS6227035 B2 JP S6227035B2
Authority
JP
Japan
Prior art keywords
metal
ceramics
composite
ceramic
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58010338A
Other languages
Japanese (ja)
Other versions
JPS59137379A (en
Inventor
Yasuo Hihashi
Kazuo Ueno
Yoshihiro Ehata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1033883A priority Critical patent/JPS59137379A/en
Publication of JPS59137379A publication Critical patent/JPS59137379A/en
Publication of JPS6227035B2 publication Critical patent/JPS6227035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は複合焼結セラミクスと金属との接着方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of adhering composite sintered ceramics and metal.

セミツクスは耐熱性や耐酸化性に優れているの
で、耐熱部材や機械用構造材料として注目されて
いる。しかし、その実際的応用に際しての難点
は、セラミクスが概してもろいために材料とし
ての信頼性が金属材料と比較して小さいこと及び
高強度である反面、こわれやすく硬いため、一
般にその加工性が極めて悪いことである。この二
つの欠点を克服しなければセラミクスの広範な実
用化は難しいとされている。これに対して、高強
度かつ耐熱性に優れた繊維をセラミクスに分散複
合させることにより、セラミクスのもろさを改良
しようとする考えがある。この中でも、特に繊維
状炭化ケイ素単結晶(一般に炭化ケイ素ウイスカ
ーと呼ばれる)を複合化させた複合セラミクス
は、高い強度を持つのみならず、含まれる炭化ケ
イ素ウイスカーの働きによりもろさが減じられ、
強度の信頼性がもとの母相セラミクスのみに比し
て向上することが本発明者らにより見い出され
た。更に、この複合セラミクスは都合の良いこと
に、含まれる炭化ケイ素ウイスカーにより電気伝
導性を帯び、そのために放電加工法による極めて
複雑な加工も可能であることが判明した。このこ
とから、この炭化ケイ素ウイスカー複合セラミク
スは各方面から今後の応用が期待されており、本
出願人は斯かるセラミクスにつき既に特許出願中
である。しかし、当該複合セラミクスも実用的段
階において、機械部品等への応用に際しては、何
らかの形で他の金属材料とともに機能を果たすも
のである限り、金属材料と強固に接着でき、しか
も簡便な接着法が開発される必要がある。
Semitics have excellent heat resistance and oxidation resistance, so they are attracting attention as heat-resistant components and structural materials for machinery. However, the difficulty in its practical application is that ceramics are generally brittle, so their reliability as a material is lower than that of metal materials, and although they have high strength, they are brittle and hard, so their workability is generally extremely poor. That's true. It is said that widespread practical application of ceramics will be difficult unless these two drawbacks are overcome. On the other hand, there is an idea to improve the brittleness of ceramics by dispersing and compounding fibers with high strength and excellent heat resistance into ceramics. Among these, composite ceramics made of fibrous silicon carbide single crystals (generally called silicon carbide whiskers) not only have high strength, but also have reduced brittleness due to the action of the silicon carbide whiskers they contain.
The present inventors have discovered that the reliability of strength is improved compared to the original matrix ceramic alone. Furthermore, it has been found that this composite ceramic is advantageously electrically conductive due to the silicon carbide whiskers contained therein, and therefore allows extremely complex machining by electrical discharge machining. For this reason, this silicon carbide whisker composite ceramic is expected to have future applications in various fields, and the present applicant has already applied for a patent for such ceramics. However, at the practical stage, when applying such composite ceramics to mechanical parts, etc., as long as they function together with other metal materials in some way, they can be firmly bonded to metal materials, and there is no simple bonding method. needs to be developed.

