JPH04275127A - Crystalline thermoplastic synthetic resin thin plate and preparation thereof - Google Patents

Crystalline thermoplastic synthetic resin thin plate and preparation thereof

Info

Publication number
JPH04275127A
JPH04275127A JP3059638A JP5963891A JPH04275127A JP H04275127 A JPH04275127 A JP H04275127A JP 3059638 A JP3059638 A JP 3059638A JP 5963891 A JP5963891 A JP 5963891A JP H04275127 A JPH04275127 A JP H04275127A
Authority
JP
Japan
Prior art keywords
resin
synthetic resin
roll
thermoplastic synthetic
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3059638A
Other languages
Japanese (ja)
Inventor
Kazuyuki Muneno
宗野 一之
Takeji Kurita
栗田 武治
Yoshinori Kubota
義則 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP3059638A priority Critical patent/JPH04275127A/en
Publication of JPH04275127A publication Critical patent/JPH04275127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To enhance not only degree of crystallization but also mechanical properties in a direction specific with respect to a surface area direction by adding a glass fiber to a thin plate made of a crystalline thermoplastic synthetic resin so as to orient the same in the definite surface area direction of the thin plate and molding a molten resin into a plate material to gradually cool the molded one. CONSTITUTION:A crystalline thermoplastic synthetic resin 30 mixed with a glass fiber held to a heated molten state is extruded from the die 2 of an extruder to be accumulated in the front part of the gap between the first stage rolls 41a, 41b of a roll molding machine 4 and passed through the roll gap by rotating the rolls 41a, 41b and the resin being contact with the surfaces of the rolls is rapidly cooled to its crystallization temp. to be solidified. By this method, the solidified layers are formed into plate-shaped surfaces to mold a plate material 3. Subsequently, the plate material 3 is passed through the gap between next stage rolls 42a, 42b to advance cooling from the surface layers of the plate material to the interior thereof to complete the solidification or the plate material 3. At this time, by circulating heated oil to the roll hollow parts 411, 412 of the rolls of the respective stages, the cooling of the resin plate is suppressed and the degree of the crystallization of the synthetic resin is enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【発明の利用分野】本発明は、機械的性質に優れた異方
性を有する結晶性の熱可塑性合成樹脂の薄板と、その樹
脂融液からロール成形機により薄板を製造する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin plate of a crystalline thermoplastic synthetic resin having excellent mechanical properties and anisotropy, and a method for manufacturing the thin plate from a melt of the resin using a roll forming machine.

【0002】0002

【従来の技術】ポリフェニレンスルフィド樹脂(PPS
樹脂)は、耐熱性の熱可塑性樹脂として近年に至り注目
され、半導体のプリント基盤として、その他エンジニア
リングプラスティックとして利用されつつある。このP
PS樹脂は、結晶性であって、結晶化度を上げることに
よって機械的強度を大きくし、かつ適度の非結晶質部分
が、柔軟性を発現して、耐衝撃性を向上させることがで
きるのであって、耐熱性、耐薬品性とともに、優れた性
質を具備している。
[Prior art] Polyphenylene sulfide resin (PPS)
Resin) has recently attracted attention as a heat-resistant thermoplastic resin, and is being used as a printed substrate for semiconductors and as other engineering plastics. This P
PS resin is crystalline, and by increasing the degree of crystallinity, its mechanical strength can be increased, and the moderate amorphous portion can express flexibility and improve impact resistance. It has excellent properties such as heat resistance and chemical resistance.

【0003】PPS樹脂のこれら優れた特性を構造部材
として活用するには、板材、その他種々の形状の成形品
を供結する必要がある。
[0003] In order to utilize these excellent properties of PPS resin as a structural member, it is necessary to connect plate materials and other molded products of various shapes.

【0004】従来のPPS樹脂の板材の成形法としては
、金型中にPPS樹脂の加熱溶融樹脂液を注入して、金
型中で固化冷却させ、所定の形状に賦型する射出成型法
や押出し成型法の一種で押出成形機から溶融樹脂液を押
出しダイとフォミングダイを経て固化押出し成形する方
法があった。
Conventional methods for molding PPS resin plates include injection molding, in which heated molten PPS resin liquid is injected into a mold, solidified and cooled in the mold, and molded into a predetermined shape; A type of extrusion molding method involves extruding a molten resin from an extrusion molding machine through an extrusion die and a forming die to solidify it.

【0005】[0005]

【発明が解決しようとする課題】PPS樹脂の優れた性
質を構造部材として利用するには、厚さ1〜10mm程
度の薄板が要求され、とくに用途によっては、板表面に
おける平滑面、特定方向の強度と耐衝撃特性が要求され
る場合がある。このような用途としては、  電機用の
外装板、自動車や車両の構造部材、さらに航空機用の軽
量化部材等があるが、従来はこれらの用途に適した方向
性機械的性質に優れた結晶性PPS樹脂は知られていな
かった。
[Problems to be Solved by the Invention] In order to utilize the excellent properties of PPS resin as a structural member, a thin plate with a thickness of about 1 to 10 mm is required. Strength and impact resistance properties may be required. Examples of such uses include exterior panels for electrical machinery, structural components for automobiles and vehicles, and lightweight components for aircraft. Conventionally, crystalline materials with excellent directional mechanical properties are suitable for these applications. PPS resin was unknown.

