JP2000191998A - Thermally conductive adhesive, method of adhesion and semiconductor device - Google Patents

Thermally conductive adhesive, method of adhesion and semiconductor device

Info

Publication number
JP2000191998A
JP2000191998A JP10371811A JP37181198A JP2000191998A JP 2000191998 A JP2000191998 A JP 2000191998A JP 10371811 A JP10371811 A JP 10371811A JP 37181198 A JP37181198 A JP 37181198A JP 2000191998 A JP2000191998 A JP 2000191998A
Authority
JP
Japan
Prior art keywords
conductive adhesive
adhesive
ferromagnetic material
carbon fiber
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10371811A
Other languages
Japanese (ja)
Inventor
Masayuki Hida
雅之 飛田
Kikuo Fujiwara
紀久夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
NE Chemcat Corp
Original Assignee
Polymatech Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd, NE Chemcat Corp filed Critical Polymatech Co Ltd
Priority to JP10371811A priority Critical patent/JP2000191998A/en
Publication of JP2000191998A publication Critical patent/JP2000191998A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor device that can effectively dissipate the heat generated from the device by filling carbon fibers coated with a ferromagnetic substance on their surfaces with an adhesive polymer and intervening the thermally conductive adhesive between the substrates so that the carbon fibers are oriented in a certain direction. SOLUTION: Carbon fibers having an average diameter of 5-20 μ, an average length of 20-800 μm and a thermal conductivity of >=200 W/mk in the fiber- length direction are coated with at least one ferromagnetic particles selected from nickel, iron, ferrite, chromium, cobalt, manganese or rare earth in a layer thickness of 0.01-5 μm, and filled with at least one of adhesive polymer selected from the group consisting of epoxy, polyimide, acryl, urethane, vinyl and silicone polymers to prepare the objective thermally conductive adhesive. The resultant adhesive (3) is intervened between the semiconductor chips 8 and the substrates such as die pads 7 or the like, thus the carbon fibers are oriented in a certain direction by action of the external magnetic field and adhered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気製品に使用さ
れる半導体素子や電源、光源などの部品から発生する熱
を効果的に放散させる高い熱伝導性が要求される熱伝導
性接着剤および接着方法ならびに放熱性に優れる半導体
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive adhesive which is required to have a high heat conductivity for effectively dissipating heat generated from components such as semiconductor elements, power supplies and light sources used in electric products. The present invention relates to a bonding method and a semiconductor device having excellent heat dissipation.

【0002】[0002]

【従来の技術】従来より、発熱する半導体素子や電子部
品とこれらから発生する熱を放熱させる伝熱部材とを接
合させるのに接着性高分子をマトリックスとした熱伝導
性接着剤が使用されている。これらの接着剤には、熱伝
導性を高めるために、銀、銅、金、アルミニウム、ニッ
ケルなどの熱伝導率の大きい金属や合金、化合物、ある
いは酸化アルミニウム、酸化マグネシウム、酸化ケイ
素、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化
ケイ素などのセラミックス製の粉末状の充填剤、カーボ
ンブラックやダイヤモンドなどの粉粒体形状や繊維形状
の熱伝導性充填剤が配合されている。
2. Description of the Related Art Conventionally, a heat conductive adhesive having an adhesive polymer as a matrix has been used to join a semiconductor element or electronic component that generates heat with a heat transfer member that dissipates heat generated from the semiconductor element or electronic component. I have. These adhesives include silver, copper, gold, aluminum, nickel and other metals or alloys with high thermal conductivity, compounds, or aluminum oxide, magnesium oxide, silicon oxide, boron nitride, etc. A powdery ceramic filler such as aluminum nitride, silicon nitride, and silicon carbide, and a powdery or fibrous heat conductive filler such as carbon black and diamond are compounded.

【0003】熱伝導性充填材として炭素繊維を接着性高
分子に配合する熱伝導性接着剤は公知である。たとえ
ば、特開昭63−305520号公報では、炭素系の微
粉末や炭素繊維を充填したダイボンド材料が提唱されて
いる。特開平6−212137号公報では、熱伝導特性
を改良する目的で、特定構造の炭素繊維、すなわちメソ
フェーズピッチを基材とした3次元構造の炭素繊維を充
填した接着性材料が開示されている。また、特開平9−
324127号公報には、特定の高分子材料を熱処理し
て得られるグラファイト材を使用した半導体素子用ダイ
ボンド材が開示されている。
[0003] A heat conductive adhesive is known in which carbon fiber is blended with an adhesive polymer as a heat conductive filler. For example, Japanese Patent Application Laid-Open No. 63-305520 proposes a die bond material filled with carbon-based fine powder or carbon fiber. JP-A-6-212137 discloses an adhesive material filled with carbon fibers having a specific structure, that is, carbon fibers having a three-dimensional structure using a mesophase pitch as a base material, for the purpose of improving the heat conduction characteristics. Further, Japanese Unexamined Patent Publication No.
Japanese Patent Application Laid-Open No. 324127 discloses a die bonding material for a semiconductor element using a graphite material obtained by heat-treating a specific polymer material.

【0004】さらに、特開平5−209157号公報、
特開平6−299129号公報によれば、含有させる炭
素繊維や金属繊維の構造を、かたまり状や糸まり状、あ
るいは織布や不織布の形状に特定することによって放熱
特性を一層改善した電子デバイス用接着剤が提案されて
いる。一方、特開昭62−194653号公報、特開昭
63−62762号公報によれば、ニッケルなどの磁性
体粉末を含む接着剤を磁場中で厚み方向に配向させて熱
伝導率を向上させる接着方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 5-209157,
According to Japanese Patent Application Laid-Open No. 6-299129, for an electronic device, the heat radiation characteristics are further improved by specifying the structure of the carbon fiber or metal fiber to be contained in a lump-like or thread-like shape, or a woven or non-woven fabric. Adhesives have been proposed. On the other hand, according to JP-A-62-194653 and JP-A-63-62762, an adhesive containing a magnetic substance powder such as nickel is oriented in a thickness direction in a magnetic field to improve thermal conductivity. A method is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、最近の半導体
素子をはじめとする電子部品、電気製品の高密度化、高
性能化に伴う発熱量は著しく増大する傾向にあり、上述
したように様々な熱伝導性充填剤を応用した従来の改善
方法によっても十分に高い熱伝導特性を有する接着剤が
得られなかった。磁性体粉末を含む接着剤を磁場中で厚
み方向に配向させる従来の方法は、通常の粉末状あるい
は針状のニッケル系や鉄系では、その素材自体の熱伝導
率が100W/mKにも満たないので、磁場で配向させ
ても接着剤として十分な高い熱伝導率を発現することは
できなかった。
However, the amount of heat generated by recent high-density and high-performance electronic components such as semiconductor devices and electric appliances tends to increase remarkably. An adhesive having sufficiently high heat conduction properties could not be obtained by the conventional improvement method using a heat conductive filler. The conventional method of orienting an adhesive containing a magnetic substance powder in a thickness direction in a magnetic field is based on a conventional powdery or needle-like nickel-based or iron-based material that has a thermal conductivity of 100 W / mK or less. Therefore, it was not possible to develop a sufficiently high thermal conductivity as an adhesive even if the film was oriented by a magnetic field.