従来よりセラミクスと金属とを接着する方法と
しては、例えばテレフンケン法、活性金属法、水
素化合物法、硫化銅法、金属酸化物法、粉末圧縮
法、ホツトプレス法、ソルダガラス法等の各種方
法が開発されている。これ等従来の接着方法はい
ずれもセラミクスと金属との間に第三成分を存在
せしめて接着する方法である。なんとなればセラ
ミクスと金属とはその熱膨張係数が著しく異なる
ため必ず中間層が必要と考えられていたからであ
る。しかしながら、これら従来公知の各種方法に
於いては、必ず真空中又は還元雰囲気中で該中間
層の酸化を防ぎながら加熱することが必要であ
る。従つて従来の方法に於いては、中間層を形成
せしめるために基づく各種の煩雑な操作が必要と
なるばかりでなく、加熱雰囲気を調整するため余
分な且つ複雑な工程や操作が必要となる。しかも
得られる接着物の接着強度についても必ずしも満
足できるものではない。
Conventionally, various methods have been developed for bonding ceramics and metals, such as the Telefunken method, active metal method, hydride method, copper sulfide method, metal oxide method, powder compression method, hot press method, and solder glass method. has been done. All of these conventional bonding methods involve the presence of a third component between ceramics and metal. This is because ceramics and metals have significantly different coefficients of thermal expansion, so it was thought that an intermediate layer was always necessary. However, in these various conventionally known methods, it is necessary to heat the intermediate layer in a vacuum or in a reducing atmosphere while preventing oxidation of the intermediate layer. Therefore, in the conventional method, not only various complicated operations are required to form the intermediate layer, but also extra and complicated steps and operations are required to adjust the heating atmosphere. Moreover, the adhesive strength of the resulting adhesive is not necessarily satisfactory.

本発明者はこの点にかんがみ、当該複合セラミ
クスと金属との接着方法について鋭意研究を行う
ことにより、従来法の煩雑な操作を必要としな
い、当該複合セラミクスの特性を巧みに利用した
高強度の接着方法を発明するに至つた。即ち本発
明は、族、族又は族元素の酸化物、窒化物
又は炭化物を母相とし、セラミクス中に全重量に
対して5〜50%の範囲内で繊維状炭化ケイ素単結
晶を均一に分散含有する複合焼結セラミクスと金
属とを接着する方法であつて、該複合焼結セラミ
クス表面に電気メツキ法により金属皮膜を析出せ
しめ、次いで該金属皮膜上に目的とする金属を接
着させることを特徴とする複合焼結セラミクスと
金属との接着方法に係る。
In view of this, the present inventor has conducted intensive research on bonding methods for the composite ceramic and metal, and has developed a high-strength product that skillfully utilizes the properties of the composite ceramic, without requiring the complicated operations of conventional methods. This led to the invention of an adhesive method. That is, the present invention uses oxides, nitrides, or carbides of group elements or group elements as a matrix, and uniformly disperses fibrous silicon carbide single crystals in the range of 5 to 50% of the total weight in ceramics. A method for bonding a composite sintered ceramic containing a metal to a metal, the method comprising depositing a metal film on the surface of the composite sintered ceramic by electroplating, and then adhering a target metal onto the metal film. The present invention relates to a method of adhering composite sintered ceramics and metal.

本発明における複合焼結セラミクスは、族、
族又は族元素の酸化物、窒化物又は炭化物を
母相とし、セラミクス中に全重量に対して5〜50
%の範囲内で炭化ケイ素ウイスカーを分散含有す
るものであり、それにより高い電気伝導性を有し
ているので電気メツキを施すことができるもので
ある。
The composite sintered ceramics in the present invention include the group:
The parent phase is an oxide, nitride or carbide of a group element, and 5 to 50% of the total weight is contained in ceramics.
It contains silicon carbide whiskers dispersed within a range of 1.5% and has high electrical conductivity, so it can be electroplated.

