JP2007038485A - Continuous molding method for thin-walled molding - Google Patents

Continuous molding method for thin-walled molding Download PDF

Info

Publication number
JP2007038485A
JP2007038485A JP2005224025A JP2005224025A JP2007038485A JP 2007038485 A JP2007038485 A JP 2007038485A JP 2005224025 A JP2005224025 A JP 2005224025A JP 2005224025 A JP2005224025 A JP 2005224025A JP 2007038485 A JP2007038485 A JP 2007038485A
Authority
JP
Japan
Prior art keywords
thin
filler
molding
polyarylene sulfide
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005224025A
Other languages
Japanese (ja)
Other versions
JP4564420B2 (en
Inventor
Yoshikazu Honma
義和 本間
Takeshi Akita
剛 穐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Plastics Co Ltd
Original Assignee
Dainippon Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Plastics Co Ltd filed Critical Dainippon Plastics Co Ltd
Priority to JP2005224025A priority Critical patent/JP4564420B2/en
Publication of JP2007038485A publication Critical patent/JP2007038485A/en
Application granted granted Critical
Publication of JP4564420B2 publication Critical patent/JP4564420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for obtaining a thin-walled molding having a good appearance and good mechanical properties in good production efficiency. <P>SOLUTION: The continuous molding method for the thin-walled molding includes a process in which a resin composition containing a polyarylene sulfide, after being melt-kneaded in an extruder, is extruded continuously from a molding die, a process for cooling the extruded material so that it can be taken up, and a process in which the cooled material is held for 0.2-5 min in an atmosphere of 130-190°C while its shape is kept to be crystallized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリアリーレンサルファイド(PAS)を含む樹脂組成物を原料とする薄肉成形品の連続成形方法に関する。   The present invention relates to a continuous molding method for thin-walled molded products using a resin composition containing polyarylene sulfide (PAS) as a raw material.

PASは、耐熱性、耐薬品性、難燃性、剛性等に優れた高結晶性の熱可塑性樹脂であり、一般的には、射出成形法や切削加工法等により、PAS成形品が製造されている。   PAS is a highly crystalline thermoplastic resin with excellent heat resistance, chemical resistance, flame retardancy, rigidity, etc. Generally, PAS molded products are manufactured by injection molding, cutting, etc. ing.

射出成形法は、射出成形条件が十分に検討された物品及び素材につき、大量生産する場合に適しており、切削加工法は、少量生産する場合、射出成形法では製造困難な構造や寸法の精密部品を生産する場合、射出成形法による大量生産の予備又は前段階で試験的に生産する場合に適している。   The injection molding method is suitable for mass production of articles and materials for which injection molding conditions have been fully studied, and the cutting method is the precision of structures and dimensions that are difficult to manufacture by the injection molding method when producing in small quantities. In the case of producing parts, it is suitable for preliminary production of mass production by an injection molding method or trial production in the previous stage.

しかし、例えば薄肉チューブ成形品の場合、射出成形法で成形すると、PASの特徴である高流動性の影響により、ダイスの合わせ面に樹脂が入り込んでバリが発生したり、薄肉であるため高圧で射出しなければならず、金型寿命が短くなるという問題がある。よって、このような問題が発生する結果、射出成形法による薄肉チューブのを成形は大量生産には向いていない。   However, for example, in the case of thin-walled tube molded products, when molded by the injection molding method, due to the high fluidity characteristic of PAS, resin enters the mating surfaces of the dies, and burrs are generated. There is a problem that the mold life is shortened because it must be injected. Therefore, as a result of such problems, molding thin-walled tubes by injection molding is not suitable for mass production.

このため、連続押出成形法を適用して、射出成形法や切削加工法では難しい薄肉成形品の大量生産を行うことが望まれている。
特公平6−55400号公報 特許2522683号公報 特開平9−39076号公報
For this reason, it is desired to apply the continuous extrusion method to mass-produce thin-walled products that are difficult to achieve by the injection molding method or the cutting method.
Japanese Examined Patent Publication No. 6-55400 Japanese Patent No. 2522683 JP-A-9-39076

特許文献1では、加熱溶融押出工程、サイジング工程、引取り及び切断工程を経た管状成形物に対して、150〜260℃で、0.3〜100時間、結晶化処理(熱固定)することが開示されている。しかし、結晶化工程を含めた全体の製造時間が長く掛かりすぎるため、生産効率が悪く、大量生産の要請に充分に応えられない。   In Patent Document 1, crystallization treatment (heat setting) can be performed at 150 to 260 ° C. for 0.3 to 100 hours with respect to the tubular molded article that has undergone the heating and melt extrusion process, the sizing process, the take-up and cutting processes. It is disclosed. However, since the entire manufacturing time including the crystallization process takes too long, the production efficiency is poor and the demand for mass production cannot be sufficiently met.