【0006】PPS樹脂の板材、特に薄板を成形し、か
つ、成形過程で  適度の結晶化を促進させるには、上
記の射出成型法が適用できるが、構造用素材としての薄
板を成型しようとすれば、金型の大きさの制約から、長
尺幅広品の生産は困難であり、成型間隙の湯回りの不良
から、薄板中の空気を巻込み、空隙を生じ易く、均一な
機械的強度を有するものは得られにくい。さらに生産性
が低く、コスト高になることも免れない。
[0006] The above injection molding method can be applied to mold PPS resin sheets, especially thin sheets, and to promote appropriate crystallization during the molding process, but when trying to mold thin sheets as structural materials, For example, it is difficult to produce long and wide products due to mold size restrictions, and poor hot water circulation in the molding gap easily entrains air in the thin plate, creating voids and making it difficult to maintain uniform mechanical strength. What you have is difficult to obtain. Furthermore, it is inevitable that productivity will be low and costs will be high.

【0007】また、上記の固化押出し成型法には、フォ
ーミングダイの内壁面に潤滑油を供給して、フォーミン
グダイ中での樹脂の固化層の固着を防止する改良によっ
て(特開昭61−185428)、高結晶性樹脂の成型
が可能になったが、この方法で薄板に成型しようとすれ
ば、フォーミングダイにおける冷却速度が大きく、PP
S樹脂では、結晶化は生じ難く、特に板厚6mm以下の
薄板では、すべて非晶質となる。またこの固化押出成型
法では、成品表面の平滑度が悪く、鏡面仕上げ工程が別
途必要となり、押出ダイへの溶融樹脂液の押出しとフォ
ーミングダイからの樹脂固化体の引き出しの連携操作が
困難であり、厚物の成型に限られるなどの難点を有して
いた。
[0007] Furthermore, the solidified extrusion molding method described above has been improved by supplying lubricating oil to the inner wall surface of the forming die to prevent the solidified layer of resin from sticking in the forming die (Japanese Patent Laid-Open No. 185428/1983). ), it has become possible to mold highly crystalline resin, but if you try to mold it into a thin plate using this method, the cooling rate in the forming die is high, and PP
With S resin, crystallization is difficult to occur, and in particular, a thin plate with a thickness of 6 mm or less is entirely amorphous. In addition, with this solidification extrusion molding method, the surface smoothness of the product is poor, a separate mirror finishing process is required, and it is difficult to coordinate the extrusion of the molten resin into the extrusion die and the withdrawal of the solidified resin from the forming die. However, it had some drawbacks such as being limited to molding thick materials.

【0008】一般に、非晶質樹脂の薄板成形には、ポリ
シングロールによるロール成形法があるが、ダイスから
の樹脂形状が板状に保持される程度の軟化温度に加熱す
れば、ロールによる薄板の成形は比較的容易である。し
かし、結晶性の樹脂に対しては、固化する過程で結晶を
晶出ないし析出させる必要から、ダイス出口で溶融状態
にある樹脂液を薄板にロール成形するのは困難であった
Generally, amorphous resin is formed into a thin sheet using a roll forming method using polishing rolls, but if the resin is heated to a softening temperature that maintains the shape of the resin from the die in a plate shape, the thin sheet can be formed using rolls. Molding is relatively easy. However, for crystalline resins, it is difficult to roll form a resin liquid that is in a molten state at the die exit into a thin plate because it is necessary to crystallize or precipitate crystals during the solidification process.

【0009】本発明は、上記諸問題に鑑みなされたもの
で、表面が鏡面仕上げされて、平滑性が高く、板厚が均
一で、かつ生産性にすぐれた長尺広幅の結晶性PPS樹
脂その他の結晶性熱可塑性樹脂の薄板を製造する方法を
提供し、さらに結晶化度が高く、面域方向の特定方向に
機械的性質が特にすぐれた熱可塑性樹脂の薄板を供給し
ようとするものである。
The present invention has been made in view of the above-mentioned problems, and is a long and wide crystalline PPS resin with a mirror-finished surface, high smoothness, uniform thickness, and excellent productivity. The present invention provides a method for manufacturing a thin plate of crystalline thermoplastic resin, and further aims to supply a thin plate of thermoplastic resin with a high degree of crystallinity and particularly excellent mechanical properties in a specific direction of the surface area. .

【0010】0010

【課題を解決するための手段】本発明の結晶性熱可塑性
合成樹脂の薄板は、  当該薄板中に当該薄板の一定の
面域方向へ配向したガラス繊維を包含して成るものであ
って、当該配向方向に機械的性質に優れたことを特徴と
する当該樹脂の薄板である。
[Means for Solving the Problems] The thin plate of crystalline thermoplastic synthetic resin of the present invention includes glass fibers oriented in a certain area of the thin plate, and This is a thin plate of the resin characterized by excellent mechanical properties in the orientation direction.