本発明において用いられる繊維状炭化ケイ素
(SiC)単結晶の長さや太さについては特に限定
されないが、長さが通常10〜500μm、好ましく
は50〜500μm程度、太さが通常0.1〜10μm、好
ましくは0.5〜3μm程度のものを使用するのが
よい。長さが10μmより極端に短かくなると、粒
状SiCを加えて成形した場合と同様に、放電加工
が可能な程度に電気伝導性を高めるためには多量
の添加が必要となり、セラミクス本来の特性が損
われる傾向が生ずる。繊維状SiCの太さが0.1μm
より極端に細くなると、成形中に繊維が破断し
て、粒状SiCを使用する場合と同様の結果となる
傾向が生ずる。一方太さが10μmより極端に太く
なると、繊維の剛性が高くなるため、焼結による
緻密化が困難となる傾向が生ずる。セラミクス中
に分散含有せしめられる繊維状SiC単結晶の量と
しては、全重量に対して5〜50%とするのがよ
い。SiC繊維の量が5%未満の場合には、焼結体
の電気伝導性が十分に改善されず、一方、50%を
上回る場合にはセラミクスの緻密化が低下する傾
向にある。繊維状SiC単結晶の添加量は、全重量
の10〜40%とすることがより好ましい。
The length and thickness of the fibrous silicon carbide (SiC) single crystal used in the present invention are not particularly limited, but the length is usually 10 to 500 μm, preferably about 50 to 500 μm, and the thickness is usually 0.1 to 10 μm, preferably It is best to use a material with a diameter of about 0.5 to 3 μm. When the length becomes extremely short than 10 μm, a large amount of addition is required to increase the electrical conductivity to the extent that electrical discharge machining is possible, as is the case when granular SiC is added and molded, and the original characteristics of the ceramic are lost. There is a tendency for it to be damaged. The thickness of fibrous SiC is 0.1μm
More extreme thinning tends to cause the fibers to break during molding, a result similar to when using granular SiC. On the other hand, if the thickness is extremely thicker than 10 μm, the rigidity of the fibers increases, so that densification by sintering tends to become difficult. The amount of fibrous SiC single crystals dispersed in the ceramic is preferably 5 to 50% of the total weight. When the amount of SiC fibers is less than 5%, the electrical conductivity of the sintered body is not sufficiently improved, while when it exceeds 50%, the densification of the ceramic tends to decrease. The amount of the fibrous SiC single crystal added is more preferably 10 to 40% of the total weight.

本発明において母相として用いられるのは
族、族又は族元素の酸化物、窒化物又は炭化
物である。族、族又は族元素の酸化物、窒
化物又は炭化物としては公知のものを広く使用で
きる。酸化物としては例えばアルミナ、ジルコニ
ア、マグネシア、Fe2O3などのフエライト、酸化
ウラン、酸化トリウム等の単一酸化物の他、
MgAl2O4、NiFeO4、NiCrO4、MgFe2O4等の各種
スピネル型化合物、ペロブスカイド構造の
LaCrO3,LaSrCrO3,SrZrO3等の複合酸化物
を、窒化物としては例えば窒化ケイ素、窒化アル
ミ、窒化ホウ素等を、炭化物としては例えば炭化
ケイ素、炭化ホウ素、炭化チタン等をそれぞれ挙
げることができる。本発明ではこれらを混合して
使用してもよい。
In the present invention, oxides, nitrides, or carbides of group elements are used as the matrix. A wide variety of known oxides, nitrides, or carbides of group elements can be used. Examples of oxides include alumina, zirconia, magnesia, ferrites such as Fe 2 O 3 , single oxides such as uranium oxide, thorium oxide, etc.
Various spinel type compounds such as MgAl 2 O 4 , NiFeO 4 , NiCrO 4 , MgFe 2 O 4 and perovskite structure
Composite oxides such as LaCrO 3 , LaSrCrO 3 and SrZrO 3 can be mentioned, examples of nitrides include silicon nitride, aluminum nitride, boron nitride, etc., and examples of carbides include silicon carbide, boron carbide, titanium carbide, etc. . In the present invention, these may be used in combination.