特許文献2では、PASをスリット状のダイから押し出し、冷却固化してシート状とし、次いで予熱後、引続き加熱ロールとピンチロールの間を通過させ、連続的に線状で加圧して熱処理し、結晶化させる方法が開示されている。しかし、冷却固化工程が必要であり、その分、生産ラインが長くなり、製造時間や製造コストの点で充分ではない。   In Patent Document 2, the PAS is extruded from a slit-shaped die, cooled and solidified into a sheet shape, then preheated, and subsequently passed between a heating roll and a pinch roll, continuously pressed in a linear shape, and heat-treated, A method of crystallization is disclosed. However, a cooling and solidifying step is necessary, and the production line is lengthened accordingly, which is not sufficient in terms of manufacturing time and manufacturing cost.

特許文献3は、押出機として、冷却を目的とするサイジングダイと加熱を目的とする結晶化ダイを有する押出成形用ダイを備えたものを用い、結晶性樹脂を押し出して樹脂成形体を成形する押出成形方法が開示されている。しかし、実施例にも記載のとおり、丸棒のような厚肉品を成形する方法であり、薄肉成形品の製造法としては不適である。   Patent Document 3 uses an extrusion machine including an extrusion die having a sizing die for cooling and a crystallization die for heating, and extrudes a crystalline resin to form a resin molded body. An extrusion method is disclosed. However, as described in the examples, it is a method for forming a thick product such as a round bar, and is not suitable as a method for manufacturing a thin product.

本発明の課題は、結晶性樹脂であるPASを含む樹脂組成物を用い、薄肉成形品を連続的に大量生産することができる、薄肉成形品の連続成形方法を提供することである。   The subject of this invention is providing the continuous molding method of a thin molded product which can mass-produce a thin molded product continuously using the resin composition containing PAS which is crystalline resin.

本発明は、課題の解決手段として、
PASを含む樹脂組成物を押出成形機にて溶融混練した後、成形ダイから連続押出する工程、
押出品を引き取り可能な程度まで冷却する工程、及び
冷却後の押出品を、保形しながら、130〜190℃の雰囲気中にて、0.2〜5分間保持して結晶化する工程を有する、薄肉成形品の連続成形方法を提供する。
As a means for solving the problems, the present invention
A process of continuously extruding from a molding die after melt-kneading a resin composition containing PAS in an extruder,
A step of cooling the extrudate to a level where it can be taken out, and a step of crystallizing the cooled extrudate by holding it in an atmosphere of 130 to 190 ° C. for 0.2 to 5 minutes while retaining its shape. The present invention provides a continuous molding method for thin molded products.

本発明の連続成形方法は、特許文献1のように、一旦成形品を得た後、再度、結晶化処理するのではなく、インライン方式により、連続成形する方法である。本発明の連続成形方法は、シート、フィルム、チューブのような薄肉成形品の製造に適している。   The continuous molding method of the present invention is a method in which, as in Patent Document 1, once a molded product is obtained, crystallization treatment is not performed again, but continuous molding is performed by an in-line method. The continuous molding method of the present invention is suitable for production of thin molded products such as sheets, films, and tubes.

本発明の連続成形方法によれば、PASを含む樹脂組成物を原料として用いた場合でも、インライン方式にて短時間で結晶化処理することができるため、薄肉成形品を安定して大量生産することができる。   According to the continuous molding method of the present invention, even when a resin composition containing PAS is used as a raw material, it can be crystallized in a short time by an in-line method, so that a thin molded product can be stably mass-produced. be able to.

以下、本発明の薄肉成形品の連続成形方法を工程ごとに説明する。なお、以下においては、必要に応じて、1つの工程を2以上に分離することもできるし、2つ以上の工程を1つにすることもできるほか、公知の工程を付加することもできる。   Hereinafter, the continuous molding method of the thin molded article of the present invention will be described for each process. In the following, one step can be separated into two or more as necessary, two or more steps can be combined into one, and a known step can be added.

第1工程は、PASを含む樹脂組成物を押出成形機にて溶融混練した後、成形ダイから連続押出する工程である。   The first step is a step of continuously extruding from a molding die after melt-kneading a resin composition containing PAS with an extruder.

押出成形機は、公知のものを用いることができる。溶融混練温度は、PASの融点以上の温度であり、成形ダイの形状は、目的とする薄肉成形品の形状に応じて選択される。   A well-known thing can be used for an extrusion molding machine. The melt kneading temperature is a temperature equal to or higher than the melting point of PAS, and the shape of the molding die is selected according to the shape of the target thin molded product.

第2工程は、押出品を引き取り可能な程度まで冷却する工程である。第1工程にて、成形ダイから押し出された押出品は溶融状態であるため、成形ダイに続いて設置されるロールやサイジングダイにより引き取りが可能な程度(後工程において、押出品の形状が維持できる程度)にまで冷却する。   The second step is a step of cooling the extruded product to such an extent that it can be taken up. Since the extruded product extruded from the forming die in the first step is in a molten state, it can be taken up by a roll or a sizing die installed after the forming die (the shape of the extruded product is maintained in the subsequent process) Cool to the extent possible).