【0006】すなわち、より一層高度な熱伝導特性を有
する接着剤が開発されないために、半導体素子などの電
子部品からの多大な発熱によって、電気化学的なマイグ
レーションが加速されたり、配線やパッド部の腐食が促
進されたり、発生する熱応力によって構成材料にクラッ
クが生じたり、破壊したり、構成材料の接合部の界面が
剥離して電子部品の寿命を損なう様々なトラブルが発生
していた。
That is, since an adhesive having even higher heat conduction properties has not been developed, electrochemical migration is accelerated due to a large amount of heat generated from electronic components such as semiconductor elements, and the formation of wiring and pad portions is accelerated. Corrosion has been promoted, and cracks have occurred or been broken in the constituent materials due to the generated thermal stress, and various troubles have occurred in which the interface of the joining portions of the constituent materials has separated and the life of the electronic component has been impaired.

【0007】[0007]

【課題を解決するための手段】本発明は、上述の課題を
解決する目的で、電気製品に使用される半導体素子や電
源、光源などの部品から発生する熱を効果的に放散させ
る熱伝導性接着剤および接着方法ならびに放熱特性に優
れる半導体装置を提供するものである。すなわち、本発
明は、強磁性体を被覆した炭素繊維と接着性高分子とを
配合してなることを特徴とする熱伝導性接着剤である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a heat conductive material for effectively dissipating heat generated from components such as a semiconductor element, a power supply, and a light source used in electric appliances. An adhesive, an adhesive method, and a semiconductor device having excellent heat dissipation characteristics are provided. That is, the present invention is a heat conductive adhesive characterized by blending a carbon fiber coated with a ferromagnetic material and an adhesive polymer.

【0008】さらに本発明は、被着体間に、強磁性体を
被覆した炭素繊維と接着性高分子とを配合してなる熱伝
導性接着剤を介在させ、外部磁場によって熱伝導性接着
剤中の強磁性体を被覆した炭素繊維を一定方向に配向さ
せた状態で接着させることを特徴とする接着方法であ
る。さらに本発明は、半導体素子と伝熱部材間に、強磁
性体を被覆した炭素繊維と接着性高分子とを配合してな
る熱伝導性接着剤を介在させ、外部磁場によって炭素繊
維を一定方向に配向させた状態で接着させた半導体装置
である。
[0008] The present invention further provides a heat conductive adhesive formed by blending a carbon fiber coated with a ferromagnetic material and an adhesive polymer between adherends, and the heat conductive adhesive is applied by an external magnetic field. This is a bonding method characterized by bonding carbon fibers coated with a ferromagnetic substance in a state where they are oriented in a certain direction. Furthermore, the present invention interposes a heat conductive adhesive formed by blending a carbon fiber coated with a ferromagnetic material and an adhesive polymer between a semiconductor element and a heat transfer member, and moves the carbon fiber in a certain direction by an external magnetic field. The semiconductor device is adhered in a state where the semiconductor device is oriented in the following manner.

【0009】本発明で使用する強磁性体を被覆した炭素
繊維は、炭素繊維に強磁性体を無電解メッキ法、電解メ
ッキ法、真空蒸着やスパッタリングなどによる物理的蒸
着法、化学的蒸着法、塗装、浸漬、微細粒子を機械的に
炭素繊維表面に固着させるメカノケミカル法などの方法
によって調製することができる。
The carbon fiber coated with a ferromagnetic material used in the present invention may be formed by applying a ferromagnetic material to a carbon fiber by electroless plating, electrolytic plating, physical vapor deposition by vacuum vapor deposition or sputtering, chemical vapor deposition, or the like. It can be prepared by a method such as painting, dipping, or mechanochemical method of mechanically fixing fine particles to the carbon fiber surface.

【0010】強磁性体としては、ニッケル系およびニッ
ケル系合金、鉄系合金、窒化鉄系、フェライト系、バリ
ウムフェライト系、コバルト系合金、マンガン系合金、
ネオジウム/鉄/ホウ素系やサマリウム/コバルト系な
どの希土類系合金が用いられる。なかでもニッケル系、
鉄系、フェライト系、クロム系、コバルト系、マンガン
系あるいは希土類系より選ばれる少なくとも1種の金
属、合金、化合物よりなる強磁性体が好ましい。
[0010] Ferromagnetic materials include nickel-based and nickel-based alloys, iron-based alloys, iron nitride-based, ferrite-based, barium ferrite-based, cobalt-based alloys, manganese-based alloys, and the like.
Rare earth alloys such as neodymium / iron / boron and samarium / cobalt are used. Among them, nickel-based,
A ferromagnetic material composed of at least one metal, alloy or compound selected from iron, ferrite, chromium, cobalt, manganese and rare earths is preferred.

【0011】被覆する強磁性体の膜厚については限定す
るものではないけれども、0.01μm〜5μmの範囲
が好ましい。0.01μmよりも薄いと外部磁場の磁力
で強磁性体を被覆した炭素繊維を配向させる場合に磁性
が不十分で繊維が配向しにくい。5μmを越えると磁力
で配向しやすくなるけれども、接着剤として熱伝導率が
低下してしまうので好ましくない。さらに好ましい強磁
性体の膜厚は、0.05μm〜2μmの範囲である。
The thickness of the ferromagnetic material to be coated is not limited, but is preferably in the range of 0.01 μm to 5 μm. If the thickness is less than 0.01 μm, the magnetism of an external magnetic field causes the carbon fibers coated with the ferromagnetic material to be oriented so that the magnetism is insufficient and the fibers are hardly oriented. If it exceeds 5 μm, although it is easy to orient by magnetic force, it is not preferable because the thermal conductivity as an adhesive decreases. The more preferable thickness of the ferromagnetic material is in the range of 0.05 μm to 2 μm.

【0012】また、炭素繊維に強磁性体を被覆する前工
程として、あるいは強磁性体を被覆した後の炭素繊維の
表面に、銀、銅、金、酸化アルミニウム、酸化マグネシ
ウム、窒化アルミニウム、炭化ケイ素などの熱伝導率が
大きい公知の金属、合金、セラミックスなどを被覆して
熱伝導性を向上することもできる。被覆する強磁性体が
ニッケルなどの電気伝導性の場合には、酸化アルミニウ
ム、酸化マグネシウム、窒化アルミニウムあるいは炭化
ケイ素などの電気絶縁性のセラミックスなどを最表面に
被覆することによって、本発明の熱伝導性接着剤を電気
絶縁性にすることが可能である。
In addition, as a pre-process for coating the ferromagnetic material on the carbon fiber or on the surface of the carbon fiber after the ferromagnetic material is coated, silver, copper, gold, aluminum oxide, magnesium oxide, aluminum nitride, silicon carbide, It is also possible to improve thermal conductivity by coating a known metal, alloy, ceramics or the like having a large thermal conductivity such as. When the ferromagnetic material to be coated is electrically conductive such as nickel, the heat conduction of the present invention is achieved by coating the outermost surface with an electrically insulating ceramic such as aluminum oxide, magnesium oxide, aluminum nitride or silicon carbide. It is possible to make the conductive adhesive electrically insulating.

【0013】炭素繊維の種類や大きさ、形状については
特定するものではない。原料についてはPAN系よりも
メソフェーズピッチ系を主原料として溶融紡糸、不融
化、炭化などの処理工程後に2000〜3000℃ある
いは3000℃を越える高温で熱処理したグラファイト
構造の発達した炭素繊維の方が繊維長さ方向の熱伝導率
が大きくて好ましい。さらに気相成長法によって得られ
る炭素繊維も使用できる。この炭素繊維の繊維長さ方向
の熱伝導率は200W/mK以上が好適で、好ましくは
400W/mK以上、さらに好ましくは1000W/m
K以上である。
[0013] The type, size and shape of the carbon fiber are not specified. As for the raw material, the carbon fiber with a developed graphite structure, which is heat-treated at a high temperature exceeding 2000 to 3000 ° C. or 3000 ° C. after a process such as melt-spinning, infusibilization, and carbonization using a mesophase pitch system as a main material rather than a PAN system, is a fiber. It is preferable because the thermal conductivity in the length direction is large. Further, carbon fibers obtained by a vapor growth method can also be used. The thermal conductivity of this carbon fiber in the fiber length direction is preferably 200 W / mK or more, preferably 400 W / mK or more, and more preferably 1000 W / m.
K or more.