本発明のSiC複合焼結セラミクスは、次の様に
製造される。酸化物、窒化物又は炭化物粉末に所
定量の繊維状SiC単結晶を添加混合し、均一に分
散させた後、混合物重量の0.1〜2%程度の粘結
剤を加え、成形及び乾燥後、焼結して、該単結晶
を均一に方向性なく分散含有している複合セラミ
クスを得る。粘結剤としては好ましくはポリビニ
ルアルコール、アクリル樹脂、セルロース、アル
ギン酸ソーダ等の水、アルコール或いはその他の
有機溶剤溶液が使用される。酸化物、窒化物又は
炭化物、SiC及び粘結剤からなるペーストは射出
成形、押出し成形等により所定形状に成形され、
得られた成形体は、加熱又は減圧下に予備乾燥さ
れ、次いで600℃以下に加熱して粘結剤を除去さ
れる。次いで乾燥した成形体を加圧下又は非加圧
下1300〜1800℃程度の温度で焼結するのがよい。
尚、必要に応じ、Al2O3に対して少量のMgOの添
加等の焼結助剤の併用を妨げない。
The SiC composite sintered ceramic of the present invention is manufactured as follows. After adding and mixing a predetermined amount of fibrous SiC single crystal to oxide, nitride, or carbide powder and dispersing it uniformly, a binder of about 0.1 to 2% of the weight of the mixture is added, and after molding and drying, it is sintered. As a result, a composite ceramic containing the single crystals uniformly dispersed without directionality is obtained. As the binder, preferably used is a solution of polyvinyl alcohol, acrylic resin, cellulose, sodium alginate, etc. in water, alcohol, or other organic solvent. A paste consisting of an oxide, nitride or carbide, SiC, and a binder is molded into a predetermined shape by injection molding, extrusion molding, etc.
The obtained molded body is predried under heat or reduced pressure, and then heated to 600° C. or lower to remove the binder. Next, the dried molded body is preferably sintered at a temperature of about 1300 to 1800° C. under pressure or without pressure.
Note that, if necessary, a sintering aid such as a small amount of MgO may be added to Al 2 O 3 in combination.

本発明において、電気メツキ法により上記複合
焼結セラミクス上に析出させる金属皮膜の種類は
特に制限されず、広く公知のものが使用でき、例
えば銅、銀、ニツケル、クロム等の単一金属種の
みならず、黄銅(Cu−Zn)、青銅(Cu−Sn)、鉛
−スズ等の各種合金を使用できる。これらはセラ
ミクスに接着されるべき金属の種類や、当該金属
−金属皮膜間の接着法により適宜選ぶとよい。被
接着金属材も特に限定するものではなく、例えば
普通の鉄からニツケル、クロム等を含む超硬合金
までの各種のものを広く使用でき、例えばステン
レス鋼、インコネル等を挙げることができる。
In the present invention, the type of metal film to be deposited on the composite sintered ceramics by electroplating is not particularly limited, and widely known types can be used, for example, only single metal types such as copper, silver, nickel, and chromium can be used. Instead, various alloys such as brass (Cu-Zn), bronze (Cu-Sn), lead-tin, etc. can be used. These may be appropriately selected depending on the type of metal to be bonded to the ceramics and the bonding method between the metal and metal film. The metal material to be bonded is not particularly limited, and a wide variety of materials can be used, from ordinary iron to cemented carbide containing nickel, chromium, etc., such as stainless steel, Inconel, etc.

金属皮膜−金属間の接着法も特に限定するもの
でなく、例えば銀ロウ法、ハンダ付け、アーク溶
接等が利用できる。
The bonding method between the metal film and the metal is not particularly limited, and for example, silver brazing, soldering, arc welding, etc. can be used.