押出品がシート乃至はフィルムの場合には、成形ダイから押し出されて最初に接触するロールを冷却する方法を適用し、押出品がチューブの場合には、サイジングダイの入口を冷却する方法を適用することができる。なお、サイジングダイを用いる方法の場合、真空ポンプにより外方向に吸引することで(即ち、サイジングダイの内外の圧力差を利用することで)、チューブをサイジング内表面に貼り付けて膨らませた状態にして保形することが好ましい。   If the extrudate is a sheet or film, apply the method of cooling the roll that is extruded first from the forming die, and if the extrudate is a tube, apply the method of cooling the inlet of the sizing die. can do. In the case of a method using a sizing die, the tube is attached to the inner surface of the sizing and inflated by sucking outward with a vacuum pump (that is, by utilizing the pressure difference between the inside and outside of the sizing die). It is preferable to keep the shape.

この工程では、例えば、成形ダイから押し出された直後の押出品温度が300℃である場合、約30〜150℃まで冷却する。   In this step, for example, when the temperature of the extruded product immediately after being extruded from the forming die is 300 ° C., it is cooled to about 30 to 150 ° C.

第3工程は、冷却後の押出品を結晶化する工程である。この工程では、押出時の形状を維持しつつ、押出品を所定条件にて加熱して結晶化させる。   The third step is a step of crystallizing the extruded product after cooling. In this step, the extruded product is heated and crystallized under predetermined conditions while maintaining the shape during extrusion.

結晶化の加熱条件は、130〜190℃で0.2〜5分間であり、好ましくは140〜180℃で0.4〜3分間である。   The heating conditions for crystallization are 130 to 190 ° C. for 0.2 to 5 minutes, preferably 140 to 180 ° C. for 0.4 to 3 minutes.

押出品がシート乃至はフィルムの場合には、所定温度に加熱したロールと接触させる方法を適用し、押出品がチューブの場合には、所定温度に加熱したサイジングダイ内を通過させる方法を適用する。   When the extrudate is a sheet or film, a method of contacting with a roll heated to a predetermined temperature is applied. When the extrudate is a tube, a method of passing through a sizing die heated to a predetermined temperature is applied. .

第3工程にて、結晶化処理がなされた押出品は、所定長さに切断される。なお、必要に応じて、切断前後に延伸処理をしてもよい。   In the third step, the extruded product that has been crystallized is cut into a predetermined length. In addition, you may extend | stretch before and after cutting as needed.

本発明の連続成形方法により得られる薄肉成形品は、例えば、シート乃至はフィルム、チューブ状のものであり、厚みは10〜2000μmの範囲のものが好ましく、より好ましくは50〜1000μm、更に好ましくは100〜500μmのものを得ることができる。   The thin molded product obtained by the continuous molding method of the present invention is, for example, a sheet or film or a tube, and preferably has a thickness in the range of 10 to 2000 μm, more preferably 50 to 1000 μm, still more preferably. The thing of 100-500 micrometers can be obtained.

本発明の連続成形方法で使用するPASを含む樹脂組成物としては、下記のものを用いることができる。   As the resin composition containing PAS used in the continuous molding method of the present invention, the following can be used.

樹脂組成物に含まれるPASは、繰り返し単位:−Ar−S−(但し、Arはアリーレン基を示す)を主構成単位として含むものである。   The PAS contained in the resin composition contains a repeating unit: —Ar—S— (wherein Ar represents an arylene group) as a main structural unit.

アリーレン基としては、p−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p’−ジフェニレンスルホン基、p,p’−ビフェニレン基、p,p’−ジフェニレンエーテル基、p,p’−ジフェニレンカルボニル基、ナフタレン基等を挙げることができる。   Arylene groups include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p'-diphenylenesulfone group, p, p'-biphenylene group, p, p'-diphenylene ether. Group, p, p′-diphenylenecarbonyl group, naphthalene group and the like.

PASは、上記したいずれか1つのモノマーから得られるホモポリマーでもよいし、2種以上のモノマーから得られるコポリマーでもよい。   The PAS may be a homopolymer obtained from any one of the above-described monomers, or a copolymer obtained from two or more monomers.

ホモポリマーとしては、ポリp−フェニレンサルファイド(PPS)を挙げることができ、特に線状PPSが好ましい。   Examples of the homopolymer include poly p-phenylene sulfide (PPS), and linear PPS is particularly preferable.