【0014】炭素繊維の平均直径としては5〜20μ
m、平均長さは20〜800μmの範囲が接着性高分子
へ容易に充填でき、得られる熱伝導性接着剤の熱伝導率
が大きくなるので好ましい。平均直径が5μmよりも小
さい場合や、平均長さが800μmよりも長い場合は、
接着性高分子中に高濃度で配合することが困難になる。
また、平均直径が20μmを越える炭素繊維は、その生
産性が悪化するので好ましくない。平均長さが20μm
よりも短いとかさ比重が小さくなり、製造工程中の取扱
い性や作業性に問題が生じることがある。なお、これら
の炭素繊維表面は、あらかじめ電解酸化などによる公知
の酸化処理を施しておいても差し支えない。
The average diameter of the carbon fiber is 5 to 20 μm.
m and the average length in the range of 20 to 800 μm are preferable because the adhesive polymer can be easily filled and the heat conductivity of the obtained heat conductive adhesive increases. When the average diameter is smaller than 5 μm or when the average length is longer than 800 μm,
It becomes difficult to mix at a high concentration in the adhesive polymer.
Further, carbon fibers having an average diameter of more than 20 μm are not preferred because their productivity is deteriorated. Average length 20μm
If it is shorter than this, the bulk specific gravity becomes smaller, and problems may arise in handling and workability during the manufacturing process. In addition, these carbon fiber surfaces may be subjected to a known oxidation treatment such as electrolytic oxidation in advance.

【0015】強磁性体を被覆した炭素繊維を充填するマ
トリックスとなる接着性高分子としては、エポキシ系、
ポリイミド系、アクリル系、ポリ酢酸ビニルなどのビニ
ル系、ウレタン系、シリコーン系、オレフィン系、ポリ
アミド系、ポリアミドイミド系、フェノール系、アミノ
系、ビスマレイミド系、ポリイミドシリコーン系、飽和
および不飽和ポリエステル系、ジアリルフタレート系、
尿素系、メラミン系、アルキッド系、ベンゾシクロブテ
ン系、ポリブタジエンやクロロプレンゴム、ニトリルゴ
ムなどの合成ゴム系、天然ゴム系、スチレン系熱可塑性
エラストマーなどの公知の樹脂やゴムからなる液体状あ
るいは固体状の材料が好ましい。
The adhesive polymer serving as a matrix for filling a carbon fiber coated with a ferromagnetic material includes epoxy-based polymers,
Polyimide, acrylic, vinyl such as polyvinyl acetate, urethane, silicone, olefin, polyamide, polyamideimide, phenol, amino, bismaleimide, polyimide silicone, saturated and unsaturated polyester , Diallyl phthalate,
Liquid or solid made of known resins and rubbers such as urea-based, melamine-based, alkyd-based, benzocyclobutene-based, synthetic rubber-based such as polybutadiene, chloroprene rubber, and nitrile rubber, natural rubber-based, and styrene-based thermoplastic elastomers Are preferred.

【0016】硬化形態については、熱硬化性、熱可塑
性、紫外線や可視光硬化性、常温硬化性、湿気硬化性な
ど公知のあらゆる硬化形態の接着性高分子を使用でき
る。なかでも、電子部品を構成する材料の各種金属やセ
ラミックス、各種プラスチックやゴム、エラストマーと
の接着性が良好なエポキシ系、ポリイミド系、アクリル
系、ウレタン系、シリコーン系より選ばれる少なくとも
1種の高分子が好適である。また、繊維の表面処理を目
的として、強磁性体を被覆した炭素繊維の表面を公知の
カップリング剤やサイジング剤で処理することによって
接着性高分子との濡れ性を向上させたり充填性を改良す
ることが可能である。
With respect to the curing form, any of known adhesive curing polymers such as thermosetting, thermoplastic, ultraviolet and visible light curable, room temperature curable, and moisture curable can be used. Among them, epoxy, polyimide, acrylic, urethane and silicone based materials having good adhesion to various metals and ceramics, various plastics and rubbers, and elastomers of materials constituting electronic parts are preferred. Molecules are preferred. Also, for the purpose of fiber surface treatment, the surface of the carbon fiber coated with ferromagnetic material is treated with a known coupling agent or sizing agent to improve the wettability with the adhesive polymer or improve the filling property. It is possible to

【0017】さらに、本発明の熱伝導性接着剤には、チ
キソトロピー性付与剤、分散剤、硬化剤、硬化促進剤、
遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安
定剤、着色剤など公知の添加剤を配合することができ
る。さらに、粉末形状や繊維形状の金属やセラミック
ス、具体的には、銀、銅、金、酸化アルミニウム、酸化
マグネシウム、窒化アルミニウム、炭化ケイ素などや金
属被覆樹脂などの従来の熱伝導性接着剤に使用されてい
る充填剤や、強磁性体を被覆していない通常の炭素繊維
などを併用することも可能である。また、接着剤の粘度
を低下させるためには、揮発性の有機溶剤や反応性可塑
剤を添加すると効果的である。
Further, the heat conductive adhesive of the present invention includes a thixotropic agent, a dispersant, a curing agent, a curing accelerator,
Known additives such as a retarder, a tackifier, a plasticizer, a flame retardant, an antioxidant, a stabilizer, and a colorant can be added. In addition, it is used for conventional heat conductive adhesives such as powder and fiber shaped metals and ceramics, specifically silver, copper, gold, aluminum oxide, magnesium oxide, aluminum nitride, silicon carbide, and metal-coated resins. It is also possible to use a filler that has been used or a normal carbon fiber that is not coated with a ferromagnetic material. In order to reduce the viscosity of the adhesive, it is effective to add a volatile organic solvent or a reactive plasticizer.

【0018】本発明の接着方法は、被着体間に、強磁性
体を被覆した炭素繊維と接着性高分子とを配合してなる
熱伝導性接着剤を介在させ、外部磁場によって炭素繊維
を一定方向に配向させた状態で接着させることを特徴と
する接着方法である。外部磁場によって、接着剤中の強
磁性体を被覆した炭素繊維を磁力線に沿って配向させる
ことによって、配向した繊維の長さ方向の熱伝導性を向
上させることができる。被着体の間隙方向すなわち接着
剤の厚み方向に繊維を立てるように揃えて配向させるに
は、厚み方向に永久磁石や電磁石のN極とS極を対向さ
せ磁力線の向きが所望の繊維の配向方向に対応するよう
に設置する。
According to the bonding method of the present invention, a heat conductive adhesive obtained by blending a carbon fiber coated with a ferromagnetic material and an adhesive polymer is interposed between adherends, and the carbon fiber is applied by an external magnetic field. This is a bonding method characterized in that bonding is performed while being oriented in a certain direction. The heat conductivity in the length direction of the oriented fiber can be improved by orienting the carbon fiber coated with the ferromagnetic material in the adhesive along the lines of magnetic force by an external magnetic field. In order to align and orient the fibers in the gap direction of the adherend, that is, in the thickness direction of the adhesive, the N and S poles of the permanent magnet or electromagnet are opposed in the thickness direction, and the direction of the magnetic field lines is the desired fiber orientation. Install so that it corresponds to the direction.