本発明における複合セラミクスと金属との接着
は次のように行われる。即ち複合セラミクスの接
着すべき面を、適当なる有機溶剤で洗浄し、表面
の汚れを取り去る。これを適当な濃度をもつた、
目的とする金属イオンを含む電解メツキ液中に浸
漬し、通常の条件でメツキ操作を行い、メツキ皮
膜を析出せしめる。皮膜の厚さは特に限定するも
のではないが、より強固な接着強度を得るには、
10μm以上の厚さが望ましい。しかし、金属メツ
キ皮膜が厚すぎ、また析出金属の粒子形態が粗す
ぎると、複合セラミクスと金属皮膜とのはく離が
起るという不都合な結果になる。従つて電気メツ
キの条件として、緻密な、適当な厚みのメツキ膜
が得られる条件を選ぶのが好ましい。電解メツキ
終了後、洗浄、乾燥を行い、次に、目的とする被
接着金属と複合セラミクスとを、銀ロウ、ハン
ダ、アーク溶接等の従来公知の適当な接着法を用
いて接着すればよい。なお、電解メツキ後、複合
セラミクスを、還元雰囲気中で加熱処理すること
により、メツキ皮膜と当該複合セラミクスとの密
着度を高めることもメツキ金属の種類によつては
可能であるが、必ずしも必要とするものではな
い。
Bonding of the composite ceramic and metal in the present invention is performed as follows. That is, the surface of the composite ceramic to be bonded is washed with a suitable organic solvent to remove surface stains. With this at an appropriate concentration,
It is immersed in an electrolytic plating solution containing the desired metal ions, and a plating operation is performed under normal conditions to deposit a plating film. The thickness of the film is not particularly limited, but in order to obtain stronger adhesive strength,
A thickness of 10 μm or more is desirable. However, if the metal plating film is too thick and the particle form of the precipitated metal is too coarse, the disadvantageous result will be that the composite ceramic and the metal film will peel off. Therefore, it is preferable to select electroplating conditions such that a dense plating film of an appropriate thickness can be obtained. After electrolytic plating, cleaning and drying are performed, and then the target metal to be bonded and the composite ceramic may be bonded together using a conventionally known appropriate bonding method such as silver solder, solder, arc welding, or the like. Depending on the type of plating metal, it is possible to increase the adhesion between the plating film and the composite ceramic by heat-treating the composite ceramic in a reducing atmosphere after electrolytic plating, but this is not always necessary. It's not something you do.

このように本発明によれば、複合セラミクスと
金属との接着を容易に行うことができる。この方
法は、他のセラミクスのメタライズ法と異なり、
試料を高温に加熱することなく金属皮膜を得るこ
とができ、またガラス質の中間層を用いないた
め、高い強度の接着性が得られるばかりでなく、
耐熱性の高い接着が可能である。
As described above, according to the present invention, composite ceramics and metal can be easily bonded together. This method is different from other ceramic metallization methods,
It is possible to obtain a metal film without heating the sample to high temperatures, and because it does not use a glassy intermediate layer, it not only provides high adhesive strength, but also
Possible to bond with high heat resistance.

以下実施例によりさらに詳しく説明する。 This will be explained in more detail below with reference to Examples.

実施例 1 複合セラミクスとして、炭化ケイ素ウイスカー
を全重量の30%均一に分散含有する窒化ケイ素焼
結体を使用し、脱脂、洗浄後、電解メツキ液に浸
漬し、電気メツキを行う。電解液として、水1
に200gの硫酸銅を溶かしたものを用いた。電解
メツキ条件は電流密度10mA/cm2であり、対極と
して銅を用いた。約2時間メツキを行い、厚さ約
50μmの銅メツキ皮膜を表面に析出せしめた。こ
の銅皮膜面と被接着材である銅板とを、ハンダ付
けにより接着した。接着面を中心として、曲げ強
度を測定したところ、600Kg/cm2の強度を示し
た。
Example 1 A silicon nitride sintered body containing silicon carbide whiskers uniformly dispersed at 30% of the total weight is used as a composite ceramic, and after degreasing and cleaning, it is immersed in an electrolytic plating solution and electroplated. As an electrolyte, 1 part water
A solution containing 200g of copper sulfate was used. The electrolytic plating conditions were a current density of 10 mA/cm 2 and copper was used as a counter electrode. After about 2 hours of plating, the thickness of about
A 50 μm copper plating film was deposited on the surface. This copper coating surface and a copper plate as a material to be bonded were bonded together by soldering. When the bending strength was measured centering on the adhesive surface, it was found to be 600 Kg/cm 2 .

実施例 2 複合セラミクスとして、炭化ケイ素ウイスカー
を全重量の40%均一に分散含有するアルミナ焼結
体を使用し、実施例1と同様にして、銅板と接着
せしめた。接着面を中心として曲げ強度を測定し
たところ、570Kg/cm2の強度を示した。
Example 2 As a composite ceramic, an alumina sintered body containing silicon carbide whiskers uniformly dispersed at 40% of the total weight was used and bonded to a copper plate in the same manner as in Example 1. When the bending strength was measured centering on the adhesive surface, it was found to be 570 Kg/cm 2 .