コポリマーとしては、p−フェニレン基を含む構成単位と、他のアリーレン基(好ましくはm−フェニレン基)を含む構成単位のコポリマーを挙げることができるが、成形性、耐熱性、機械的特性の点から、p−フェニレン基を含む構成単位の比率が60モル%以上のものが好ましく、70モル%以上のものがより好ましい。コポリマーは、ランダム結合でも、ブロック結合でもよいが、ブロック結合のものの方が、耐熱性、機械的特性の点から好ましい。   As the copolymer, a copolymer of a structural unit containing a p-phenylene group and a structural unit containing another arylene group (preferably m-phenylene group) can be mentioned, but in terms of moldability, heat resistance, and mechanical properties. Therefore, the proportion of the structural unit containing a p-phenylene group is preferably 60 mol% or more, more preferably 70 mol% or more. The copolymer may be a random bond or a block bond, but a block bond is preferred from the viewpoint of heat resistance and mechanical properties.

PASは、線状のものが好ましいが、分岐構造や架橋構造を含んでいるものでもよいし、各種置換基が導入された変性物でもよいし、これらの混合物でもよい。PASを単品乃至は混合して用いる場合、溶融粘度は10〜1000Pa・s(310℃、剪断速度1000sec−1にてISO11443の試験方法により測定された数値)が好ましい。なお、PASは、重合後、脱イオン処理を行い、塩素やナトリウム等のアルカリ金属の含量を一定限度以下(塩素は500ppm以下、アルカリ金属は200ppm以下)に減少させたものが好ましい。 The PAS is preferably linear, but may include a branched structure or a crosslinked structure, a modified product having various substituents introduced therein, or a mixture thereof. When PAS is used as a single product or mixed, the melt viscosity is preferably 10 to 1000 Pa · s (a numerical value measured by a test method of ISO 11443 at 310 ° C. and a shear rate of 1000 sec −1 ). PAS is preferably deionized after polymerization to reduce the content of alkali metals such as chlorine and sodium to a certain limit or less (500 ppm or less for chlorine and 200 ppm or less for alkali metal).

目的に応じた物性を得るため、2種以上のPASを混合する場合の例としては、流動性を改善する観点から、粘度の異なるものを混合したもの、成形性を改善する観点(生産性向上及び外観)から、線状のPASと、分岐又は架橋構造を有するPAS(溶融粘度が50〜500Pa・s;上記方法にて測定された数値)を混合したものを挙げることができる。   Examples of mixing two or more types of PAS to obtain physical properties according to the purpose include those with different viscosities from the viewpoint of improving fluidity, and viewpoints of improving moldability (improving productivity) In addition, a mixture of linear PAS and PAS having a branched or crosslinked structure (melt viscosity is 50 to 500 Pa · s; numerical value measured by the above method) can be given.

樹脂組成物には、必要に応じて、本発明の課題を解決できる範囲の量及び種類の熱可塑性を配合することができる。このような熱可塑性樹脂はPASよりも融点が低いものが好ましく、ポリエチレン、ポリプロピレン又はこれらの変性重合体等のポリオレフィンを主体とするオレフィン系重合体又は共重合体;ナイロン6、ナイロン66、その他のポリアミド系重合体又は共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート等を主体とするポリエステル重合体又は共重合体;液晶性ポリエステル重合体;ポリスチレン、ポリアクリロニトリル、ABS等のスチレン系重合体;ポリアルキルアクリレート等のアクリル系重合体;ポリカーボネート、ポリフェニレンオキサイド、ポリアセタール等を挙げることができる。これらの熱可塑性樹脂は、2種以上を使用することができる。   If necessary, the resin composition can be blended with an amount and type of thermoplasticity within a range that can solve the problems of the present invention. Such a thermoplastic resin preferably has a melting point lower than that of PAS, and is an olefin polymer or copolymer mainly composed of polyolefin such as polyethylene, polypropylene or a modified polymer thereof; nylon 6, nylon 66, other Polyamide polymer or copolymer; Polyester polymer or copolymer mainly composed of polyethylene terephthalate, polybutylene terephthalate, etc .; Liquid crystalline polyester polymer; Styrene polymer such as polystyrene, polyacrylonitrile, ABS; Polyalkyl acrylate And acrylic polymers such as polycarbonate, polyphenylene oxide, polyacetal and the like. Two or more of these thermoplastic resins can be used.

樹脂組成物には、薄肉成形品に要求される性質等に応じて、粒状、繊維状又はフレーク状(板状)充填材から選ばれる1種又は2種以上を配合することができる。   The resin composition may contain one or more selected from granular, fibrous or flaky (plate-like) fillers according to the properties required for the thin molded article.

繊維状充填材としては、ガラス繊維、カーボン繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニウム繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリウム繊維のほか、ステンレス、アルミニウム、チタン、銅、黄銅等の繊維を挙げることができ、これらの中でも、ガラス繊維、カーボン繊維が好ましい。   Examples of the fibrous filler include glass fiber, carbon fiber, silica fiber, silica / alumina fiber, zirconium fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, stainless steel, aluminum, titanium, copper, Examples thereof include fibers such as brass, and among these, glass fibers and carbon fibers are preferable.