【0019】一方、接着剤の面内方向の熱伝導性を向上
させる場合には、厚み方向に対して垂直の方向に磁石の
N極とS極を対向させれば繊維を面内方向に揃えて配向
させることができる。あるいは、磁石のN極とN極、ま
たはS極とS極を厚み方向に対向させても繊維を面内方
向に揃えることができる。また、磁石は必ずしも両側に
対向させる必要はなく、片側のみに配置しても接着剤中
の強磁性体を被覆した炭素繊維を配向させることが可能
である。外部磁場として使用する磁場発生手段として
は、永久磁石でも電磁石でも差し支えないけれども、磁
束密度としては200ガウス〜20000ガウスの範囲
が実用的で良好な配向が達成できる。
On the other hand, in order to improve the thermal conductivity of the adhesive in the in-plane direction, the fibers are aligned in the in-plane direction by facing the N pole and the S pole of the magnet in a direction perpendicular to the thickness direction. Orientation. Alternatively, the fibers can be aligned in the in-plane direction even when the north pole and the north pole or the south pole and the south pole of the magnet are opposed to each other in the thickness direction. Further, the magnets do not necessarily have to be opposed to both sides, and even if they are arranged on only one side, the carbon fibers coated with the ferromagnetic material in the adhesive can be oriented. The magnetic field generating means used as the external magnetic field may be a permanent magnet or an electromagnet, but the magnetic flux density is practically 200 to 20,000 gauss, and a good orientation can be achieved.

【0020】[0020]

【発明の実施の形態】本発明の熱伝導性接着剤は、接着
性高分子中に所定量の強磁性体を被覆した炭素繊維を混
合して均一に分散させることによって製造することがで
きる。混合分散するときには、減圧あるいは加圧して混
入した気泡を除去する工程を加えることが好ましい。強
磁性体を被覆した炭素繊維は、接着性高分子に多量に配
合するほど接着剤の熱伝導率が大きくなるけれども、実
際には多量に充填すると接着剤としての粘度が高くなり
すぎたり混入した気泡が除去しにくいなどの不具合を生
じる場合がある。したがって、使用する強磁性体を被覆
した炭素繊維および接着性高分子や配合剤の種類、目的
とする最終製品の特性によって任意に決定することがで
きるけれども、熱伝導性接着剤中の強磁性体を被覆した
炭素繊維の配合率は、5〜90体積%、さらに好ましく
は10〜60体積%の範囲が実用的である。
BEST MODE FOR CARRYING OUT THE INVENTION The thermally conductive adhesive of the present invention can be produced by mixing carbon fibers coated with a predetermined amount of a ferromagnetic material in an adhesive polymer and uniformly dispersing them. When mixing and dispersing, it is preferable to add a step of removing air bubbles by reducing or applying pressure. The carbon fiber coated with a ferromagnetic material increases the thermal conductivity of the adhesive as it is added to the adhesive polymer in a large amount, but when filled in a large amount, the viscosity of the adhesive becomes too high or mixed. Problems such as difficulty in removing bubbles may occur. Therefore, although it can be arbitrarily determined according to the type of the carbon fiber coated with the ferromagnetic material, the adhesive polymer, the compounding agent, and the characteristics of the intended end product, the ferromagnetic material in the thermally conductive adhesive can be determined. The mixing ratio of the carbon fiber coated with is practically in the range of 5 to 90% by volume, more preferably 10 to 60% by volume.

【0021】電気絶縁性が要求される用途の場合には、
強磁性体を被覆した炭素繊維の最表面にさらに電気絶縁
性被覆層を製膜した炭素繊維を使用すれば良い。また、
少なくとも一方の被着体面にポリイミドやシリコーン、
ポリベンゾシクロブテン、ポリブタジエンなどの高分子
系の電気絶縁性層、あるいは酸化ケイ素や窒化ケイ素、
酸化アルミニウム、窒化アルミニウム、炭化ケイ素など
のセラミックス系の電気絶縁性層を形成してから、強磁
性体を被覆した炭素繊維と接着性高分子からなる熱伝導
性接着剤を介在させ、外部磁場によって強磁性体を被覆
した炭素繊維を一定方向に配向させた状態で接着させる
ことによっても電気絶縁性を要求される用途に適用でき
る。
For applications requiring electrical insulation,
It is sufficient to use a carbon fiber in which an electrically insulating coating layer is further formed on the outermost surface of the carbon fiber coated with the ferromagnetic material. Also,
Polyimide or silicone on at least one adherend surface,
Polymeric electrically insulating layer such as polybenzocyclobutene, polybutadiene, or silicon oxide or silicon nitride,
After forming a ceramic-based electrically insulating layer such as aluminum oxide, aluminum nitride, or silicon carbide, a thermal conductive adhesive consisting of a carbon fiber coated with a ferromagnetic material and an adhesive polymer is interposed, and an external magnetic field is applied. By bonding the carbon fiber coated with the ferromagnetic material in a state where the carbon fiber is oriented in a certain direction, the present invention can also be applied to applications requiring electrical insulation.

【0022】半導体素子と伝熱部材間に、本発明の強磁
性体を被覆した炭素繊維と接着性高分子とを配合してな
る熱伝導性接着剤を介在させ、外部磁場によって熱伝導
性接着剤中の強磁性体を被覆した炭素繊維を一定方向に
配向させた状態で接着させることによって図7-6のよ
うな本発明の半導体装置を製造することができる。な
お、熱伝導性接着剤はスクリーン印刷やパッド印刷、デ
ィスペンサー塗布、ポッティング、スプレー塗装などの
公知の方法によって被着体間に介在させることができ
る。伝熱部材としては、通常の放熱器や冷却器、ヒート
シンク、ヒートスプレッダー、ダイパッド、プリント基
板、冷却ファン、ヒートパイプ、筐体などが挙げられ
る。
A heat conductive adhesive comprising a carbon fiber coated with a ferromagnetic material of the present invention and an adhesive polymer is interposed between the semiconductor element and the heat transfer member, and the heat conductive adhesive is applied by an external magnetic field. The semiconductor device of the present invention as shown in FIG. 7-6 can be manufactured by bonding the carbon fibers coated with the ferromagnetic material in the agent while being oriented in a certain direction. The heat conductive adhesive can be interposed between the adherends by a known method such as screen printing, pad printing, dispenser application, potting, and spray coating. Examples of the heat transfer member include ordinary radiators and coolers, heat sinks, heat spreaders, die pads, printed boards, cooling fans, heat pipes, housings, and the like.

【0023】以下、実施例をあげて本発明をさらに詳細
に説明する。強磁性体を被覆した炭素繊維として、平均
直径10μm、平均長さ100μm、繊維方向の熱伝導
率が400W/mKのピッチ系黒鉛化炭素繊維Dに、無
電解メッキ法によってニッケルを膜厚0.2μm被覆
し、強磁性体を被覆した炭素繊維Aを調製した。同様
に、表1(図13)に記したピッチ系炭素繊維に強磁性
体としてニッケルあるいはコバルトを無電解メッキ法で
被覆して炭素繊維B、Cを調製した。
Hereinafter, the present invention will be described in more detail with reference to examples. As a carbon fiber coated with a ferromagnetic material, a pitch-based graphitized carbon fiber D having an average diameter of 10 μm, an average length of 100 μm, and a thermal conductivity of 400 W / mK in the fiber direction is coated with nickel by electroless plating to a film thickness of 0.1 μm. Carbon fiber A coated with 2 μm and coated with a ferromagnetic material was prepared. Similarly, the pitch-based carbon fibers shown in Table 1 (FIG. 13) were coated with nickel or cobalt as a ferromagnetic material by electroless plating to prepare carbon fibers B and C.

【0024】[0024]

【実施例1】強磁性体としてニッケルを被覆した炭素繊
維Aを15体積%と、アミン系硬化剤を含むビスフェノ
ールF型エポキシ樹脂製の接着性高分子85体積%を混
合して熱伝導性接着剤を調製した。アルミニウム製の厚
み1mm、縦20mm、横20mmの板状の金型内に調
製した熱伝導性接着剤を充填し、厚み方向に磁束密度6
000ガウスのN極とS極が対向する磁場雰囲気で加熱
硬化させた。硬化物の熱伝導率は1.4W/mKであっ
た。
EXAMPLE 1 A mixture of 15% by volume of carbon fiber A coated with nickel as a ferromagnetic material and 85% by volume of an adhesive polymer made of a bisphenol F type epoxy resin containing an amine-based curing agent was mixed by heat conduction. An agent was prepared. A 1 mm thick, 20 mm long, 20 mm wide plate-shaped mold made of aluminum is filled with the prepared heat conductive adhesive, and the magnetic flux density is 6 in the thickness direction.
It was cured by heating in a magnetic field atmosphere in which the N pole and the S pole of 000 Gauss faced each other. The thermal conductivity of the cured product was 1.4 W / mK.

【0025】[0025]

【実施例2〜12】実施例1と同様に、表2に記す配合
組成の強磁性体を被覆した炭素繊維および接着性高分子
からなる熱伝導性接着剤を調製し、アルミニウム製の厚
み1mm、縦20mm、横20mmの板状の金型内に充
填し、厚み方向に磁石のN極とS極が対向する表2の磁
束密度の磁場雰囲気で加熱硬化させた。硬化物の熱伝導
率を表2に記した。なお、表2の接着性高分子として用
いた材料は、エポキシはアミン系硬化剤を含むビスフェ
ノールF型エポキシ樹脂、シリコーンは付加型の2液性
シリコーンゴム、ポリイミドは加熱硬化型の液状ポリイ
ミド、アクリルはシアノアクリレート系接着剤である。
Examples 2 to 12 In the same manner as in Example 1, a heat conductive adhesive composed of a carbon fiber coated with a ferromagnetic material having the composition shown in Table 2 and an adhesive polymer was prepared. , 20 mm in length and 20 mm in width in a plate-shaped mold, and heat-cured in a magnetic field atmosphere having a magnetic flux density of Table 2 in which the north pole and the south pole of the magnet face each other in the thickness direction. Table 2 shows the thermal conductivity of the cured product. The materials used as the adhesive polymer in Table 2 were epoxy as bisphenol F epoxy resin containing an amine-based curing agent, silicone as an additional two-part silicone rubber, polyimide as a heat-curable liquid polyimide, and acrylic. Is a cyanoacrylate adhesive.

【0026】[0026]

【比較例1】表1の強磁性体を被覆していない炭素繊維
Dを15体積%、アミン系硬化剤を含むビスフェノール
F型エポキシ樹脂製の接着性高分子85体積%を混合し
て熱伝導性接着剤を調製した。アルミニウム製の厚み1
mm、縦20mm、横20mmの板状の金型内に充填し
て加熱硬化させた。硬化物の熱伝導率は0.8W/mK
であった。
COMPARATIVE EXAMPLE 1 A mixture of 15% by volume of carbon fiber D not coated with a ferromagnetic material shown in Table 1 and 85% by volume of an adhesive polymer made of a bisphenol F type epoxy resin containing an amine-based curing agent was mixed to conduct heat. An adhesive was prepared. Aluminum thickness 1
It was filled into a plate-shaped mold having a size of 20 mm, a length of 20 mm and a width of 20 mm, and was cured by heating. The thermal conductivity of the cured product is 0.8 W / mK
Met.

【0027】[0027]

【比較例2〜3】比較例1と同様に、表2に記す配合組
成の炭素繊維Dと接着性高分子からなる熱伝導性接着剤
を調製し、アルミニウム製の厚み1mm、縦20mm、
横20mmの板状の金型内に充填して加熱硬化させた。
硬化物の熱伝導率を表2に記した。
Comparative Examples 2 to 3 In the same manner as in Comparative Example 1, a heat conductive adhesive comprising a carbon fiber D having the composition shown in Table 2 and an adhesive polymer was prepared, and was made of aluminum having a thickness of 1 mm and a length of 20 mm.
It was filled in a plate-shaped mold having a width of 20 mm and cured by heating.
Table 2 shows the thermal conductivity of the cured product.

【0028】[0028]

【実施例13】図5-1に記すプリント基板1に実装し
たボールグリッドアレイ型の半導体パッケージ2上に本
発明の実施例10のシリコーン系熱伝導性接着剤3をデ
ィスペンサーで塗布した(図5-2)。図5-3のように
熱伝導性接着剤3の上部に放熱器4を配置して加圧し、
図5-4のように磁束密度6000ガウスの永久磁石1
1のN極とS極を対向させた状態で熱伝導性接着剤3を
加熱硬化させて半導体装置図5-5を調製した。この装
置の放熱器と発熱部となる半導体パッケージの面積比は
2:1であった。装置に通電して2分後と4分後の放熱
器4の温度分布をサーモビュアで観察した結果を図9に
記した。通電10分後の放熱器4の中央部の温度は38
℃であった。硬化した熱伝導性接着剤中の磁性体を被覆
した炭素繊維は図5-6のように厚み方向に揃って配向
していた。
Embodiment 13 The silicone-based thermally conductive adhesive 3 of Embodiment 10 of the present invention was applied on a ball grid array type semiconductor package 2 mounted on the printed circuit board 1 shown in FIG. 5-1 by a dispenser (FIG. 5). -2). As shown in FIG. 5-3, the radiator 4 is disposed on the heat conductive adhesive 3 and pressurized.
Permanent magnet 1 with magnetic flux density of 6000 gauss as shown in Fig.5-4
The semiconductor device FIG. 5-5 was prepared by heating and curing the heat conductive adhesive 3 with the N-pole and S-pole of No. 1 facing each other. The area ratio between the radiator of this device and the semiconductor package serving as the heat generating portion was 2: 1. FIG. 9 shows the results of observing the temperature distribution of the radiator 4 by a thermoviewer 2 minutes and 4 minutes after the power was supplied to the apparatus. The temperature at the center of the radiator 4 after 10 minutes of energization is 38
° C. The carbon fibers coated with the magnetic material in the cured heat conductive adhesive were oriented uniformly in the thickness direction as shown in FIG. 5-6.

【0029】[0029]

【比較例4】実施例13と同様に、プリント基板に実装
したボールグリッドアレイ型の半導体パッケージ上に表
2の比較例3のシリコーン系熱伝導接着剤を塗布した。
熱伝導性接着剤の上部に放熱器4を配置して加圧し、熱
伝導性接着剤を加熱硬化させて半導体装置を製造した。
実施例13と同様に、装置に通電して2分後と4分後の
放熱器4の温度分布をサーモビュアで観察した結果を図
10に記した。通電10分後の放熱器4の中央部の温度
は61℃であった。硬化した熱伝導性接着剤中の炭素繊
維は図6のようにランダムに分散していた。
Comparative Example 4 In the same manner as in Example 13, the silicone-based heat conductive adhesive of Comparative Example 3 in Table 2 was applied to a ball grid array type semiconductor package mounted on a printed circuit board.
The radiator 4 was arranged above the heat conductive adhesive and pressurized, and the heat conductive adhesive was heated and cured to manufacture a semiconductor device.
As in Example 13, the results of observing the temperature distribution of the radiator 4 with a thermoviewer 2 minutes and 4 minutes after energizing the device are shown in FIG. The temperature at the center of the radiator 4 10 minutes after energization was 61 ° C. The carbon fibers in the cured thermally conductive adhesive were randomly dispersed as shown in FIG.

【0030】[0030]

【実施例14】図7-1に記すリードフレーム6のダイ
パッド7上に、本発明の実施例7のエポキシ系熱伝導性
接着剤3をスクリーン印刷した(図7-1)。図7-2の
ように熱伝導性接着剤3の上部に半導体チップ8を配置
して加圧し、図7-3のように磁束密度6000ガウス
の永久磁石11のN極とS極を対向させた状態で熱伝導
性接着剤3を加熱硬化させた。さらにボンディングワイ
ヤー9で半導体チップ8の電極部とリードフレーム11
のリード部を電気的に接続し(図7-4)、エポキシ系
封止剤10でトランスファーモールドして半導体装置図
7-5を製造した。装置に通電して2分後と4分後のダ
イパッド7の温度分布をサーモビュアで観察した結果を
図11に記した。通電10分後のダイパッド7の中央部
の温度は43℃であった。硬化した熱伝導性接着剤中の
磁性体を被覆した炭素繊維は図7-6のように厚み方向
に揃って配向していた。
Embodiment 14 The epoxy-based heat conductive adhesive 3 of Embodiment 7 of the present invention was screen-printed on the die pad 7 of the lead frame 6 shown in FIG. 7-1 (FIG. 7-1). As shown in FIG. 7-2, the semiconductor chip 8 is arranged on the heat conductive adhesive 3 and pressurized, and the N pole and the S pole of the permanent magnet 11 having a magnetic flux density of 6000 gauss are opposed as shown in FIG. 7-3. In this state, the heat conductive adhesive 3 was cured by heating. Further, the bonding wire 9 connects the electrode portion of the semiconductor chip 8 to the lead frame 11.
Were electrically connected (FIG. 7-4) and transfer-molded with an epoxy-based sealant 10 to produce a semiconductor device shown in FIG. 7-5. FIG. 11 shows the results of observing the temperature distribution of the die pad 7 with a thermoviewer 2 minutes and 4 minutes after the power was supplied to the apparatus. The temperature at the center of the die pad 7 after 10 minutes from the energization was 43 ° C. The carbon fibers coated with the magnetic substance in the cured heat conductive adhesive were aligned in the thickness direction as shown in FIG. 7-6.

【0031】[0031]

【比較例5】実施例14と同様に、リードフレームのダ
イパッド上に表2の比較例3のエポキシ系熱伝導接着剤
をスクリーン印刷した。熱伝導性接着剤の上部に半導体
チップを配置して加圧し、熱伝導性接着剤を加熱硬化さ
せて半導体装置を製造した。実施例14と同様に、装置
に通電して2分後と4分後のダイパッド7の温度分布を
サーモビュアで観察した結果を図12に記した。通電1
0分後のダイパッド7の中央部の温度は68℃であっ
た。硬化した熱伝導性接着剤中の炭素繊維は図8のよう
にランダムに分散していた。
Comparative Example 5 In the same manner as in Example 14, the epoxy-based heat conductive adhesive of Comparative Example 3 in Table 2 was screen-printed on a die pad of a lead frame. A semiconductor chip was placed on top of the heat conductive adhesive and pressurized, and the heat conductive adhesive was heated and cured to manufacture a semiconductor device. As in Example 14, the result of observing the temperature distribution of the die pad 7 with a thermoviewer 2 minutes and 4 minutes after energizing the device is shown in FIG. Energizing 1
The temperature at the center of the die pad 7 after 0 minute was 68 ° C. The carbon fibers in the cured thermally conductive adhesive were randomly dispersed as shown in FIG.

【0032】[0032]

【発明の効果】表2に記したように本発明の強磁性体を
被覆した炭素繊維と接着性高分子から構成される熱伝導
性接着剤は、熱伝導率が大きくて放熱性が良好である。
さらに、本発明の接着方法によって、発熱量が大きい半
導体パッケージとヒートシンクなどの放熱器との接着、
あるいは半導体チップとダイパッド部との接着に応用す
ることが可能になり、放熱特性に優れる有用な半導体装
置を提供することができる。
As shown in Table 2, the heat conductive adhesive of the present invention comprising a carbon fiber coated with a ferromagnetic material and an adhesive polymer has a large heat conductivity and good heat dissipation. is there.
Furthermore, by the bonding method of the present invention, bonding between a semiconductor package having a large heat value and a radiator such as a heat sink,
Alternatively, the present invention can be applied to adhesion between a semiconductor chip and a die pad portion, and a useful semiconductor device having excellent heat radiation characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱伝導性接着剤を使用した半導体装置
の例(ボールグリッドアレイ型半導体パッケージ2と放
熱器4の接着に使用)
FIG. 1 shows an example of a semiconductor device using the heat conductive adhesive of the present invention (used for bonding a ball grid array type semiconductor package 2 and a radiator 4).

【図2】本発明の熱伝導性接着剤を使用した半導体装置
の例(チップサイズ半導体パッケージ2とプリント基板
1の接着に使用)
FIG. 2 shows an example of a semiconductor device using the heat conductive adhesive of the present invention (used for bonding a chip size semiconductor package 2 and a printed circuit board 1).

【図3】本発明の熱伝導性接着剤を使用した半導体装置
の例(ピングリッドアレイ型半導体パッケージ2とヒー
トシンク5の接着に使用)
FIG. 3 shows an example of a semiconductor device using the heat conductive adhesive of the present invention (used for bonding a pin grid array type semiconductor package 2 and a heat sink 5).

【図4】本発明の熱伝導性接着剤を使用した半導体装置
の例(半導体チップ8とダイパッド7の接着に使用)
FIG. 4 shows an example of a semiconductor device using the heat conductive adhesive of the present invention (used for bonding a semiconductor chip 8 and a die pad 7).

【図5】図1の本発明の半導体装置を製造する方法およ
び炭素繊維の配向状態を示す概略図
FIG. 5 is a schematic view showing a method for manufacturing the semiconductor device of the present invention shown in FIG. 1 and an orientation state of carbon fibers.

【図6】従来の炭素繊維を含む熱伝導性接着剤を使用し
た半導体装置の例
FIG. 6 shows an example of a conventional semiconductor device using a thermally conductive adhesive containing carbon fibers.

【図7】図4の本発明の半導体装置を製造する方法およ
び炭素繊維の配向状態を示す概略図
FIG. 7 is a schematic view showing a method for manufacturing the semiconductor device of the present invention shown in FIG. 4 and an orientation state of carbon fibers.

【図8】従来の炭素繊維を含む熱伝導性接着剤を使用し
た半導体装置の例
FIG. 8 shows an example of a conventional semiconductor device using a thermally conductive adhesive containing carbon fibers.

【図9】実施例13の本発明の半導体装置の通電時の温
度分布を示す図
FIG. 9 is a diagram showing a temperature distribution during energization of the semiconductor device of the present invention of Example 13;

【図10】比較例4の半導体装置の通電時の温度分布を
示す図
FIG. 10 is a diagram showing a temperature distribution during energization of the semiconductor device of Comparative Example 4;

【図11】実施例14の本発明の半導体装置の通電時の
温度分布を示す図
FIG. 11 is a diagram showing a temperature distribution during energization of the semiconductor device of the present invention of Example 14;

【図12】比較例5の半導体装置の通電時の温度分布を
示す図
FIG. 12 is a diagram showing a temperature distribution during energization of the semiconductor device of Comparative Example 5;

【図13】表1、表2FIG. 13 and Table 2

【符号の説明】[Explanation of symbols]

1 プリント基板 2 半導体パッケージ 3 熱伝導性接着剤 4 放熱器 5 ヒートシンク 6 リードフレーム 7 ダイパッド 8 半導体チップ 9 ボンディングワイヤー 10 封止剤 11 磁石 12 強磁性体を被覆した炭素繊維 13 従来の炭素繊維 DESCRIPTION OF SYMBOLS 1 Printed circuit board 2 Semiconductor package 3 Heat conductive adhesive 4 Heat sink 5 Heat sink 6 Lead frame 7 Die pad 8 Semiconductor chip 9 Bonding wire 10 Sealant 11 Magnet 12 Ferromagnetic-coated carbon fiber 13 Conventional carbon fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 紀久夫 東京都港区浜松町2丁目4番1号世界貿易 センタービル エヌ・イーケムキャット株 式会社内 Fターム(参考) 4J040 DF041 EC001 EF001 EK031 HA026 HA066 HA076 KA04 NA20 PA32 5F036 AA01 BB21 BC05 BD01 BD21 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kikuo Fujiwara F-term (reference) 4J040 DF041 EC001 EF001 EK031 HA026 HA068 HA076 KA04 NA20 PA32 5F036 AA01 BB21 BC05 BD01 BD21

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】強磁性体を被覆した炭素繊維と接着性高分
子とを配合してなることを特徴とする熱伝導性接着剤
1. A thermally conductive adhesive comprising a carbon fiber coated with a ferromagnetic material and an adhesive polymer.
【請求項2】強磁性体がニッケル系、鉄系、フェライト
系、クロム系、コバルト系、マンガン系あるいは希土類
系より選ばれる少なくとも1種の金属、合金、化合物よ
りなる請求項1に記載の熱伝導性接着剤
2. The heat according to claim 1, wherein the ferromagnetic material comprises at least one metal, alloy or compound selected from nickel, iron, ferrite, chromium, cobalt, manganese and rare earths. Conductive adhesive
【請求項3】炭素繊維の平均直径が5〜20μm、平均
長さが20〜800μm、繊維長さ方向の熱伝導率が2
00W/mK以上である請求項1あるいは2に記載の熱
伝導性接着剤
3. The carbon fiber has an average diameter of 5 to 20 μm, an average length of 20 to 800 μm, and a thermal conductivity of 2 in the fiber length direction.
3. The heat conductive adhesive according to claim 1, wherein the heat conductive adhesive is at least 00 W / mK.
【請求項4】接着性高分子がエポキシ系、ポリイミド
系、アクリル系、ウレタン系あるいはシリコーン系より
選ばれる少なくとも1種の高分子である請求項1、2あ
るいは3に記載の熱伝導性接着剤
4. The heat conductive adhesive according to claim 1, wherein the adhesive polymer is at least one polymer selected from epoxy, polyimide, acrylic, urethane and silicone.
【請求項5】被着体間に、強磁性体を被覆した炭素繊維
と接着性高分子とを配合してなる熱伝導性接着剤を介在
させ、外部磁場によって炭素繊維を一定方向に配向させ
た状態で接着させることを特徴とする接着方法
5. A heat conductive adhesive comprising a mixture of a carbon fiber coated with a ferromagnetic material and an adhesive polymer is interposed between adherends, and the carbon fiber is oriented in a certain direction by an external magnetic field. Bonding method characterized in that the bonding is performed in a state of being attached
【請求項6】強磁性体が、ニッケル系、鉄系、フェライ
ト系、クロム系、コバルト系、マンガン系あるいは希土
類系より選ばれる少なくとも1種の金属、合金、化合物
よりなる請求項5に記載の接着方法
6. The ferromagnetic material according to claim 5, wherein the ferromagnetic material is at least one metal, alloy or compound selected from nickel, iron, ferrite, chromium, cobalt, manganese and rare earths. Bonding method
【請求項7】炭素繊維の平均直径が5〜20μm、平均
長さが20〜800μm、繊維長さ方向の熱伝導率が2
00W/mK以上である請求項5あるいは6に記載の接
着方法
7. The carbon fiber has an average diameter of 5 to 20 μm, an average length of 20 to 800 μm, and a thermal conductivity of 2 in the fiber length direction.
7. The bonding method according to claim 5, wherein the bonding method is not less than 00 W / mK.
【請求項8】接着性高分子が、エポキシ系、ポリイミド
系、アクリル系、ウレタン系あるいはシリコーン系より
選ばれる少なくとも1種の高分子である請求項5、6あ
るいは7に記載の接着方法
8. The bonding method according to claim 5, wherein the adhesive polymer is at least one polymer selected from epoxy, polyimide, acrylic, urethane and silicone.
【請求項9】少なくとも一方の被着体面に電気絶縁性層
を形成した請求項5、6、7あるいは8に記載の接着方
9. The bonding method according to claim 5, wherein an electrical insulating layer is formed on at least one of the adherend surfaces.
【請求項10】半導体素子と伝熱部材とを、強磁性体を
被覆した炭素繊維と接着性高分子とを配合してなる熱伝
導性接着剤を介在させ、外部磁場によって熱伝導性接着
剤中の強磁性体を被覆した炭素繊維を一定方向に配向さ
せた状態で接着させた構造を有することを特徴とする半
導体装置
10. A heat conductive adhesive comprising a semiconductor element and a heat transfer member interposed between a carbon fiber coated with a ferromagnetic material and an adhesive polymer, and the heat conductive adhesive is applied by an external magnetic field. A semiconductor device having a structure in which carbon fibers coated with a ferromagnetic substance in the inside are bonded in a state where they are oriented in a certain direction.
【請求項11】強磁性体がニッケル系、鉄系、フェライ
ト系、クロム系、コバルト系、マンガン系あるいは希土
類系より選ばれる少なくとも1種の金属、合金、化合物
よりなる請求項10に記載の半導体装置
11. The semiconductor according to claim 10, wherein the ferromagnetic material comprises at least one metal, alloy or compound selected from nickel, iron, ferrite, chromium, cobalt, manganese and rare earths. apparatus
【請求項12】炭素繊維の平均直径が5〜20μm、平
均長さが20〜800μm、繊維長さ方向の熱伝導率が
200W/mK以上である請求項10あるいは11に記
載の半導体装置
12. The semiconductor device according to claim 10, wherein the average diameter of the carbon fibers is 5 to 20 μm, the average length is 20 to 800 μm, and the thermal conductivity in the fiber length direction is 200 W / mK or more.
【請求項13】接着性高分子がエポキシ系、ポリイミド
系、アクリル系、ウレタン系あるいはシリコーン系より
選ばれる少なくとも1種の高分子である請求項10、1
1あるいは12に記載の半導体装置
13. The adhesive polymer according to claim 10, wherein the adhesive polymer is at least one polymer selected from the group consisting of epoxy, polyimide, acrylic, urethane and silicone.
13. The semiconductor device according to 1 or 12.
【請求項14】少なくとも一方の被着体面に電気絶縁性
層を形成した請求項10、11、12あるいは13に記
載の半導体装置
14. The semiconductor device according to claim 10, wherein an electrically insulating layer is formed on at least one of the adherend surfaces.
JP10371811A 1998-12-28 1998-12-28 Thermally conductive adhesive, method of adhesion and semiconductor device Pending JP2000191998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371811A JP2000191998A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive, method of adhesion and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371811A JP2000191998A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive, method of adhesion and semiconductor device

Publications (1)

Publication Number Publication Date
JP2000191998A true JP2000191998A (en) 2000-07-11

Family

ID=18499351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371811A Pending JP2000191998A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive, method of adhesion and semiconductor device

Country Status (1)

Country Link
JP (1) JP2000191998A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563198B1 (en) * 2001-08-01 2003-05-13 Lsi Logic Corporation Adhesive pad having EMC shielding characteristics
JP2006156720A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Mounting method of electronic component
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
JP2013506029A (en) * 2009-09-29 2013-02-21 ザ・ボーイング・カンパニー Adhesive compositions and methods of use and preparation of these adhesive compositions
CN105925243A (en) * 2016-05-23 2016-09-07 东莞珂洛赫慕电子材料科技有限公司 Room-temperature cured-type high thermal conductive flexible silica gel
KR101917081B1 (en) * 2015-03-24 2018-11-09 주식회사 엘지화학 Adhesive composition, adhesive film comprising the same, organic electronic device comprising the same and method for preparing the organic electronic device
KR20180122309A (en) * 2015-03-24 2018-11-12 주식회사 엘지화학 Adhesive composition, adhesive film comprising the same, organic electronic device comprising the same and method for preparing the organic electronic device
US10494556B2 (en) 2015-12-08 2019-12-03 Industrial Technology Research Institute Magnetic and thermally conductive material and thermally conductive and dielectric layer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754236A (en) * 1980-09-19 1982-03-31 Mitsubishi Electric Corp Manufacture for electric contact material
JPS62280240A (en) * 1986-05-28 1987-12-05 Kanegafuchi Chem Ind Co Ltd Conductive filler for synthetic resin
JPS63295751A (en) * 1987-05-27 1988-12-02 工業技術院長 Production of two-dimensional stretched staple fiber reinforced composite material
JPH04176611A (en) * 1990-11-13 1992-06-24 Toho Rayon Co Ltd Molding die made of fiber reinforced composite material
JPH05163619A (en) * 1991-12-18 1993-06-29 Mitsubishi Kasei Corp Carbon fiber and its production
JPH06501657A (en) * 1990-11-06 1994-02-24 レイケム・コーポレイション Sealing the substrate with a heat-recoverable article
JPH0688061A (en) * 1992-04-15 1994-03-29 Minnesota Mining & Mfg Co <3M> Thermally conductive, electrically insulating tape
JPH06299129A (en) * 1993-04-12 1994-10-25 Nec Corp Adhesive for electronic device
JPH09119024A (en) * 1995-08-18 1997-05-06 Mitsubishi Chem Corp Carbon fiber and its production
JP2000191987A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive film and semiconductive device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754236A (en) * 1980-09-19 1982-03-31 Mitsubishi Electric Corp Manufacture for electric contact material
JPS62280240A (en) * 1986-05-28 1987-12-05 Kanegafuchi Chem Ind Co Ltd Conductive filler for synthetic resin
JPS63295751A (en) * 1987-05-27 1988-12-02 工業技術院長 Production of two-dimensional stretched staple fiber reinforced composite material
JPH06501657A (en) * 1990-11-06 1994-02-24 レイケム・コーポレイション Sealing the substrate with a heat-recoverable article
JPH04176611A (en) * 1990-11-13 1992-06-24 Toho Rayon Co Ltd Molding die made of fiber reinforced composite material
JPH05163619A (en) * 1991-12-18 1993-06-29 Mitsubishi Kasei Corp Carbon fiber and its production
JPH0688061A (en) * 1992-04-15 1994-03-29 Minnesota Mining & Mfg Co <3M> Thermally conductive, electrically insulating tape
JPH06299129A (en) * 1993-04-12 1994-10-25 Nec Corp Adhesive for electronic device
JPH09119024A (en) * 1995-08-18 1997-05-06 Mitsubishi Chem Corp Carbon fiber and its production
JP2000191987A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive film and semiconductive device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563198B1 (en) * 2001-08-01 2003-05-13 Lsi Logic Corporation Adhesive pad having EMC shielding characteristics
JP2006156720A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Mounting method of electronic component
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
JP2013506029A (en) * 2009-09-29 2013-02-21 ザ・ボーイング・カンパニー Adhesive compositions and methods of use and preparation of these adhesive compositions
KR101917081B1 (en) * 2015-03-24 2018-11-09 주식회사 엘지화학 Adhesive composition, adhesive film comprising the same, organic electronic device comprising the same and method for preparing the organic electronic device
KR20180122309A (en) * 2015-03-24 2018-11-12 주식회사 엘지화학 Adhesive composition, adhesive film comprising the same, organic electronic device comprising the same and method for preparing the organic electronic device
KR102261689B1 (en) * 2015-03-24 2021-06-07 주식회사 엘지화학 Adhesive composition, adhesive film comprising the same, organic electronic device comprising the same and method for preparing the organic electronic device
US10494556B2 (en) 2015-12-08 2019-12-03 Industrial Technology Research Institute Magnetic and thermally conductive material and thermally conductive and dielectric layer
CN105925243A (en) * 2016-05-23 2016-09-07 东莞珂洛赫慕电子材料科技有限公司 Room-temperature cured-type high thermal conductive flexible silica gel

Similar Documents

Publication Publication Date Title
JP4528397B2 (en) Bonding method and electronic component
EP1184899A2 (en) Heat conductive adhesive film and manufacturing method thereof and electronic component
JP2000281995A (en) Thermally conductive adhesive film and semiconductor device
JP2000195998A (en) Heat conductive sheet, its manufacture, and semiconductor device
JP2000191987A (en) Thermally conductive adhesive film and semiconductive device
JP2002146672A (en) Heat conductive filler, heat conductive adhesive and semiconductor device
US6660566B2 (en) Heat conductive molded body and manufacturing method thereof and semiconductor device
US7264869B2 (en) Thermally conductive molded article and method of making the same
JP5011786B2 (en) High thermal conductivity insulator and manufacturing method thereof
US20070001292A1 (en) Heat radiation member and production method for the same
KR20190132395A (en) Heat transfer member and heat dissipation structure including the same
JP2002080617A (en) Thermoconductive sheet
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
JP5458926B2 (en) Flexible substrate, flexible substrate module, and manufacturing method thereof
KR20100133449A (en) Thermally enhanced electrically insulative adhesive paste
JP2000273426A (en) Thermal conductive adhesive, bonding and semiconductor device
JP2000191998A (en) Thermally conductive adhesive, method of adhesion and semiconductor device
KR970006227B1 (en) Thermally conductive ceramic/polymer composites
JP2002164481A (en) Heat conductive sheet
JP2001081418A (en) Heat conductive adhesive film and its production and electronic part
JP5736711B2 (en) Adhesive
JP4272767B2 (en) Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same
JP4709339B2 (en) Thermally conductive adhesive, bonding method, and electronic component
JP5646473B2 (en) Aluminum-graphite composite, heat dissipation component using the same, and LED light-emitting member
JP2021061441A (en) Pickup device, mounting device, pickup method, and mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100705