実施例 3 複合セラミクスとして、全重量に対して30%の
炭化ケイ素ウイスカーを含むサイアロン
(Si3N4:Al2O3=1:1)を使用し、実施例1と
同様に、厚さ約100μmの銅メツキ膜を当該複合
セラミクス上に析出させた。そののち、650℃に
て当該複合セラミクスを鉄板と銀ロウ接合を行つ
た。接着面を中心として曲げ強度を測定したとこ
ろ、平均強度は1100Kg/cm2、(±100Kg/cm2のバラ
ツキ)を示した。
Example 3 Sialon (Si 3 N 4 :Al 2 O 3 =1:1) containing 30% of silicon carbide whiskers based on the total weight was used as the composite ceramic, and as in Example 1, the thickness was approximately A 100 μm copper plating film was deposited on the composite ceramic. Thereafter, the composite ceramic was bonded to an iron plate with silver solder at 650°C. When the bending strength was measured centering on the adhesive surface, the average strength was 1100 Kg/cm 2 (with a variation of ±100 Kg/cm 2 ).

比較例 炭化ケイ素繊維(日本カーボン(株)製、商品名
「ニカロン」、トウ当り約500本の多繊維炭化ケイ
素紡糸のもので平均繊維直径は10〜12μmであ
る。)を、全重量の30%含む窒化ケイ素焼結体及
び全重量の40%含むアルミナ焼結体を作成した。
作成は、ハンドレイアツプ法により行ない、一方
向に繊維を並べてマトリツクスと積層した上記含
有量の窒化ケイ素焼結体、0゜/90゜の直交に繊維
を並べてマトリツクスと積層した上記含有量の窒
化ケイ素焼結体、一方向に繊維を並べてマトリツ
クスと積層した上記含有量のアルミナ焼結体及び
0゜/90゜の直交に繊維を並べてマトリツクスと積
層した上記含有量のアルミナ焼結体の4種の焼結
体を得た。
Comparative Example Silicon carbide fibers (manufactured by Nippon Carbon Co., Ltd., trade name "Nicalon", multi-fiber silicon carbide spun yarn with approximately 500 fibers per tow, average fiber diameter of 10 to 12 μm) were used at 30% of the total weight. A silicon nitride sintered body containing 40% of the total weight and an alumina sintered body containing 40% of the total weight were prepared.
The fabrication was carried out using the hand lay-up method. A silicon nitride sintered body with the above content was made by arranging fibers in one direction and laminated with a matrix, and a nitride sintered body with the above content was made by arranging fibers at right angles of 0°/90° and laminating with a matrix. A silicon sintered body, an alumina sintered body with the above content in which fibers are arranged in one direction and laminated with a matrix, and
Four types of alumina sintered bodies having the above content were obtained by arranging fibers at right angles of 0°/90° and laminating them with a matrix.

次に、これら4種の各焼結体について、実施例
1と同様の条件で電気メツキを行ない次いで銅板
を銀ロウで接着することを試みた。しかし、何れ
の場合も、電気メツキでは電気が通る繊維上にの
みメツキされ又銀ロウによる接着時にメツキが剥
離してしまい、結局接着することはできなかつ
た。
Next, electroplating was performed on each of these four types of sintered bodies under the same conditions as in Example 1, and then an attempt was made to bond a copper plate with silver solder. However, in both cases, the electroplating plated only the electrically conductive fibers, and the plating peeled off when adhering with silver solder, so that no adhesion could be achieved in the end.