繊維状充填材は、平均繊維長が1〜800μmのものが好ましく、より好ましくは5〜600μmのものである。前記範囲のものを用いると、薄肉成形品の寸法安定性が良くなり、外観も良くなる。平均繊維長さは、計数法(走査型電子顕微鏡で観察し、充填材の大きさを測定する方法)によって求める。   The fibrous filler preferably has an average fiber length of 1 to 800 μm, more preferably 5 to 600 μm. When the product within the above range is used, the dimensional stability of the thin molded product is improved and the appearance is also improved. The average fiber length is determined by a counting method (a method of observing with a scanning electron microscope and measuring the size of the filler).

粒状充填材としては、カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ガラス粉、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー、珪藻土、ウォラストナイトのような珪酸塩、酸化鉄、酸化チタン、アルミナのような金属の酸化物、炭酸カルシウム、炭酸マグネシウムのような金属の炭酸塩、硫酸カルシウム、硫酸バリウムのような金属の硫酸塩、その他、炭化珪素、窒化珪素、窒化硼素、各種金属粉末等を挙げることができる。   Granular fillers include carbon black, graphite, silica, quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, silicates such as wollastonite, iron oxide, titanium oxide Metal oxides such as alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, silicon carbide, silicon nitride, boron nitride, various metal powders Etc.

粒状充填材は、平均粒径が1〜800μmのものが好ましく、より好ましくは5〜600μmのものである。前記範囲のものを用いると、薄肉成形品の寸法安定性が良くなり、外観も良くなる。平均粒径は、計数法(走査型電子顕微鏡で観察し、充填材の大きさを測定する方法)によって求める。   The granular filler preferably has an average particle diameter of 1 to 800 μm, more preferably 5 to 600 μm. When the product within the above range is used, the dimensional stability of the thin molded product is improved and the appearance is also improved. The average particle diameter is determined by a counting method (a method of observing with a scanning electron microscope and measuring the size of the filler).

フレーク状充填材としては、マイカ、ガラスフレーク、各種金属箔等を挙げることができる。   Examples of the flaky filler include mica, glass flakes and various metal foils.

フレーク状充填材は、平均最大長さが1〜800μmのものが好ましく、より好ましくは5〜600μmのものである。前記範囲のものを用いると、薄肉成形品の寸法安定性が良くなり、外観も良くなる。平均最大長さは、計数法(走査型電子顕微鏡で観察し、充填材の大きさを測定する方法)によって求める。   The flaky filler preferably has an average maximum length of 1 to 800 μm, more preferably 5 to 600 μm. When the product within the above range is used, the dimensional stability of the thin molded product is improved and the appearance is also improved. The average maximum length is obtained by a counting method (a method of observing with a scanning electron microscope and measuring the size of the filler).

これらの充填材は、必要に応じて、次亜燐酸又はその塩を表面に付着させたものを用いてもよく、収束剤を用いて収束したものを用いてもよく、表面処理剤(エポキシ系化合物、イソシアナート系化合物、シラン系化合物、チタネート系化合物)を用いて表面処理したものを用いてもよい。   As necessary, these fillers may be prepared by adhering hypophosphorous acid or a salt thereof to the surface, or may be converged by using a sizing agent. Compounds, isocyanate compounds, silane compounds, titanate compounds) that have been surface-treated may be used.

これらの充填材の配合量は、ポリアリーレンサルファイド100質量部に対して1〜200質量部が好ましく、5〜100質量部がより好ましく、10〜50質量部が更に好ましい。   1-200 mass parts is preferable with respect to 100 mass parts of polyarylene sulfide, as for the compounding quantity of these fillers, 5-100 mass parts is more preferable, and 10-50 mass parts is still more preferable.

また、上記充填材とは別に、必要に応じて有機質充填材を補助的に配合することができる。有機質充填材としては、フッ素樹脂、芳香族ポリアミド等の高融点の繊維状又は粉粒状の重合体を用いることができる。   In addition to the filler, an organic filler can be supplementarily blended as necessary. As the organic filler, a high melting point fibrous or powdery polymer such as fluororesin and aromatic polyamide can be used.

また樹脂組成物には、薄肉成形品の用途に応じて、各種添加剤、例えば、顔料、紫外線吸収剤、酸化防止剤、熱安定剤、滑剤、難燃剤、離型剤、その他の公知の添加剤を配合することができる。   In the resin composition, various additives such as pigments, ultraviolet absorbers, antioxidants, heat stabilizers, lubricants, flame retardants, mold release agents, and other known additives are used depending on the use of the thin molded product. An agent can be blended.

本発明の連続成形方法を適用して得られた薄肉成形品は、耐熱性、耐薬品性、難燃性が必要とされる用途等に使用することができる。   The thin-walled molded product obtained by applying the continuous molding method of the present invention can be used for applications that require heat resistance, chemical resistance, and flame retardancy.