【0011】また本発明の結晶性熱可塑性合成樹脂薄板
の製造方法は、ガラス繊維が混合された結晶性熱可塑性
合成樹脂の溶融樹脂液を、ダイスよりロール成形機の初
段ロールの間隙に押し出し、当該ロール表面で当該溶融
樹脂液を板材に成形し、次段以降の各ロールにより当該
板材を冷却し且つ圧下すると共に、各段ロールを加熱保
温調整することにより、当該板材の冷却を抑制して、当
該合成樹脂の結晶化度を上げるようにしたことを特徴と
するものである。
[0011] Furthermore, the method for manufacturing a crystalline thermoplastic synthetic resin thin plate of the present invention includes extruding a molten resin liquid of a crystalline thermoplastic synthetic resin mixed with glass fibers through a die into the gap between the first rolls of a roll forming machine. The molten resin liquid is formed into a plate material on the surface of the roll, and the plate material is cooled and rolled down by each of the subsequent rolls, and cooling of the plate material is suppressed by heating and insulating each corrugated roll. , is characterized in that the degree of crystallinity of the synthetic resin is increased.

【0012】また、当該合成樹脂には、ポリフェニレン
スルフィド樹脂(PPS樹脂)もしくは、ポリエーテル
エーテルケトン樹脂(PEEK樹脂)が使用され、当該
合成樹脂にはあらかじめ、繊維物質であるガラス繊維が
混合されており、特にガラス繊維に代えて、炭素繊維も
しくは金属繊維(例えばステンレス鋼線条の繊維)が配
合されてもよい。そして、本発明の当該樹脂薄板の厚さ
は、1〜10mmの範囲にあるものが対象になる。
[0012] Furthermore, polyphenylene sulfide resin (PPS resin) or polyether ether ketone resin (PEEK resin) is used as the synthetic resin, and glass fiber, which is a fibrous material, is mixed in advance with the synthetic resin. In particular, carbon fibers or metal fibers (for example, stainless steel filaments) may be blended instead of glass fibers. The thickness of the thin resin plate of the present invention is in the range of 1 to 10 mm.

【0013】[0013]

【作用】結晶性熱可塑性合成樹脂の板材の内部には、当
該樹脂の結晶が非晶質部と混在するが、結晶部は、板の
外部荷重によって生ずる板内の内部応力を支持するので
板材の強化に有効で、また非晶質部は粘弾性を示して軟
質であり、衝撃荷重を吸収する。
[Function] Inside the board of crystalline thermoplastic synthetic resin, crystals of the resin are mixed with amorphous parts, but the crystal part supports the internal stress within the board caused by external loads of the board, so the board The amorphous part exhibits viscoelasticity and is soft, and absorbs impact loads.

【0014】結晶性合成樹脂に繊維質物質例えば、ガラ
ス繊維を混合して、板材に成型するので、強化に有効で
あるが、本発明においてはさらに、繊維質物質の線条繊
維を板材の特定の面域方向に強く配向しているので、そ
の配向方向に機械的性質において特に強化される。
Since the crystalline synthetic resin is mixed with a fibrous material, such as glass fiber, and molded into a plate material, it is effective for reinforcement, but in the present invention, the filamentous fibers of the fibrous material are further added to the plate material. Since it is strongly oriented in the direction of the plane, the mechanical properties are particularly strengthened in the direction of orientation.

【0015】このような特定方向に特に強い機械的性質
を有する合成樹脂薄板は、特定方向に大きな荷重のかか
る用途の板状もしくは帯状の構造部材として広く利用で
き、また熱可塑性合成樹脂は、溶接による接合も容易で
あるから、化学用の容器、貯蔵タンク、その他の化学用
構造体や車両、航空機、電機製品の構造部材に利用する
ことができる。
[0015]Synthetic resin thin plates having particularly strong mechanical properties in specific directions can be widely used as plate-shaped or band-shaped structural members for applications where large loads are applied in specific directions, and thermoplastic synthetic resins can be used for welding. Since it is easy to join by , it can be used for chemical containers, storage tanks, other chemical structures, and structural members of vehicles, aircraft, and electrical products.

【0016】本発明の結晶性合成樹脂薄板の製造方法に
おいては、図1に示すように、加熱されて溶融状態にあ
る合成樹脂液30を押出機のダイス2より押出して、ロ
ール成形機4の初段ロール41a,41bの間隙の前部
に溜るが、ロール41a,41bの回転により、ロール
間隙を通過する際にロール表面に接する樹脂液がほぼ結
晶化温度まで旧例されて、凝固して、凝固層が板状の表
面となり、板材3に成形される。次段ロール42a,4
2bを通過する間に、板材3は、表面層より内部に向か
って冷却が進み凝固が完了する。各段ロールは、図1に
示す例では、ロール中空部411,412・・に加熱油
が循環されて、加熱保温されているから、ロール間隙を
通過する際にも急冷されず、初段ロール41a,41b
と次段ロール42a,42bとの間を通過する樹脂板が
空気中に放熱しながら、除々に冷却される。
In the method for manufacturing a crystalline synthetic resin thin plate of the present invention, as shown in FIG. It accumulates at the front of the gap between the first stage rolls 41a and 41b, but due to the rotation of the rolls 41a and 41b, the resin liquid that comes into contact with the roll surface when passing through the gap between the rolls is heated to almost the crystallization temperature, solidifies, and solidifies. The layer becomes a plate-like surface and is formed into a plate material 3. Next stage rolls 42a, 4
While passing through 2b, the plate material 3 is cooled from the surface layer toward the inside, and solidification is completed. In the example shown in FIG. 1, each corrugated roll is heated and kept warm by circulating heated oil in the roll hollow parts 411, 412, etc., so that it is not rapidly cooled when passing through the roll gap, and the first stage roll 41a ,41b
The resin plate passing between the rollers 42a and 42b is gradually cooled while radiating heat into the air.