Claims (1)

【特許請求の範囲】[Claims] 1 族、族又は族元素の酸化物、窒化物又
は炭化物を母相とし、セラミクス中に全重量に対
して5〜50%の範囲内で繊維状炭化ケイ素単結晶
を均一に分散含有する複合焼結セラミクスと金属
とを接着する方法であつて、該複合焼結セラミク
ス表面に電気メツキ法により金属皮膜を析出せし
め、次いで該金属皮膜上に目的とする金属を接着
させることを特徴とする複合焼結セラミクスと金
属との接着方法。
1. Composite sintered material containing an oxide, nitride or carbide of a Group, Group or Group element as a matrix and containing fibrous silicon carbide single crystals uniformly dispersed within the range of 5 to 50% of the total weight in ceramics. A method for bonding ceramics and metal, the method comprising depositing a metal film on the surface of the composite sintered ceramic by electroplating, and then bonding a target metal onto the metal film. A method of bonding ceramics and metal.
JP1033883A 1983-01-24 1983-01-24 Composite sintered ceramics and metal adhesion Granted JPS59137379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1033883A JPS59137379A (en) 1983-01-24 1983-01-24 Composite sintered ceramics and metal adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1033883A JPS59137379A (en) 1983-01-24 1983-01-24 Composite sintered ceramics and metal adhesion

Publications (2)

Publication Number Publication Date
JPS59137379A JPS59137379A (en) 1984-08-07
JPS6227035B2 true JPS6227035B2 (en) 1987-06-11

Family

ID=11747404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1033883A Granted JPS59137379A (en) 1983-01-24 1983-01-24 Composite sintered ceramics and metal adhesion

Country Status (1)

Country Link
JP (1) JPS59137379A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131874A (en) * 1983-12-19 1985-07-13 三菱重工業株式会社 Method of bonding ceramic and metal
JPS6281265A (en) * 1985-10-04 1987-04-14 Nippon Carbon Co Ltd Sliding member
JPH0446067A (en) * 1990-06-12 1992-02-17 Agency Of Ind Science & Technol Joined body composed of ceramic body and metal body
JP2000106391A (en) * 1998-07-28 2000-04-11 Ngk Insulators Ltd Semiconductor supporting device and its manufacture, composite body and its manufacture
CN116375474B (en) * 2023-03-30 2024-04-12 中国科学院上海硅酸盐研究所 Welding type boron carbide composite ceramic and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169186A (en) * 1980-02-13 1981-12-25 United Technologies Corp Silicon carbide fiber reinforced ceramic composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169186A (en) * 1980-02-13 1981-12-25 United Technologies Corp Silicon carbide fiber reinforced ceramic composite material

Also Published As

Publication number Publication date
JPS59137379A (en) 1984-08-07

Similar Documents

Publication Publication Date Title
US4624897A (en) Clad brazing filler for bonding ceramic to metal, glass, or other ceramic and composites using such filler
RU2403136C2 (en) Soldered system with matched thermal expansion factors (tef)
US4610934A (en) Silicon carbide-to-metal joint and method of making same
US3620799A (en) Method for metallizing a ceramic body
US4532190A (en) Metal-ceramics composite materials
US4542073A (en) Ceramic bonded structure and method of manufacturing the same
KR19990028330A (en) Coating methods, methods of making ceramic metal structures, bonding methods and structures formed therefrom
JPS6077178A (en) Ceramic bonded body and manufacture
EP0288753A1 (en) Bonding of pure metal films to ceramics
CA1274706A (en) Oxidation resistant filler metals for direct brazing of structural ceramics
US4567110A (en) High-temperature brazed ceramic joints
JPS6227035B2 (en)
RU2665939C1 (en) Method of ceramics metallization
JPS6081071A (en) Metal sheet material for ceramic bonding
CA2134340A1 (en) Thin film metallization and brazing of aluminum nitride
CN111018555B (en) Connecting material for connecting silicon carbide with crack self-healing characteristic and application thereof
KR100717109B1 (en) Yttria sintered body, electrostatic chuck, and manufacturing method of yttria sintered body
JP3518843B2 (en) Metallized substrate
JPH0987701A (en) Metal-ceramic composite material
JPH0361304A (en) Manufacture of complex material
JPS6337077B2 (en)
JP3387655B2 (en) Joining method of ceramics and silicon
WO2010150983A2 (en) Method for forming holes in a difficult-to-work material, and difficult-to-work material having holes formed by the method
JP2721258B2 (en) Manufacturing method of ceramic substrate
Nicholas Material aspects of ceramic-ceramic and ceramic-metal bonding