実施例1〜5
表1において、線状PPS樹脂と、カーボンブラック、シリカ、チタン酸カリウム繊維を併用するときは、予め表1に示す割合で、ヘンシェルミキサーにて5分間予備混合した後、シリンダー直径45mmの池貝社製の二軸押出機(ベント付き)を用いて、シリンダー温度320℃、スクリューの回転数250rpmで溶融押出して、ペレットにした。
Examples 1-5
In Table 1, when linear PPS resin, carbon black, silica, and potassium titanate fiber are used in combination, the mixture is preliminarily mixed for 5 minutes in a ratio shown in Table 1, and then the cylinder diameter is 45 mm. Using a twin screw extruder (with a vent) manufactured, melt extrusion at a cylinder temperature of 320 ° C. and a screw rotation speed of 250 rpm was made into pellets.

次に、池貝社製のVS40−25型押出機にスパイダーダイを取り付け、シリンダー温度を270〜310℃に昇温した状態にて、PPS樹脂組成物をチューブ状に溶融押出した。なお、実施例1以外の例では、予めフォートロン0220A9と上記ペレットをドライブレンドしたものをPPS樹脂組成物とした。   Next, a spider die was attached to a VS40-25 type extruder manufactured by Ikegai Co., Ltd., and the PPS resin composition was melt extruded into a tube shape while the cylinder temperature was raised to 270 to 310 ° C. In Examples other than Example 1, a PPS resin composition was prepared by dry blending Fortron 0220A9 and the above pellets in advance.

押出品は、サイジングダイ(入口に水冷式の冷却装置を有している)に送り、押出品の温度を約30〜150℃に冷却した後、表1に示す条件にて加熱して、結晶化処理を行った。なお、サイジングダイの内部においては、真空ポンプにより外方向に吸引することで、チューブをサイジング内表面に貼り付けて膨らませた状態にして保形した。結晶化処理後、適当長さに切断して、チューブ状の薄肉成形品を得た。   The extrudate is sent to a sizing die (having a water-cooled cooling device at the inlet), the extrudate is cooled to about 30 to 150 ° C., and then heated under the conditions shown in Table 1, The treatment was performed. In addition, in the inside of the sizing die, the tube was attached to the inner surface of the sizing and inflated by sucking outward with a vacuum pump, and the shape was retained. After the crystallization treatment, the tube was cut into an appropriate length to obtain a tube-shaped thin molded product.

比較例1
加温せずにサイジングダイを通過させたほかは、実施例1〜5と同様にしてチューブ状の薄肉成形品を得た。
Comparative Example 1
A tube-shaped thin molded article was obtained in the same manner as in Examples 1 to 5, except that the sizing die was passed without heating.

比較例2
水冷却したサイジングダイ(加熱せず)を通過させたほかは、実施例1〜5と同様にしてチューブ状の薄肉成形品を得た。
Comparative Example 2
A tube-shaped thin molded article was obtained in the same manner as in Examples 1 to 5, except that a water-cooled sizing die (not heated) was passed.

比較例3、4
表1に示す条件にて結晶化処理をしたほかは、実施例1〜5と同様にしてチューブ状の薄肉成形品を得た。
Comparative Examples 3 and 4
A tube-shaped thin molded article was obtained in the same manner as in Examples 1 to 5 except that the crystallization treatment was performed under the conditions shown in Table 1.

比較例5
比較例2で得られたチューブ状の薄肉成形品に対して、150℃で10分間、結晶化処理を行った。
Comparative Example 5
The tube-shaped thin molded product obtained in Comparative Example 2 was subjected to crystallization treatment at 150 ° C. for 10 minutes.

(押出成形性及び外観)
押出成形機から押し出した後、引き取りが円滑にできるかどうかで判断した。外観は、成形品の外観を目視により観察し、外観が平滑で、シワや穴がないものを良好と判断した。
(Extrudability and appearance)
After extruding from the extruder, it was judged whether or not the take-up could be performed smoothly. The appearance was determined by visually observing the appearance of the molded product, and the appearance was smooth and free from wrinkles and holes.

(結晶化の確認)
島津製作所製の示差走査熱量計(DSC−50)を用い、20℃〜150℃まで、毎分10℃昇温させて、結晶化のピークの有無を確認した。
○:結晶化が進んでいる(結晶化ピークが出ない)。
×:結晶化が進んでいない(結晶化ピークが出る)。
(Confirmation of crystallization)
Using a differential scanning calorimeter (DSC-50) manufactured by Shimadzu Corporation, the temperature was raised by 10 ° C. per minute from 20 ° C. to 150 ° C., and the presence or absence of a crystallization peak was confirmed.
○: Crystallization is progressing (no crystallization peak appears).
X: Crystallization has not progressed (crystallization peak appears).