【0017】初段ロールの表面温度はその樹脂の溶融温
度Tmとガラス転移点温度Tgの中間の温度に制御され
、次段以降のロール表面温度を若干低くくし、終段ロー
ルは、常温付近の温度に調熱される。
The surface temperature of the first stage roll is controlled to a temperature between the melting temperature Tm of the resin and the glass transition point temperature Tg, and the surface temperature of the next stage and subsequent rolls is slightly lowered, and the temperature of the final stage roll is kept at a temperature around room temperature. The heat is adjusted to

【0018】PPS樹脂においては、Tm=280〜2
90℃、Tg=85〜90℃及び溶融樹脂液からの結晶
化温度Tc=190〜250℃である。ダイス出口から
押し出された樹脂融液が初段ロールの上面から流下しな
い程度の粘度として概ね5000±1000 pois
e  の粘度が必要で、粘度の調整は、ガラス繊維量が
定まれば、ダイス温度によって行う。PPS樹脂の成形
の場合には、ガラス繊維量30%の配合で、300〜3
40℃に調整することが重要である。初段ロール41a
,41bの表面温度T1 は、180℃前後とし、次段
ロール42a,42bの表面温度T2 は140〜16
0℃に調整するのがよく、ロール表面は結晶化温度Tc
の下限より若干低く、従って、当該溶融樹脂液が接する
ロール表面近傍で固化し結晶化が生じ、また両ロール間
の温度差(T1 −T2 )を僅少としているので、樹
脂薄板の冷却速度は小さく、表面から内部へ結晶化が進
行して、結晶性樹脂薄板が形成される。
[0018] In PPS resin, Tm=280~2
90°C, Tg = 85-90°C, and crystallization temperature Tc from the molten resin liquid = 190-250°C. The viscosity is approximately 5000±1000 pois so that the resin melt extruded from the die outlet does not flow down from the top surface of the first roll.
A viscosity of e is required, and the viscosity is adjusted by changing the die temperature once the amount of glass fiber is determined. In the case of molding PPS resin, with a blend of 30% glass fiber, 300 to 3
It is important to adjust the temperature to 40°C. First stage roll 41a
, 41b is around 180°C, and the surface temperature T2 of the next stage rolls 42a, 42b is 140-160°C.
It is best to adjust the temperature to 0°C, and the roll surface should be kept at the crystallization temperature Tc.
Therefore, the molten resin solidifies and crystallizes near the roll surface in contact with it, and since the temperature difference (T1 - T2) between both rolls is small, the cooling rate of the thin resin plate is small. , crystallization progresses from the surface to the inside, forming a crystalline resin thin plate.

【0019】合成樹脂にあらかじめ、繊維質物質、例え
ばガラス繊維を配合した溶融樹脂液を押し出し、多段ロ
ール成形機により上述のように薄板に成形するので、繊
維強化合成樹脂薄板が成形できる。ロール間で冷却固化
の際、ロール間隙で溶融樹脂液は圧下されながら薄板に
成形するので、繊維の長軸方向が、押出し方向と同一方
向に配向されたまま、ロールによる移送が可能であり、
その結果、板の面域の特定方向が強化された当該合成樹
脂薄板の製造が可能となる。
[0019] A molten resin liquid containing a fibrous substance such as glass fiber mixed in advance with a synthetic resin is extruded and formed into a thin plate using a multi-roll molding machine as described above, so that a fiber-reinforced synthetic resin thin plate can be formed. During cooling and solidification between the rolls, the molten resin liquid is compressed and formed into a thin plate in the gap between the rolls, so the long axis direction of the fibers can be transported by the rolls while being oriented in the same direction as the extrusion direction.
As a result, it becomes possible to manufacture the synthetic resin thin plate in which the surface area of the plate is strengthened in a specific direction.

【0020】繊維質物質の配合量は、少なければ強化に
役立たないが、多すぎれば、成品の表面が鏡面とはなら
ず、繊維の露出による表面肌荒れを生ずるなど、表面性
状を悪化させるので、配合量としては20〜50%が適
当である。繊維の形状は押出し機からの押出後において
、アスペクト比は10〜30程度がよい。アスペクト比
が小さいと、配向が生じ難く、異方性が小さく、特に強
化には有効でない。アスペクト比が大きすぎれば繊維同
志のからみ合いが生じて、溶融樹脂液中への均一な分散
が困難となる。
[0020] If the amount of the fibrous substance blended is small, it will not be useful for reinforcement, but if it is too large, the surface of the product will not be mirror-like and the surface roughness will occur due to exposure of the fibers, resulting in deterioration of the surface properties. A suitable blending amount is 20 to 50%. The shape of the fibers is preferably such that the aspect ratio is about 10 to 30 after extrusion from an extruder. If the aspect ratio is small, orientation is difficult to occur, the anisotropy is small, and it is not particularly effective for strengthening. If the aspect ratio is too large, the fibers will become entangled with each other, making it difficult to uniformly disperse them into the molten resin liquid.

【0021】当該樹脂と繊維物質とのぬれ性を高めて、
繊維と樹脂マトリックスとの密着性を改善するためカッ
プリング剤が混合され、また必要により着色のための顔
料が混合される。
[0021] By increasing the wettability between the resin and the fiber material,
A coupling agent is mixed to improve the adhesion between the fibers and the resin matrix, and if necessary, a pigment for coloring is mixed.

【0022】[0022]

【実施例】本発明の結晶性熱可塑性合成樹脂薄板の製造
法の工程を示すため、図2の製造設備ラインの概要図に
よって説明する。
EXAMPLES In order to show the steps of the method for manufacturing a crystalline thermoplastic synthetic resin thin plate according to the present invention, the steps will be explained with reference to the schematic diagram of the manufacturing equipment line shown in FIG.

【0023】原料は合成樹脂を主成分とするペレットで
あって、押出し機1のホッパー13に装入される。押出
し機1はスクリュー式で加熱装置を装備し、その先端に
は、板用として幅広のスロット状ダイス2が設けられて
いる。板状に樹脂を固化形成するロール成形機4は三段
式で、中空部を有する鋼製であって、表面は硬質クロム
メットが施されて、平滑面に仕上げられている。各ロー
ルの中空部には、油加温槽、ポンプ、及び当該ロールの
中空部と連通したロール軸孔とを配管により接続するこ
とにより、加温油が流通・循環するようにされており、
油加温槽で油温度を制御することにより、所望のロール
表面温度に制御することができる。また、加熱方法とし
ては、上記以外に電熱ヒータによる方法もある。
The raw material is pellets mainly composed of synthetic resin, and is charged into the hopper 13 of the extruder 1. The extruder 1 is of a screw type and is equipped with a heating device, and a wide slot-shaped die 2 for forming plates is provided at its tip. The roll forming machine 4 for solidifying and forming resin into a plate shape is of a three-stage type and is made of steel having a hollow part, and the surface is coated with hard chromemet to give a smooth surface. The hollow part of each roll is connected by piping to an oil heating tank, a pump, and a roll shaft hole that communicates with the hollow part of the roll, so that heating oil flows and circulates.
By controlling the oil temperature in the oil heating tank, it is possible to control the roll surface temperature to a desired level. Further, as a heating method, there is also a method using an electric heater in addition to the above.

【0024】当該ロールは、ロール昇降装置とロールを
回転させる駆動用モータが、ロール毎に設けられ、初段
ロール41は、上記ダイス2に近接して配置され、終段
ロール43の先側は完全に固化冷却した当該薄板を引張
るピンチロール44と裁断機5が設けられている。
[0024] Each roll is provided with a roll lifting device and a drive motor for rotating the roll, the first roll 41 is placed close to the die 2, and the front end of the last roll 43 is completely closed. A pinch roll 44 and a cutter 5 are provided for pulling the thin plate which has been solidified and cooled.

【0025】裁断機の先側には、バッチ式の熱処理炉8
と除冷室81があり、さらにマスキングラミネート成形
機82とカッターとが続いて配置されている。
[0025] A batch type heat treatment furnace 8 is installed on the front side of the cutting machine.
There is a cooling chamber 81, and a masking laminate molding machine 82 and a cutter are arranged next to each other.

【0026】次に、結晶性熱可塑性樹脂としてPPS樹
脂を使用した場合の実施例を示す。
Next, an example will be shown in which PPS resin is used as the crystalline thermoplastic resin.

【0027】原料ペレットは、PPS樹脂)100重量
部に、ガラス繊維(日本電気硝子(株)、品名T−71
7K、  形状、径10μm長さ3mm)43重量部と
、助剤としてアミノシランカップリング剤(ユニオンカ
ーバイド社製、品名A1100)1重量部を混合し、二
軸押出し機で混合して押し出して、ペレットに成形した
ものである。当該ペレットは、逐次、乾燥機で水分を除
去して、押出し成形機1のホッパーに投入し、加熱溶融
した約340℃の当該樹脂液をダイス出口厚み8mm幅
1200mmのダイス2からロール成形機の初段ロール
41の間隙に向けて押出した。樹脂液温度は、適度の高
い粘度になるように、ガラス繊維量と、ダイスとロール
成形機の初段ロールとの位置関係と、を考慮して定めた
。 初段ロール41、次段ロール42及び終段ロール43の
表面温度はそれぞれ180℃、150℃、40℃に調整
した。ロール中心間の間隔は800mm、ロールの周速
は500mm/minに調整してり、終段ロール43間
隙は3mmに調整してある。ダイス出口厚みは、溶融樹
脂液の粘度、ロール周速と成品薄板厚みとの関係で、1
〜15mmの範囲で選択される。
[0027] The raw material pellets were 100 parts by weight of PPS resin and glass fiber (Nippon Electric Glass Co., Ltd., product name T-71).
7K, shape, diameter 10 μm length 3 mm) and 1 part by weight of an aminosilane coupling agent (manufactured by Union Carbide, product name A1100) as an auxiliary agent were mixed and extruded using a twin-screw extruder to form pellets. It is molded into. The pellets are sequentially dehydrated in a dryer and put into the hopper of extrusion molding machine 1, and heated and melted at about 340°C. It was extruded toward the gap between the first stage rolls 41. The temperature of the resin liquid was determined in consideration of the amount of glass fiber and the positional relationship between the die and the first roll of the roll forming machine so as to have an appropriately high viscosity. The surface temperatures of the first roll 41, the second roll 42, and the last roll 43 were adjusted to 180°C, 150°C, and 40°C, respectively. The distance between the centers of the rolls was adjusted to 800 mm, the circumferential speed of the rolls was adjusted to 500 mm/min, and the gap between the final stage rolls 43 was adjusted to 3 mm. The die exit thickness is determined by the relationship between the viscosity of the molten resin liquid, the peripheral speed of the roll, and the thickness of the finished thin plate.
-15mm.

【0028】抽出機のダイスからのPPS樹脂液は、初
段ロール41の下側ロール41bの上面に溜りながら、
初段ロール間隙に巻き込まれ、表裏面が固化した板状に
成形され、次段以降のロールによって、冷却・圧延が行
われ、幅1250mm、厚さ3mmの長尺広幅PPS樹
脂薄板が成形され、適当な長さに裁断してシートとした
。結晶化度を測定したところ20%であった。
The PPS resin liquid from the die of the extractor accumulates on the upper surface of the lower roll 41b of the first stage roll 41, while
It is rolled up in the gap between the first stage rolls and formed into a plate shape with solidified front and back surfaces, and then cooled and rolled by the subsequent rolls to form a long and wide PPS resin thin plate with a width of 1250 mm and a thickness of 3 mm. It was cut into lengths and made into sheets. The crystallinity was measured and found to be 20%.

【0029】次いで、バッチ式の熱処理炉8で、当該シ
ート状の薄板を積み重ねて、上面及び下面をステンレス
鋼板により挾接した状態で、200℃×4hの加熱保持
したのち、徐冷室81に移し、10℃/hの冷却速度で
除冷した。この熱処理は、ロール成形過程での歪みを除
去して、薄板の平坦度を高め、さらに、非晶質樹脂部を
結晶相に転移させて、結晶化度を高めるものであ。
Next, in a batch-type heat treatment furnace 8, the sheet-like thin plates are stacked and held at 200° C. for 4 hours with the upper and lower surfaces sandwiched between stainless steel plates, and then placed in an annealing chamber 81. The mixture was transferred and slowly cooled at a cooling rate of 10°C/h. This heat treatment removes distortion during the roll forming process, increases the flatness of the thin plate, and further transforms the amorphous resin portion into a crystalline phase to increase the degree of crystallinity.

【0030】試験結果を表1に示す。結晶化度は45%
に達し、機械的性質は圧延方向に特にすぐれている。即
ち、引張強度、伸び率、曲げ強度、衝撃強度はいずれも
圧延方向がその直角方向より高い値を示している。また
表面性状も良好で、鏡面が得られている。
The test results are shown in Table 1. Crystallinity is 45%
The mechanical properties are particularly excellent in the rolling direction. That is, the tensile strength, elongation rate, bending strength, and impact strength all show higher values in the rolling direction than in the direction perpendicular to the rolling direction. The surface quality is also good, with a mirror surface.

【0031】[0031]

【表1】[Table 1]

【0032】このようなPPS樹脂薄板は、電子機器用
配線基板として、また構造用としては、化学プラント用
、自動車用、及び航空機用として使用される。本実施例
では3mm厚さのPPS樹脂薄板の成形方法を述べたが
、同様の工程で1〜10mmの薄板の成形は容易である
。また、板幅について、10〜1500mm幅の製造が
可能である。
[0032] Such PPS resin thin plates are used as wiring boards for electronic devices, and for structural purposes such as chemical plants, automobiles, and aircraft. In this embodiment, a method for forming a PPS resin thin plate with a thickness of 3 mm has been described, but a thin plate with a thickness of 1 to 10 mm can be easily formed using the same process. Moreover, regarding the plate width, it is possible to manufacture the plate with a width of 10 to 1500 mm.

【0033】ロール表面温度の制御法には、本実施例と
は異なり、ロール中空部に電熱体を配置して、電気加熱
による方法も採用できる。  また、熱処理炉はバッチ
式のものを示したが、上記多段ロール成形機の同一ライ
ン上後方に連続式の熱処理炉と除冷炉を配置して、薄板
成形と熱処理を連続的に実施する工程も勿論可能である
Unlike the present embodiment, a method of controlling the roll surface temperature by disposing an electric heating element in the hollow part of the roll and using electric heating can also be adopted. In addition, although the heat treatment furnace is shown as a batch type, a continuous type heat treatment furnace and a slow cooling furnace are arranged on the same line behind the above multi-roll forming machine to continuously perform thin plate forming and heat treatment. Of course, it is also possible.

【0034】[0034]

【発明の効果】本発明の結晶性熱可塑性合成樹脂薄板及
びその製造方法を実施すれば、次のような効果を奏する
ことがてきる。
[Effects of the Invention] By carrying out the crystalline thermoplastic synthetic resin thin plate and the method for producing the same of the present invention, the following effects can be achieved.

【0035】結晶性樹脂であるから、寸法安定性よく、
線膨張率小さく、強度が高いが、さらにガラス繊維等に
より強化され、当該繊維は当該薄板の面域の特定方向に
配向しているから、特定方向に対して特に引張強度、伸
び率、曲げ強度、衝撃強度等機械的特性が高く、構造材
料としてにすぐれた合成樹脂薄板が得られる。
Since it is a crystalline resin, it has good dimensional stability,
The coefficient of linear expansion is low and the strength is high, but it is further reinforced with glass fibers, etc., and the fibers are oriented in a specific direction in the plane area of the thin plate, so the tensile strength, elongation rate, and bending strength are particularly high in specific directions. A synthetic resin thin plate having high mechanical properties such as impact strength and excellent as a structural material can be obtained.

【0036】特に熱可塑性樹脂としてPPS樹脂もしく
はPEEK樹脂を採用すれば、耐熱性、耐薬品性を併せ
もつ異方性材料を提供することができ、特定方向の強度
が特に要求される用途の合成樹脂薄板として利用できる
In particular, if PPS resin or PEEK resin is used as the thermoplastic resin, it is possible to provide an anisotropic material that has both heat resistance and chemical resistance, and is suitable for synthesis for applications where strength in a specific direction is particularly required. Can be used as a resin thin plate.

【0037】また本発明の結晶性熱可塑性合成樹脂薄板
の製造法は、基本的には、スクリュー押出し機と多段ロ
ール成形機とによる方法であって、特段の装置を要する
ことなく、長尺幅広の薄板が容易に製造でき、薄板成形
過程で結晶化と繊維配向を実現でき、その薄板は鏡面と
なって表面性状が極めて良好でありかつ生産性が高いな
どの特有の効果を有する。
Furthermore, the method for producing the crystalline thermoplastic synthetic resin thin plate of the present invention is basically a method using a screw extruder and a multi-stage roll forming machine, and does not require any special equipment, and can produce long and wide sheets. The thin plate can be easily produced, crystallization and fiber orientation can be achieved during the thin plate forming process, and the thin plate has a mirror surface with extremely good surface properties and has unique effects such as high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】PPS樹脂薄板の初段ロールの凝固過程を示す
図。
FIG. 1 is a diagram showing the solidification process of a first roll of PPS resin thin plate.

【図2】PPS樹脂薄板の製造工程図。FIG. 2 is a manufacturing process diagram of a PPS resin thin plate.

【符号の説明】[Explanation of symbols]

1  一軸スクリュー押出し機 2  ダイス部 3  合成樹脂薄板 4  ロール成形機 41  初段ロール 42  次段ロール 43  終段ロール 44  ピンチロール 5  切断機 8  熱処理炉 81  除冷炉 82  ラミネート機 1 Single screw extruder 2 Dice part 3.Synthetic resin thin plate 4 Roll forming machine 41 First roll 42 Next stage roll 43 Final roll 44 Pinch roll 5 Cutting machine 8 Heat treatment furnace 81 Slow cooling furnace 82 Laminating machine

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  結晶性熱可塑性合成樹脂の薄板におい
て、当該薄板中に当該薄板の一定の面域方向へ配向した
ガラス繊維を含有して成ることを特徴とする結晶性熱可
塑性合成樹脂薄板。
1. A thin plate of a crystalline thermoplastic synthetic resin, characterized in that the thin plate contains glass fibers oriented in a certain area of the thin plate.
【請求項2】  ガラス繊維が混合された結晶性熱可塑
性合成樹脂の溶融樹脂液を、ダイスよりロール成形機の
初段ロールの間隙に押し出し、当該ロール表面で当該溶
融樹脂液を板材に成形し、次段以降の各ロールにより当
該板材を冷却し且つ圧下すると共に、各段ロールを加熱
保温調整することにより、当該板材の冷却を抑制して、
当該合成樹脂の結晶を形成させるようにしたことを特徴
とする結晶性熱可塑性合成樹脂薄板の製造方法。
2. A molten resin liquid of a crystalline thermoplastic synthetic resin mixed with glass fiber is extruded from a die into the gap between the first rolls of a roll forming machine, and the molten resin liquid is formed into a plate material on the surface of the roll, By cooling and rolling down the plate material by each roll of the next stage and after, and controlling the heating and heat retention of each corrugated roll, cooling of the plate material is suppressed,
1. A method for manufacturing a crystalline thermoplastic synthetic resin thin plate, comprising forming crystals of the synthetic resin.
【請求項3】  当該結晶性熱可塑性合成樹脂には、ガ
ラス繊維に代えて、炭素繊維もしくは金属繊維が混合さ
れている請求項1記載の結晶性熱可塑性合成樹脂薄板又
は請求項2記載の結晶性熱可塑性合成樹脂薄板の製造方
法。
3. The crystalline thermoplastic synthetic resin thin plate according to claim 1 or the crystal according to claim 2, wherein carbon fiber or metal fiber is mixed in the crystalline thermoplastic synthetic resin instead of glass fiber. A method for manufacturing thermoplastic synthetic resin thin plates.
【請求項4】  当該結晶性熱可塑性合成樹脂が、ポリ
フェニレンスルフィド樹脂もしくはポリエーテルエーテ
ルケトン樹脂である請求項1記載の熱可塑性合成樹脂薄
板又は請求項2記載の熱可塑性合成樹脂薄板の製造方法
4. The method for producing a thin thermoplastic synthetic resin plate according to claim 1 or a thin thermoplastic synthetic resin plate according to claim 2, wherein the crystalline thermoplastic synthetic resin is a polyphenylene sulfide resin or a polyether ether ketone resin.
JP3059638A 1991-02-28 1991-02-28 Crystalline thermoplastic synthetic resin thin plate and preparation thereof Pending JPH04275127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3059638A JPH04275127A (en) 1991-02-28 1991-02-28 Crystalline thermoplastic synthetic resin thin plate and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3059638A JPH04275127A (en) 1991-02-28 1991-02-28 Crystalline thermoplastic synthetic resin thin plate and preparation thereof

Publications (1)

Publication Number Publication Date
JPH04275127A true JPH04275127A (en) 1992-09-30

Family

ID=13118967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3059638A Pending JPH04275127A (en) 1991-02-28 1991-02-28 Crystalline thermoplastic synthetic resin thin plate and preparation thereof

Country Status (1)

Country Link
JP (1) JPH04275127A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024479A1 (en) * 1995-02-08 1996-08-15 Auckland Uniservices Limited Roll forming of thermoplastics
EP0847845A1 (en) * 1996-12-10 1998-06-17 Hoechst Celanese Corporation Thermoformable sheets having core layer with unmatted, oriented fibers and fiber-free cap layer
AU715968B2 (en) * 1994-07-22 2000-02-10 Daniel A. Tingley Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement
JP2007038485A (en) * 2005-08-02 2007-02-15 Dainippon Plastics Co Ltd Continuous molding method for thin-walled molding
JP2009241510A (en) * 2008-03-31 2009-10-22 Meiwa Ind Co Ltd Molded substrate and laminated sheet using it
CN103056955A (en) * 2011-10-21 2013-04-24 张芝强 Manufacture method of electronic component carrier with plant fiber sheet
WO2016002470A1 (en) * 2014-07-01 2016-01-07 帝人株式会社 Method for producing fiber-reinforced plastic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU715968B2 (en) * 1994-07-22 2000-02-10 Daniel A. Tingley Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement
WO1996024479A1 (en) * 1995-02-08 1996-08-15 Auckland Uniservices Limited Roll forming of thermoplastics
EP0847845A1 (en) * 1996-12-10 1998-06-17 Hoechst Celanese Corporation Thermoformable sheets having core layer with unmatted, oriented fibers and fiber-free cap layer
JP2007038485A (en) * 2005-08-02 2007-02-15 Dainippon Plastics Co Ltd Continuous molding method for thin-walled molding
JP4564420B2 (en) * 2005-08-02 2010-10-20 大日本プラスチックス株式会社 Continuous molding method for thin molded products
JP2009241510A (en) * 2008-03-31 2009-10-22 Meiwa Ind Co Ltd Molded substrate and laminated sheet using it
CN103056955A (en) * 2011-10-21 2013-04-24 张芝强 Manufacture method of electronic component carrier with plant fiber sheet
WO2016002470A1 (en) * 2014-07-01 2016-01-07 帝人株式会社 Method for producing fiber-reinforced plastic

Similar Documents

Publication Publication Date Title
EP0024895B1 (en) Method of manufacture of reinforced sheet plastics material and the production of moulded articles therefrom
CN110181829B (en) Industrial production process of liquid crystal polyester film
BR112012006150B1 (en) Thermoplastic Triple Layer Composite Structure, Article of Manufacture, and Method for Fabricating a Thermoplastic Triple Layer Composite Structure
TWI406766B (en) Laminated polyester film for forming and method for producing the same
CN111087805B (en) Supercritical fluid continuous extrusion high-performance recyclable PA (polyamide) foam material and preparation method thereof
JPH04275127A (en) Crystalline thermoplastic synthetic resin thin plate and preparation thereof
CN109648850B (en) 3D printing nozzle and forming method of liquid crystal polymer film
CN112549475A (en) Method and device for preparing liquid crystal polymer film
KR100924540B1 (en) Method for Preparation of Extruded Objects with Brilliant Gloss
CN111516350B (en) High-brightness mould pressing polyester film and preparation method thereof
CN108372617A (en) The preparation method of high intensity tape-cast polyester film
TW200831266A (en) Method for preparation of microcellular foam with uniform foaming ratio and extruding and foaming system for the same
CN111941970A (en) Biaxially oriented BOPE film and preparation method thereof
JP3118066B2 (en) Flame retardant composite
CN109878050B (en) PVC foaming co-extrusion ASA glass fiber reinforcing process
CN102848560A (en) PP foaming plate, forming method, polypropylene foaming plate material and forming method
JPH0259330A (en) Manufacture of peek resin pipe
EP0847845A1 (en) Thermoformable sheets having core layer with unmatted, oriented fibers and fiber-free cap layer
JP5495328B2 (en) Manufacturing method of injection molded product by insert molding
JP2001205654A (en) Method for manufacturing foamed sheet and foamed object formed of thermoplastic polyester resin
CN112440460A (en) Forming system and method for functional high polymer material in blown film processing
CN202498676U (en) Continuous fiber reinforced polypropylene foamed plate forming device
WO2024075636A1 (en) Method for producing thermoplastic liquid crystal polymer film
CN213472464U (en) Extinction high-temperature-resistant release film
CN109795134B (en) Special-shaped pipe forming method