(耐熱性の測定)
薄肉成形品を130℃のオーブン中に入れ、無荷重で10分間放置したとき、目視にて変形が確認できない場合を耐熱性が良好(○)とし、目視にて変形が確認された場合を耐熱性が不良(×)とした。
(Measurement of heat resistance)
When the thin-walled molded product is placed in an oven at 130 ° C. and left for 10 minutes with no load, heat resistance is good (○) when deformation cannot be confirmed visually, and heat resistance when deformation is confirmed visually. The property was poor (x).

表1に示す各成分の詳細は、以下のとおりである。
・フォートロン0220A9:PPS,ポリプラスチックス(株)製,粘度500Pa・s
・線状PPS樹脂:ポリプラスチックス(株)製,粘度50Pa・s
・ガラス繊維:商品名REF−160,日本板硝子(株)製,平均繊維長160μm
・シリカ::商品名マイクロイドML−369,東洋製鉄化学(株)製,平均粒径5.0μm
・チタン酸カリウム繊維:商品名ティスモN,大塚化学(株)製,平均繊維長15μm
Details of each component shown in Table 1 are as follows.
・ Fortron 0220A9: PPS, manufactured by Polyplastics Co., Ltd., viscosity 500 Pa · s
・ Linear PPS resin: Polyplastics Co., Ltd., viscosity 50 Pa · s
Glass fiber: trade name REF-160, manufactured by Nippon Sheet Glass Co., Ltd., average fiber length 160 μm
Silica :: trade name Microid ML-369, manufactured by Toyo Seikan Chemical Co., Ltd., average particle size 5.0 μm
-Potassium titanate fiber: Trade name Tismo N, manufactured by Otsuka Chemical Co., Ltd., average fiber length of 15 μm

Figure 2007038485
Figure 2007038485

実施例1〜5は、押出成形性、外観とも良好であり、充分な結晶化処理がなされており、耐熱性or機械的性質も良好であった。なお、厚みが10〜2000μmの下限及び上限の範囲外であると、引き取り性が劣った。   In Examples 1 to 5, extrusion moldability and appearance were good, sufficient crystallization treatment was performed, and heat resistance or mechanical properties were also good. In addition, take-off property was inferior that thickness was outside the range of the lower limit and upper limit of 10-2000 micrometers.

比較例1では、冷却及び結晶化処理がなされていないため、引き取りが困難であり、製品外観も不良となった。比較例2では、冷却はしたものの、結晶化処理が充分になされていないため、耐熱性or機械的性質が劣っていた。   In Comparative Example 1, since cooling and crystallization treatment were not performed, it was difficult to pick up and the product appearance was poor. In Comparative Example 2, although cooled, the heat resistance or mechanical properties were inferior because the crystallization treatment was not sufficiently performed.

比較例3は、結晶化処理の温度が高すぎるため、引き取りが困難であり、結晶化もできなかった。比較例4は、結晶化処理の時間が短すぎたため、引き取り性や製品外観は良好であったが、結晶化処理が充分になされていないため、耐熱性or機械的性質が劣っていた。   In Comparative Example 3, since the temperature of the crystallization treatment was too high, it was difficult to take up and crystallization was not possible. In Comparative Example 4, since the time for the crystallization treatment was too short, the take-up property and the product appearance were good, but since the crystallization treatment was not sufficiently performed, the heat resistance or mechanical properties were inferior.

比較例5は、製品の耐熱性or機械的性質も良好であったが、アウトラインにより結晶化処理を行ったため、生産効率の点で劣っていた。


In Comparative Example 5, although the heat resistance or mechanical properties of the product were good, the crystallization treatment was performed by outline, so that the production efficiency was poor.


Claims (4)

ポリアリーレンサルファイドを含む樹脂組成物を押出成形機にて溶融混練した後、成形ダイから連続押出する工程、
押出品を引き取り可能な程度まで冷却する工程、及び
冷却後の押出品を、保形しながら、130〜190℃の雰囲気中にて、0.2〜5分間保持して結晶化する工程を有する、薄肉成形品の連続成形方法。
A step of continuously extruding from a molding die after melt-kneading a resin composition containing polyarylene sulfide in an extruder,
A step of cooling the extrudate to a level where it can be taken out, and a step of crystallizing the cooled extrudate by holding it in an atmosphere of 130 to 190 ° C. for 0.2 to 5 minutes while retaining its shape. , Continuous molding method for thin molded products.
ポリアリーレンサルファイドを含む樹脂組成物が、ポリアリーレンサルファイドと、平均繊維長が1〜800μmである繊維状充填材、平均粒径が1〜800μmの粒状充填材、平均最大長さが1〜800μmのフレーク状充填材から選ばれるものを含むものである、請求項1記載の薄肉成形品の連続成形方法。   The resin composition containing polyarylene sulfide is polyarylene sulfide, a fibrous filler having an average fiber length of 1 to 800 μm, a granular filler having an average particle diameter of 1 to 800 μm, and an average maximum length of 1 to 800 μm. The method for continuously forming a thin-walled molded article according to claim 1, comprising a material selected from flaky fillers. 粒状充填材、繊維状充填材又はフレーク状充填材の含有量が、ポリアリーレンサルファイド100質量部に対して1〜200質量部である、請求項1又は2記載の薄肉成形品の連続成形方法。   The method for continuously forming a thin molded article according to claim 1 or 2, wherein the content of the granular filler, the fibrous filler, or the flaky filler is 1 to 200 parts by mass with respect to 100 parts by mass of the polyarylene sulfide. 薄肉成形品の厚みが10〜2000μmである、請求項1〜3のいずれかに記載の薄肉成形品の連続成形方法。

The method for continuously forming a thin molded product according to any one of claims 1 to 3, wherein the thickness of the thin molded product is 10 to 2000 µm.

JP2005224025A 2005-08-02 2005-08-02 Continuous molding method for thin molded products Expired - Fee Related JP4564420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224025A JP4564420B2 (en) 2005-08-02 2005-08-02 Continuous molding method for thin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224025A JP4564420B2 (en) 2005-08-02 2005-08-02 Continuous molding method for thin molded products

Publications (2)

Publication Number Publication Date
JP2007038485A true JP2007038485A (en) 2007-02-15
JP4564420B2 JP4564420B2 (en) 2010-10-20

Family

ID=37796911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224025A Expired - Fee Related JP4564420B2 (en) 2005-08-02 2005-08-02 Continuous molding method for thin molded products

Country Status (1)

Country Link
JP (1) JP4564420B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219624A (en) * 1989-02-22 1990-09-03 Kureha Chem Ind Co Ltd Lower oligomer sheet and production thereof
JPH04275127A (en) * 1991-02-28 1992-09-30 Takiron Co Ltd Crystalline thermoplastic synthetic resin thin plate and preparation thereof
JPH0655400B2 (en) * 1985-10-17 1994-07-27 呉羽化学工業株式会社 Tubular extrudate and method for producing the same
JP2522683B2 (en) * 1987-12-28 1996-08-07 呉羽化学工業株式会社 Polyarylene sulfide resin sheet and method for producing the same
JP2005169830A (en) * 2003-12-11 2005-06-30 Polyplastics Co Molding method of heat radiating polyarylene sulfide resin composition and heat radiating molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655400B2 (en) * 1985-10-17 1994-07-27 呉羽化学工業株式会社 Tubular extrudate and method for producing the same
JP2522683B2 (en) * 1987-12-28 1996-08-07 呉羽化学工業株式会社 Polyarylene sulfide resin sheet and method for producing the same
JPH02219624A (en) * 1989-02-22 1990-09-03 Kureha Chem Ind Co Ltd Lower oligomer sheet and production thereof
JPH04275127A (en) * 1991-02-28 1992-09-30 Takiron Co Ltd Crystalline thermoplastic synthetic resin thin plate and preparation thereof
JP2005169830A (en) * 2003-12-11 2005-06-30 Polyplastics Co Molding method of heat radiating polyarylene sulfide resin composition and heat radiating molded product

Also Published As

Publication number Publication date
JP4564420B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
CN109627581B (en) Polypropylene composite material and preparation method and application thereof
CN111479850B (en) Polymer-metal joint comprising PEEK-PEmEK copolymer composition in contact with a metal substrate
JP7184079B2 (en) Materials for polyamide-based 3D printers
JP2006137853A (en) Resin composition
JP6875271B2 (en) Method for manufacturing a molded product by press molding a thermoplastic resin sheet or film
CN109749373B (en) Modified liquid crystal polyester resin compound and preparation method thereof
WO1998016585A1 (en) Resin composition
JP7207409B2 (en) Materials for 3D printers
JP4564420B2 (en) Continuous molding method for thin molded products
CN107636076B (en) Poly (aryl ether ketone) composition
JP7325189B2 (en) Monofilament for 3D printer, usage thereof, and modeling method
KR940010795B1 (en) Poly(arylene thioether) resin composition
JP6957377B2 (en) Modeling materials for 3D printers, how to use them, and modeling methods
EP3620488A1 (en) Electrically conductive resin composition and preparation method thereof
JP2010174158A (en) Polyamide resin composition, polyamide resin film, and method for manufacturing polyamide resin film
JP2020001257A (en) Resin composition and filamentous molded article
EP4039747B1 (en) Resin composition, film, composite material, movable body, and material for three-dimensional shaping use
JP5706640B2 (en) Manufacturing method of thin intermediate molded product
CN116490364A (en) Additive manufacturing method for manufacturing three-dimensional objects
JP3652399B2 (en) Extruded thick molded product and method for producing the same
JPH0890557A (en) Pellet of highly crystalline polycyanoaryl ether, production thereof and molding thereof
JP2023005732A (en) Resin composition and molded article
JPH05228990A (en) Manufacture of polyallylene sulfide resin hollow molded form
JP2023553363A (en) Additive manufacturing methods for manufacturing three-dimensional objects
JP2019044027A (en) Polyamide 9T sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees