JP2000191987A - Thermally conductive adhesive film and semiconductive device - Google Patents

Thermally conductive adhesive film and semiconductive device

Info

Publication number
JP2000191987A
JP2000191987A JP10371812A JP37181298A JP2000191987A JP 2000191987 A JP2000191987 A JP 2000191987A JP 10371812 A JP10371812 A JP 10371812A JP 37181298 A JP37181298 A JP 37181298A JP 2000191987 A JP2000191987 A JP 2000191987A
Authority
JP
Japan
Prior art keywords
adhesive film
carbon fiber
conductive adhesive
ferromagnetic material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10371812A
Other languages
Japanese (ja)
Inventor
Masayuki Hida
雅之 飛田
Kikuo Fujiwara
紀久夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
NE Chemcat Corp
Original Assignee
Polymatech Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd, NE Chemcat Corp filed Critical Polymatech Co Ltd
Priority to JP10371812A priority Critical patent/JP2000191987A/en
Publication of JP2000191987A publication Critical patent/JP2000191987A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a thermally conductive adhesive film having good peel strength, excellent in heat-releasing property and useful for semiconductor devices by orientating carbon fiber to which a ferromagnetic material is applied in a definite direction and forming the carbon fiber into a sheet by using a solid-like adhesive. SOLUTION: A carbon fiber to which a ferromagnetic material comprising at least one kind of metal, alloy or compound selected from a group comprising nickel-based, iron-based, ferrite-based, chromium-based, cobalt-based, manganese-based or rare earth- based compound, e.g. nickel is applied in a range of film thickness of 0.01-5 μm by electroless plating method is orientated in definite direction and at least one side of carbon fiber having 10 μm to 2 mm thickness is subjected to electric insulating treatment by using a thermosetting solid-like adhesive in semi-cured state containing at least one kind of polymer selected from a group of epoxy-based, polyimide-based, acrylic, urethane-based, vinyl-based and silicone-based resins and thermoplastic elastomer to provide the objective thermally conductive adhesive film. A semiconductor element 8 and a heat transfer member such as die pad are bonded and integrated with the above adhesive film 3 to produce the objective semiconductive device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気製品に使用さ
れる半導体素子や電源、光源などの部品から発生する熱
を効果的に放散させる高い熱伝導性が要求される熱伝導
性接着フィルムおよび放熱性に優れる半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive adhesive film which is required to have a high heat conductivity for effectively dissipating heat generated from components such as a semiconductor element, a power supply, and a light source used in electric products. The present invention relates to a semiconductor device having excellent heat dissipation.

【0002】[0002]

【従来の技術】従来より、発熱する半導体素子や電子部
品と放熱させる伝熱部材あるいは絶縁性基板と金属箔や
電極などとを接合させる目的で各種の熱伝導性接着フィ
ルムが使用されている。これらの熱伝導性接着フィルム
には、熱伝導性を高めるために、銀、銅、金、アルミニ
ウム、ニッケルなどの熱伝導率の大きい金属や合金、化
合物、あるいは酸化アルミニウム、酸化マグネシウム、
酸化ケイ素、窒化ホウ素、窒化アルミニウム、窒化ケイ
素、炭化ケイ素などの電気絶縁性セラミックス製の粉末
状の充填剤、カーボンブラックやダイヤモンドなどの粉
粒体形状や繊維形状の熱伝導性充填剤が配合されてい
る。
2. Description of the Related Art Conventionally, various heat conductive adhesive films have been used for the purpose of bonding a semiconductor element or an electronic component that generates heat to a heat transfer member or an insulating substrate that dissipates heat to a metal foil or an electrode. These heat conductive adhesive films include, in order to increase the heat conductivity, silver, copper, gold, aluminum, nickel or other metals or alloys having a high heat conductivity, compounds, or aluminum oxide, magnesium oxide,
Powdered filler made of electrically insulating ceramics such as silicon oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, etc., and powdered or fibrous heat conductive fillers such as carbon black and diamond are compounded. ing.

【0003】熱伝導性充填材として炭素繊維を接着性高
分子に配合する熱伝導性接着剤は公知である。たとえ
ば、特開昭63−305520号公報では、炭素系の微
粉末や炭素繊維を充填したダイボンド材料が提唱されて
いる。特開平6−212137号公報では、熱伝導特性
を改良する目的で、特定構造の炭素繊維、すなわちメソ
フェーズピッチを基材とした3次元構造の炭素繊維を充
填した接着性材料が開示されている。また、特開平9−
324127号公報には、特定の高分子材料を熱処理し
て得られるグラファイト材を使用した半導体素子用ダイ
ボンド材が開示されている。
[0003] A heat conductive adhesive is known in which carbon fiber is blended with an adhesive polymer as a heat conductive filler. For example, Japanese Patent Application Laid-Open No. 63-305520 proposes a die bond material filled with carbon-based fine powder or carbon fiber. JP-A-6-212137 discloses an adhesive material filled with carbon fibers having a specific structure, that is, carbon fibers having a three-dimensional structure using a mesophase pitch as a base material, for the purpose of improving the heat conduction characteristics. Further, Japanese Unexamined Patent Publication No.
Japanese Patent Application Laid-Open No. 324127 discloses a die bonding material for a semiconductor element using a graphite material obtained by heat-treating a specific polymer material.

【0004】さらに、特開平5−209157号公報、
特開平6−299129号公報によれば、含有させる炭
素繊維や金属繊維の構造を、かたまり状や糸まり状、あ
るいは織布や不織布の形状に特定することによって放熱
特性を一層改善した電子デバイス用接着フィルムが提案
されている。一方、特開昭62−194653号公報、
特開昭63−62762号公報によれば、ニッケルなど
の磁性体粉末を含む接着剤を磁場中で厚み方向に配向さ
せて熱伝導率を向上させる接着方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 5-209157,
According to Japanese Patent Application Laid-Open No. 6-299129, for an electronic device, the heat radiation characteristics are further improved by specifying the structure of the carbon fiber or metal fiber to be contained in a lump-like or thread-like shape, or a woven or non-woven fabric. Adhesive films have been proposed. On the other hand, JP-A-62-194653,
JP-A-63-62762 discloses a bonding method in which an adhesive containing a magnetic substance powder such as nickel is oriented in a thickness direction in a magnetic field to improve the thermal conductivity.

【0005】[0005]

【発明が解決しようとする課題】しかし、最近の半導体
素子をはじめとする電子部品、電気製品の高密度化、高
性能化に伴う発熱量は著しく増大する傾向にあり、上述
したように様々な熱伝導性充填剤を応用した従来の改善
方法によっても十分に高い熱伝導特性を有する接着フィ
ルムが得られなかった。また、磁性体粉末を含む接着剤
を磁場中で厚み方向に配向させる接着方法は、通常の粉
末状あるいは針状のニッケル系や鉄系では、その素材自
体の熱伝導率が100W/mKにも満たないので、磁場
で配向させても接着剤として十分な高い熱伝導率を発現
することはできなかった。そして接着時に磁場を与える
方法は必ずしも簡便ではなかった。
However, the amount of heat generated by recent high-density and high-performance electronic components such as semiconductor devices and electric appliances tends to increase remarkably. An adhesive film having sufficiently high thermal conductivity could not be obtained by the conventional improvement method using a thermal conductive filler. In addition, a bonding method for orienting an adhesive containing a magnetic substance powder in a thickness direction in a magnetic field is as follows. In a normal powdery or needle-like nickel-based or iron-based material, the thermal conductivity of the material itself is 100 W / mK. Since it was less than that, it was not possible to develop a sufficiently high thermal conductivity as an adhesive even when oriented by a magnetic field. And the method of giving a magnetic field at the time of bonding was not always simple.

【0006】すなわち、より一層高度な熱伝導特性を有
する接着フィルムが開発されないために、半導体素子な
どの電子部品からの多大な発熱によって、電気化学的な
マイグレーションが加速されたり、配線やパッド部の腐
食が促進されたり、発生する熱応力によって構成材料に
クラックが生じたり、破壊したり、構成材料の接合部の
界面が剥離して電子部品の寿命を損なう様々なトラブル
が発生していた。
That is, since an adhesive film having even higher heat conduction properties has not been developed, electrochemical migration is accelerated due to a large amount of heat generated from electronic components such as semiconductor elements, and the formation of wiring and pad portions is accelerated. Corrosion has been promoted, and cracks have occurred or been broken in the constituent materials due to the generated thermal stress, and various troubles have occurred in which the interface of the joining portions of the constituent materials has separated and the life of the electronic component has been impaired.

【0007】[0007]

【課題を解決するための手段】本発明は、上述の課題を
解決する目的で、電気製品に使用される半導体素子や電
源、光源などの部品から発生する熱を効果的に放散させ
る熱伝導性接着フィルムおよび放熱特性に優れる半導体
装置を提供するものである。すなわち、本発明は、炭素
繊維と固体状接着剤とを配合してなる熱伝導性接着フィ
ルムにおいて、強磁性体を被覆した炭素繊維が一定方向
に配向していることを特徴とする熱伝導性接着フィルム
である。さらに本発明は、半導体素子と伝熱部材間を、
強磁性体を被覆した炭素繊維が一定方向に配向した熱伝
導性接着フィルムで接着したことを特徴とする半導体装
置である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a heat conductive material for effectively dissipating heat generated from components such as a semiconductor element, a power supply, and a light source used in electric appliances. An object of the present invention is to provide an adhesive film and a semiconductor device having excellent heat dissipation characteristics. That is, the present invention provides a heat conductive adhesive film comprising a carbon fiber and a solid adhesive, wherein the carbon fibers coated with the ferromagnetic material are oriented in a certain direction. It is an adhesive film. Further, the present invention provides a method for connecting a semiconductor element and a heat transfer member,
A semiconductor device characterized in that carbon fibers coated with a ferromagnetic material are adhered with a thermally conductive adhesive film oriented in a certain direction.

【0008】本発明で使用する強磁性体を被覆した炭素
繊維は、炭素繊維に強磁性体を無電解メッキ法、電解メ
ッキ法、真空蒸着やスパッタリングなどによる物理的蒸
着法、化学的蒸着法、塗装、浸漬、微細粒子を機械的に
炭素繊維表面に固着させるメカノケミカル法などの方法
によって調製することができる。強磁性体としては、ニ
ッケル系およびニッケル系合金、鉄系合金、窒化鉄系、
フェライト系、バリウムフェライト系、コバルト系合
金、マンガン系合金、ネオジウム/鉄/ホウ素系やサマ
リウム/コバルト系などの希土類系合金が用いられる。
なかでもニッケル系、鉄系、フェライト系、クロム系、
コバルト系、マンガン系あるいは希土類系より選ばれる
少なくとも1種の金属、合金、化合物よりなる強磁性体
が好ましい。
[0008] The carbon fiber coated with a ferromagnetic material used in the present invention is obtained by applying a ferromagnetic material to a carbon fiber by electroless plating, electrolytic plating, physical vapor deposition by vacuum vapor deposition or sputtering, chemical vapor deposition, or the like. It can be prepared by a method such as painting, dipping, or mechanochemical method of mechanically fixing fine particles to the carbon fiber surface. Ferromagnetic materials include nickel-based and nickel-based alloys, iron-based alloys, iron nitride-based,
Ferrite-based, barium ferrite-based, cobalt-based alloy, manganese-based alloy, and rare earth-based alloys such as neodymium / iron / boron-based and samarium / cobalt-based are used.
Among them, nickel, iron, ferrite, chromium,
A ferromagnetic material composed of at least one metal, alloy or compound selected from a cobalt-based, manganese-based or rare-earth-based compound is preferred.

【0009】被覆する強磁性体の膜厚については限定す
るものではないけれども、0.01μm〜5μmの範囲
が好ましい。0.01μmよりも薄いと外部磁場の磁力
で強磁性体を被覆した炭素繊維を配向させる場合に磁性
が不十分で繊維が配向しにくい。5μmを越えると磁力
で配向しやすくなるけれども、接着フィルムとして熱伝
導率が低下してしまうので好ましくない。さらに好まし
い強磁性体の膜厚は、0.05μm〜2μmの範囲であ
る。
The thickness of the ferromagnetic material to be coated is not limited, but is preferably in the range of 0.01 μm to 5 μm. If the thickness is less than 0.01 μm, the magnetism of the external magnetic field causes the carbon fibers coated with the ferromagnetic material to be oriented so that the magnetism is insufficient and the fibers are hardly oriented. If it exceeds 5 μm, it is easy to orient by magnetic force, but it is not preferable because the thermal conductivity of the adhesive film decreases. The more preferable thickness of the ferromagnetic material is in the range of 0.05 μm to 2 μm.

【0010】また、炭素繊維に強磁性体を被覆する前工
程として、あるいは強磁性体を被覆した後の炭素繊維の
表面に、銀、銅、金、酸化アルミニウム、酸化マグネシ
ウム、窒化アルミニウム、炭化ケイ素などの熱伝導率が
大きい公知の金属、合金、セラミックスなどを重ねるよ
うに被覆して熱伝導性を向上することもできる。被覆す
る強磁性体がニッケルなどの電気伝導性の場合には、酸
化アルミニウム、酸化マグネシウム、窒化アルミニウム
あるいは炭化ケイ素などの電気絶縁性のセラミックスや
有機系高分子材料を最表面に被覆することによって、本
発明の熱伝導性接着フィルムを電気絶縁性にすることが
可能である。
Further, as a pre-process of coating the carbon fiber with a ferromagnetic material, or on the surface of the carbon fiber after coating the ferromagnetic material, silver, copper, gold, aluminum oxide, magnesium oxide, aluminum nitride, silicon carbide, A known metal, alloy, ceramic, or the like having a high thermal conductivity such as, for example, may be coated so as to overlap to improve the thermal conductivity. When the ferromagnetic material to be coated is electrically conductive such as nickel, the outermost surface is coated with an electrically insulating ceramic or organic polymer material such as aluminum oxide, magnesium oxide, aluminum nitride, or silicon carbide. It is possible to make the heat conductive adhesive film of the present invention electrically insulating.

【0011】炭素繊維の種類や大きさ、形状については
特定するものではない。原料についてはPAN系よりも
メソフェーズピッチ系を主原料として溶融紡糸、不融
化、炭化などの処理工程後に2000〜3000℃ある
いは3000℃を越える高温で熱処理したグラファイト
構造の発達した炭素繊維の方が繊維長さ方向の熱伝導率
が大きくて好ましい。さらに気相成長法によって得られ
る炭素繊維も使用できる。この炭素繊維の繊維長さ方向
の熱伝導率は200W/mK以上が好適で、好ましくは
400W/mK以上、さらに好ましくは1000W/m
K以上である。
[0011] The type, size and shape of the carbon fiber are not specified. As for the raw material, the carbon fiber with a developed graphite structure, which is heat-treated at a high temperature exceeding 2000 to 3000 ° C. or 3000 ° C. after a process such as melt-spinning, infusibilization, and carbonization using a mesophase pitch system as a main material rather than a PAN system, is a fiber. It is preferable because the thermal conductivity in the length direction is large. Further, carbon fibers obtained by a vapor growth method can also be used. The thermal conductivity of this carbon fiber in the fiber length direction is preferably 200 W / mK or more, preferably 400 W / mK or more, and more preferably 1000 W / m.
K or more.

【0012】炭素繊維の平均直径としては5〜20μ
m、平均長さは10〜800μmの範囲が固体状接着剤
へ容易に充填でき、得られる熱伝導性接着フィルムの熱
伝導率が大きくなるので好ましい。平均直径が5μmよ
りも小さい場合や、平均長さが800μmよりも長い場
合は、固体状接着剤中に高濃度で配合することが困難に
なる。また、平均直径が20μmを越える炭素繊維は、
その生産性が悪化するので好ましくない。平均長さが1
0μmよりも短いとかさ比重が小さくなり、製造工程中
の取扱い性や作業性に問題が生じることがある。なお、
これらの炭素繊維表面は、あらかじめ電解酸化などによ
る公知の酸化処理を施しておいても差し支えない。
The average diameter of the carbon fiber is 5 to 20 μm.
m and an average length in the range of 10 to 800 μm are preferable because the solid adhesive can be easily filled and the heat conductivity of the obtained heat conductive adhesive film increases. When the average diameter is smaller than 5 μm or when the average length is longer than 800 μm, it is difficult to mix the solid adhesive with a high concentration. In addition, carbon fibers having an average diameter exceeding 20 μm
It is not preferable because the productivity is deteriorated. Average length is 1
When it is shorter than 0 μm, the bulk specific gravity becomes small, and problems may arise in handling and workability during the manufacturing process. In addition,
These carbon fiber surfaces may be previously subjected to a known oxidation treatment such as electrolytic oxidation.

【0013】強磁性体を被覆した炭素繊維を充填する固
体状接着剤としては、常温で固体状、あるいは加熱して
半硬化状態で固体状になるエポキシ系、ポリイミド系、
アクリル系、ポリ酢酸ビニルなどのビニル系、ウレタン
系、シリコーン系、オレフィン系、ポリアミド系、ポリ
アミドイミド系、フェノール系、アミノ系、ビスマレイ
ミド系、ポリイミドシリコーン系、飽和および不飽和ポ
リエステル系、ジアリルフタレート系、尿素系、メラミ
ン系、アルキッド系、ベンゾシクロブテン系、ポリブタ
ジエンやクロロプレンゴム、ニトリルゴムなどの合成ゴ
ム系、天然ゴム系、スチレン系熱可塑性エラストマーな
どの公知の樹脂やゴムからなる材料が好ましい。
Examples of the solid adhesive for filling the carbon fiber coated with the ferromagnetic material include epoxy-based, polyimide-based, which are solid at room temperature or solid when heated to a semi-cured state.
Acrylic, vinyl such as polyvinyl acetate, urethane, silicone, olefin, polyamide, polyamideimide, phenol, amino, bismaleimide, polyimide silicone, saturated and unsaturated polyester, diallyl phthalate Preferred are materials composed of known resins and rubbers such as synthetic rubbers, urea-based, melamine-based, alkyd-based, benzocyclobutene-based, synthetic rubber-based such as polybutadiene, chloroprene rubber, and nitrile rubber, natural rubber-based, and styrene-based thermoplastic elastomers. .

【0014】硬化形態については、熱硬化性、熱可塑
性、紫外線や可視光硬化性、常温硬化性、湿気硬化性な
ど公知のあらゆる硬化形態の接着性高分子を使用でき
る。なかでも、電子部品を構成する材料の各種金属やセ
ラミックス、プラスチックやゴム、エラストマーとの接
着性が良好なエポキシ系、ポリイミド系、アクリル系、
ウレタン系、シリコーン系より選ばれる少なくとも1種
の熱硬化性の固体状接着剤が好適である。さらに、固体
状接着剤が熱硬化性の場合には、強磁性体を被覆した炭
素繊維を充填して一定方向に配向させてからBステージ
などの半硬化状態にした熱伝導性接着フィルムが接着強
度や信頼性の点で好ましい。また、繊維の表面処理を目
的として、強磁性体を被覆した炭素繊維の表面を公知の
カップリング剤やサイジング剤で処理することによって
固体状接着剤との濡れ性を向上させたり充填性を改良し
た熱伝導性接着フィルムを得ることが可能である。
As for the curing form, any of known adhesive curing polymers such as thermosetting, thermoplastic, ultraviolet or visible light curable, room temperature curable, and moisture curable can be used. Among them, epoxy, polyimide, acrylic, etc., which have good adhesion to various metals and ceramics, plastics, rubber, and elastomers of materials that make up electronic components,
At least one thermosetting solid adhesive selected from urethane and silicone is preferred. Furthermore, when the solid adhesive is thermosetting, a heat conductive adhesive film which is filled with a carbon fiber coated with a ferromagnetic material, is oriented in a certain direction, and is in a semi-cured state such as a B stage is bonded. It is preferable in terms of strength and reliability. Also, for the purpose of surface treatment of the fiber, the surface of the carbon fiber coated with the ferromagnetic material is treated with a known coupling agent or sizing agent to improve the wettability with the solid adhesive or improve the filling property. It is possible to obtain a thermally conductive adhesive film that has been made.

【0015】本発明の熱伝導性接着フィルムには、溶
剤、チキソトロピー性付与剤、分散剤、硬化剤、硬化促
進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止
剤、安定剤、着色剤など公知の添加剤を配合することが
できる。特に固体状接着剤と強磁性体を被覆した炭素繊
維を配合した際の組成物の粘度が大きい場合には、溶剤
を添加して組成物の粘度を低減させることによって、強
磁性体を被覆した炭素繊維の磁場配向を促進させること
ができる。さらに、粉末形状や繊維形状の金属やセラミ
ックス、具体的には、銀、銅、金、酸化アルミニウム、
酸化マグネシウム、窒化アルミニウム、炭化ケイ素など
や金属被覆樹脂などの従来の熱伝導性接着剤に使用され
ている充填剤や、強磁性体を被覆していない通常の炭素
繊維などを併用することも可能である。
The heat conductive adhesive film of the present invention contains a solvent, a thixotropic agent, a dispersant, a curing agent, a curing accelerator, a retarder, a tackifier, a plasticizer, a flame retardant, an antioxidant, and a stabilizer. A known additive such as a coloring agent can be blended. Particularly when the viscosity of the composition when compounding the solid adhesive and the carbon fiber coated with the ferromagnetic material was large, the ferromagnetic material was coated by adding a solvent to reduce the viscosity of the composition. The magnetic field orientation of the carbon fiber can be promoted. In addition, powder and fiber shaped metals and ceramics, specifically, silver, copper, gold, aluminum oxide,
Fillers used in conventional thermal conductive adhesives such as magnesium oxide, aluminum nitride, silicon carbide, and metal-coated resins, as well as ordinary carbon fibers that are not coated with ferromagnetic materials can also be used together It is.

【0016】フィルムの膜厚については特定するもので
はないけれども、10μm〜2mmの範囲が好ましい。
配合する強磁性体を被覆した炭素繊維を厚み方向に配向
させる場合には、膜厚は用いる繊維の長さよりも厚くし
た方が好適である。
Although the thickness of the film is not specified, it is preferably in the range of 10 μm to 2 mm.
When the carbon fiber coated with the ferromagnetic material to be blended is oriented in the thickness direction, it is preferable that the film thickness be larger than the length of the fiber used.

【0017】[0017]

【発明の実施の形態】本発明の熱伝導性接着フィルムを
製造する方法としては、強磁性体を被覆した炭素繊維と
固体状接着剤を主成分として調製した組成物をポリエチ
レンテレフタレートシートやフッ素系シート上にバーコ
ーターやブレード、ロールなどでフィルム状に塗布し、
外部磁場によってフィルム組成物中の強磁性体を被覆し
た炭素繊維を一定方向に配向させ、半硬化状態まで加熱
し乾燥させる方法が好ましい。強磁性体を被覆した炭素
繊維と接着剤組成物が未硬化時には液状であっても、加
熱乾燥して半硬化状態で固体状にすることによってフィ
ルム化することができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a method for producing the heat conductive adhesive film of the present invention, a composition prepared mainly from a carbon fiber coated with a ferromagnetic material and a solid adhesive is used. Apply the film on the sheet with a bar coater, blade, roll, etc.
A method is preferred in which a carbon fiber coated with a ferromagnetic substance in a film composition is oriented in a certain direction by an external magnetic field, heated to a semi-cured state, and dried. Even if the carbon fiber coated with the ferromagnetic material and the adhesive composition are liquid when uncured, they can be formed into a film by heating and drying to form a solid in a semi-cured state.

【0018】次いで、未硬化時に外部磁場を与え接着フ
ィルム中の強磁性体を被覆した炭素繊維を磁力線に沿っ
て配向させることによって、繊維の配向方向に対応する
フィルムの熱伝導性を向上させることができる。被着体
の間隙方向すなわち接着フィルムの厚み方向に繊維を立
てるように揃えて配向させるには、厚み方向に永久磁石
や電磁石のN極とS極を対向させ磁力線の向きが所望の
繊維の配向方向に対応するように設置する。
Next, by applying an external magnetic field when uncured and orienting the carbon fibers coated with the ferromagnetic material in the adhesive film along the lines of magnetic force, the thermal conductivity of the film corresponding to the orientation direction of the fibers is improved. Can be. In order to align and orient the fibers in the gap direction of the adherend, that is, in the thickness direction of the adhesive film, the N and S poles of the permanent magnet or electromagnet are opposed in the thickness direction, and the direction of the magnetic force lines is the desired fiber orientation. Install so that it corresponds to the direction.

【0019】一方、接着フィルムの面内方向の熱伝導性
を向上させる場合には、厚み方向に対して垂直の方向に
磁石のN極とS極を対向させれば繊維を面内方向に揃え
て配向させることができる。あるいは、磁石のN極とN
極、またはS極とS極を厚み方向に対向させても繊維を
面内方向に揃えることができる。また、磁石については
必ずしも両側に対向させる必要はなく、片側のみに配置
した磁石によっても接着フィルム中の強磁性体を被覆し
た炭素繊維を配向させることが可能である。外部磁場と
して使用する磁場発生手段としては永久磁石でも電磁石
でも差し支えないけれども、磁束密度としては200ガ
ウス〜20000ガウスの範囲が実用的で良好な配向が
達成できる。
On the other hand, in order to improve the thermal conductivity in the in-plane direction of the adhesive film, the fibers are aligned in the in-plane direction by making the N and S poles of the magnet face in a direction perpendicular to the thickness direction. Orientation. Alternatively, the N pole of the magnet and the N
Even when the poles or the S poles and the S poles face each other in the thickness direction, the fibers can be aligned in the in-plane direction. It is not always necessary to oppose the magnets on both sides, and the magnets disposed on only one side can also orient the carbon fibers coated with the ferromagnetic material in the adhesive film. The magnetic field generating means used as the external magnetic field may be a permanent magnet or an electromagnet, but the magnetic flux density is practically 200 to 20,000 gauss, and a good orientation can be achieved.

【0020】強磁性体を被覆した炭素繊維は、接着フィ
ルム中に多量に充填するほど接着フィルムの熱伝導率が
大きくなる。けれども、実際には多量に充填すると混入
した気泡が除去しにくく、配向も困難になるなどの不具
合を生じる場合がある。従って、使用する強磁性体を被
覆した炭素繊維および固体状接着剤や溶剤、配合剤の種
類、目的とする最終製品の特性によって任意に決定する
ことができるけれども、熱伝導性接着フィルム中の強磁
性体を被覆した炭素繊維の充填率は、5〜90体積%、
さらに好ましくは10〜60体積%の範囲が実用的であ
る。
The larger the amount of the carbon fiber coated with the ferromagnetic material in the adhesive film, the higher the thermal conductivity of the adhesive film. However, in practice, if a large amount is filled, there may be problems such as difficulty in removing mixed air bubbles and difficult orientation. Therefore, although it can be arbitrarily determined according to the type of the carbon fiber coated with the ferromagnetic material, the solid adhesive and the solvent, the compounding agent, and the characteristics of the intended end product, the strength in the heat conductive adhesive film can be determined. The filling rate of the carbon fiber coated with the magnetic material is 5 to 90% by volume,
More preferably, the range of 10 to 60% by volume is practical.

【0021】電気絶縁性が要求される用途の場合には、
フィルムの少なくとも片面を電気絶縁性処理することに
よって対応できる。電気絶縁性処理の方法としては、導
電性がある強磁性体を被覆した炭素繊維を含まない組成
物から構成される1〜500μmの電気絶縁性接着剤層
を積層する方法が好ましい。さらに、その電気絶縁性接
着剤層には、酸化ケイ素や窒化ケイ素、酸化アルミニウ
ム、窒化アルミニウム、炭化ケイ素などの熱伝導率が大
きくて電気絶縁性の充填剤を配合し、接着層全体の熱伝
導率を大きく維持する方が望ましい。一方、強磁性体を
被覆した炭素繊維の最表面を電気絶縁性のセラミックス
や高分子からなる被覆した繊維を使用することによって
も電気絶縁性を保持できる。
For applications requiring electrical insulation,
This can be achieved by subjecting at least one surface of the film to an electrical insulating treatment. As a method of the electrical insulation treatment, a method of laminating an electrically insulative adhesive layer of 1 to 500 μm made of a composition not containing carbon fibers coated with a conductive ferromagnetic material is preferable. In addition, the electrically insulating adhesive layer contains a high thermal conductivity filler such as silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, silicon carbide, etc., so that the entire adhesive layer has a heat conductive property. It is desirable to keep the rate high. On the other hand, the electrical insulation can be maintained by using a fiber in which the outermost surface of the carbon fiber coated with a ferromagnetic material is made of a ceramic or polymer coated with an electrically insulating material.

【0022】半導体素子と伝熱部材間に、本発明の強磁
性体を被覆した炭素繊維が一定方向に配向した熱伝導性
接着フィルムを挟んで接着させることによって図1〜図
4のような本発明の半導体装置を製造することができ
る。本発明の熱伝導性接着フィルムは、フィルム中で強
磁性体を被覆した炭素繊維がすでに一定方向に配向して
いるので、接着時には外部磁場を与える必要はないけれ
ども、より繊維の配向を維持させる目的で加圧加熱など
接着時に外部磁場を与えても良い。半導体装置と伝熱部
材間を、強磁性体を被覆した炭素繊維が一定方向に配向
した熱伝導性接着フィルムで接着することによって本発
明の半導体装置を製造することができる。ここで、伝熱
部材としては、通常の放熱器や冷却器、ヒートシンク、
ヒートスプレッダー、ダイパッド、プリント基板、冷却
ファン、ヒートパイプ、筐体などが挙げられる。
1 to 4 by adhering a heat conductive adhesive film in which a carbon fiber coated with the ferromagnetic material of the present invention is oriented in a predetermined direction between a semiconductor element and a heat transfer member. The semiconductor device of the invention can be manufactured. In the heat conductive adhesive film of the present invention, since the carbon fibers coated with the ferromagnetic material in the film are already oriented in a certain direction, it is not necessary to apply an external magnetic field at the time of adhesion, but the orientation of the fibers is more maintained. For the purpose, an external magnetic field may be applied at the time of bonding such as heating under pressure. The semiconductor device of the present invention can be manufactured by bonding the semiconductor device and the heat transfer member with a thermally conductive adhesive film in which carbon fibers coated with a ferromagnetic material are oriented in a certain direction. Here, as the heat transfer member, a normal radiator, a cooler, a heat sink,
Examples include a heat spreader, a die pad, a printed circuit board, a cooling fan, a heat pipe, and a housing.

【0023】以下、実施例をあげて本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【実施例】(強磁性体を被覆した炭素繊維の調製) 強磁性体を被覆した炭素繊維として、平均直径10μ
m、平均長さ80μm、繊維方向の熱伝導率が400W
/mKのピッチ系黒鉛化炭素繊維Dに、無電解メッキ法
によってニッケルを膜厚0.2μm被覆し、強磁性体を
被覆した炭素繊維Aを調製した。同様に、表1(図13)
に記したピッチ系炭素繊維に強磁性体としてニッケルあ
るいはコバルトを無電解メッキ法で被覆して炭素繊維
B、Cを調製した。
Example (Preparation of Carbon Fiber Coated with Ferromagnetic Material) As a carbon fiber coated with a ferromagnetic material, an average diameter of 10 μm was used.
m, average length 80 μm, thermal conductivity 400 W in fiber direction
/ MK pitch-based graphitized carbon fiber D was coated with nickel to a thickness of 0.2 μm by electroless plating to prepare a carbon fiber A coated with a ferromagnetic material. Similarly, Table 1 (FIG. 13)
The carbon fibers B and C were prepared by coating the pitch-based carbon fiber described in (1) with nickel or cobalt as a ferromagnetic material by an electroless plating method.

【0024】[0024]

【実施例1】ビスフェノールA型エポキシ樹脂(油化シ
ェルエポキシ株式会社製:エピコート828)45重量
部、クレゾールノボラック型エポキシ樹脂(住友化学工
業株式会社製:ESCN001)15重量部、硬化剤と
してビスフェノールA型ノボラック樹脂(大日本インキ
化学工業株式会社製:LF2882)40重量部、硬化
促進剤として1−シアノエチル−2−メチルイミダゾー
ル(四国化成工業株式会社製:キュアゾール2PN−C
N)1重量部からなる接着剤の組成物(これをエポキシ
系固体接着剤とする)80体積%に同一重量部のメチル
エチルケトンを添加し、次いで強磁性体としてニッケル
を被覆した炭素繊維Aを20体積%を混合し3本ロール
で混練してから真空脱泡した。得られた組成物を厚さ1
00μmの片面離型処理したポリエチレンテレフタレー
トシート上にドクターブレード法で塗布し、図5-3の
ように厚み方向に磁束密度6000ガウスのN極とS極
が対向する磁場雰囲気で110℃で15分間加熱乾燥
し、厚みが80μmのBステージ状態の熱伝導性接着フ
ィルムを作製した。得られた熱伝導性接着フィルムの厚
み方向の熱伝導率および90度引き剥がし強度を測定し
て結果を表2に記した。熱伝導率はレーザーフラッシュ
法で測定した。90度引き剥がし強度は、JISC64
71に準じて厚さ35μmの銅箔と厚さ1.5mmのア
ルミニウム板との間に挟み、圧力2MPa、170℃、
30分間加圧加熱して接着した試料で測定した。
Example 1 45 parts by weight of a bisphenol A type epoxy resin (Epicoat 828 manufactured by Yuka Shell Epoxy), 15 parts by weight of a cresol novolak type epoxy resin (ESCN001 manufactured by Sumitomo Chemical Co., Ltd.), and bisphenol A as a curing agent 40 parts by weight of a novolak resin (manufactured by Dainippon Ink and Chemicals, Inc .: LF2882), 1-cyanoethyl-2-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd .: Cureazole 2PN-C) as a curing accelerator
N) The same weight part of methyl ethyl ketone was added to 80% by volume of an adhesive composition consisting of 1 weight part of an adhesive composition (this is referred to as an epoxy-based solid adhesive). % By volume and kneaded with three rolls, followed by vacuum defoaming. The resulting composition was applied to a thickness of 1
A doctor blade method is applied on a polyethylene terephthalate sheet having a single-sided release treatment of 00 μm, and as shown in FIG. The resultant was dried by heating to prepare a heat conductive adhesive film in a B-stage state having a thickness of 80 μm. The thermal conductivity and the peel strength at 90 degrees in the thickness direction of the obtained thermally conductive adhesive film were measured, and the results are shown in Table 2. Thermal conductivity was measured by the laser flash method. 90 degree peel strength is JISC64
Sandwiched between a copper foil having a thickness of 35 μm and an aluminum plate having a thickness of 1.5 mm according to 71, pressure 2 MPa, 170 ° C.,
The measurement was performed on a sample that was adhered by heating under pressure for 30 minutes.

【0025】[0025]

【実施例2】メチルメタクリレート30重量部、2−ヒ
ドロキシエチルメタクリレート40重量部、スチレン系
熱可塑性エラストマー(シェル化学株式会社製:クレイ
トンG1650)30重量部、硬化剤としてパーヘキサ
3M(日本油脂株式会社製)3重量部からなる固体状接
着剤の組成物(これをアクリル系固体接着剤とする)8
0体積%に同一重量部のトルエンとメチルエチルケトン
の混合溶媒を添加し、次いで強磁性体としてニッケルを
被覆した炭素繊維Bを20体積%を混合し3本ロールで
混練し真空脱泡した。得られた組成物を厚さ100μm
の片面離型処理したポリエチレンテレフタレートシート
上にバーコーター法で塗布し、厚み方向に磁束密度60
00ガウスのN極とS極が対向する磁場雰囲気で120
℃で20分間加熱乾燥し、厚みが80μmのBステージ
状態の熱伝導性接着フィルムを作製した。得られた熱伝
導性接着フィルムの熱伝導率および90度引き剥がし強
度を測定して結果を表2に記した。熱伝導率と90度引
き剥がし強度は実施例1と同様に評価した。
Example 2 30 parts by weight of methyl methacrylate, 40 parts by weight of 2-hydroxyethyl methacrylate, 30 parts by weight of a styrene-based thermoplastic elastomer (Clayton G1650, manufactured by Shell Chemical Co., Ltd.), and Perhexa 3M (manufactured by NOF Corporation) as a curing agent ) A solid adhesive composition comprising 3 parts by weight (this is referred to as an acrylic solid adhesive) 8
A mixed solvent of toluene and methyl ethyl ketone of the same weight part was added to 0% by volume, and then 20% by volume of nickel-coated carbon fiber B as a ferromagnetic material was mixed, kneaded with three rolls, and vacuum defoamed. The obtained composition is 100 μm thick.
Is applied on a polyethylene terephthalate sheet that has been release-treated on one side by a bar coater method, and a magnetic flux density of 60
120 gauss in a magnetic field environment where the north and south poles face each other
The resultant was dried by heating at 20 ° C. for 20 minutes to prepare a heat conductive adhesive film in a B-stage state having a thickness of 80 μm. The thermal conductivity and peel strength at 90 degrees of the obtained thermally conductive adhesive film were measured, and the results are shown in Table 2. The thermal conductivity and the 90-degree peel strength were evaluated in the same manner as in Example 1.

【0026】[0026]

【実施例3〜12】実施例1と同様に、表2に記す配合
組成の実施例1と同様のエポキシ系固体状接着剤あるい
は実施例2と同様のアクリル系固体接着剤と、強磁性体
を被覆した炭素繊維からなる組成物を使用し、表2に記
す磁束密度の条件下で熱伝導性接着フィルムを作製し
た。なお、表2に記載した固体接着剤のポリイミドはポ
リイミド系接着剤、ウレタンはウレタン系接着剤、シリ
コーンは付加型シリコーンゴム系接着剤を表すものであ
る。熱伝導率と90度引き剥がし強度は実施例1と同様
に評価した。
Examples 3 to 12 Similarly to Example 1, an epoxy solid adhesive similar to Example 1 or an acrylic solid adhesive similar to Example 2 having the composition shown in Table 2 and a ferromagnetic material A heat conductive adhesive film was produced under the conditions of magnetic flux density shown in Table 2 using a composition comprising carbon fibers coated with. In addition, polyimide of the solid adhesive shown in Table 2 represents a polyimide adhesive, urethane represents a urethane adhesive, and silicone represents an addition type silicone rubber adhesive. The thermal conductivity and the 90-degree peel strength were evaluated in the same manner as in Example 1.

【0027】[0027]

【比較例1】表1の強磁性体を被覆していない炭素繊維
Dを20体積%、実施例1と同様のエポキシ系固体状接
着剤80体積%からなる組成物を使用し、磁場を与えな
いほかは実施例1と同様に熱伝導性接着フィルムを作製
した。熱伝導率と90度引き剥がし強度は実施例1と同
様に評価した。
Comparative Example 1 A composition comprising 20% by volume of carbon fiber D not coated with a ferromagnetic material in Table 1 and 80% by volume of an epoxy solid adhesive similar to that of Example 1 was used, and a magnetic field was applied. A heat conductive adhesive film was produced in the same manner as in Example 1 except for the above. The thermal conductivity and the 90-degree peel strength were evaluated in the same manner as in Example 1.

【0028】[0028]

【比較例2〜4】比較例1と同様に、表2に記す配合組
成の実施例1と同様のエポキシ系固体状接着剤と炭素繊
維からなる組成物を調製し、比較例1と同様に磁場を与
えずに熱伝導性接着フィルムを作製した。熱伝導率と9
0度引き剥がし強度は実施例1と同様に評価した。
Comparative Examples 2 to 4 In the same manner as in Comparative Example 1, a composition comprising the same epoxy-based solid adhesive and carbon fiber as in Example 1 having the composition shown in Table 2 was prepared. A heat conductive adhesive film was produced without applying a magnetic field. Thermal conductivity and 9
The 0 degree peel strength was evaluated in the same manner as in Example 1.

【0029】[0029]

【実施例13】図6-1に記すプリント基板1に実装し
たボールグリッドアレイ型の半導体パッケージ2上に本
発明の実施例10の熱伝導性接着フィルム3を使用し
(図6-2)、図6-3のように上部に放熱器4を配置し
て加圧加熱して半導体装置図6-4、図6-5を作製し
た。この装置に通電し、放熱器4の2分後と4分後の温
度分布をサーモビュアで観察した結果を
Embodiment 13 The heat conductive adhesive film 3 of Embodiment 10 of the present invention is used on a ball grid array type semiconductor package 2 mounted on a printed board 1 shown in FIG. 6-1 (FIG. 6-2). As shown in FIG. 6-3, the radiator 4 was arranged on the upper part, and the semiconductor device was heated by pressurizing to produce semiconductor devices FIGS. 6-4 and 6-5. This device was energized and the temperature distribution of the radiator 4 after 2 minutes and 4 minutes was observed with a thermoviewer.

【図10】に記した。通電10分後の放熱器4の中央部
と外縁部の温度差は12℃で、中央部の温度は最高で3
8℃であった。これは、放熱器と半導体パッケージの間
に介在する熱伝導性接着フィルムの熱伝導特性が良好で
あることを意味している。
FIG. The temperature difference between the center and the outer edge of the radiator 4 after 10 minutes of energization is 12 ° C., and the temperature at the center is 3
8 ° C. This means that the heat conductive adhesive film interposed between the radiator and the semiconductor package has good heat conductive characteristics.

【0030】[0030]

【比較例5】実施例13と同様に、プリント基板に実装
したボールグリッドアレイ型の半導体パッケージ上に表
2の比較例1の熱伝導性接着フィルム3を使用し上部に
放熱器4を配置して加圧加熱して半導体装置図7を作製
した。実施例13と同様に、この装置に通電し、放熱器
4の2分後と4分後の温度分布をサーモビュアで観察し
た結果を図11に記した。通電10分後の放熱器4の中
央部と外縁部の温度差は23℃で、中央部の温度は最高
で61℃であった。
COMPARATIVE EXAMPLE 5 In the same manner as in Example 13, a heat radiator 4 was arranged on a ball grid array type semiconductor package mounted on a printed circuit board using the heat conductive adhesive film 3 of Comparative Example 1 in Table 2 above. The semiconductor device shown in FIG. As in Example 13, the device was energized, and the temperature distribution of the radiator 4 after 2 minutes and 4 minutes was observed with a thermoviewer. The results are shown in FIG. The temperature difference between the center and the outer edge of the radiator 4 after 23 minutes of energization was 23 ° C., and the temperature at the center was 61 ° C. at the maximum.

【0031】[0031]

【実施例14】図8-1、図8-2に示すようにリードフ
レーム6のダイパッド7と半導体チップ8の間に本発明
の実施例7の熱伝導性接着フィルム3を挟み図8-3に
記すように配置した磁石12で厚み方向に磁束密度20
00ガウスの磁場を与えながら加熱硬化させた。さらに
ボンディングワイヤー9で半導体チップ8の電極部とリ
ードフレーム11のリード部を電気的に接続し(図8-
4)、エポキシ系封止剤10でトランスファーモールド
して半導体装置図8-5、図8-6を製造した。この装置
に通電し、ダイパッド7中心部の温度の経時変化を測定
して図12に記した。また、通電10分後のダイパッド
7の中央部の温度は52℃であった。
Embodiment 14 As shown in FIGS. 8-1 and 8-2, the heat conductive adhesive film 3 of the embodiment 7 of the present invention is sandwiched between the die pad 7 of the lead frame 6 and the semiconductor chip 8. FIG. The magnetic flux density 20 in the thickness direction by the magnets 12 arranged as shown in FIG.
Heat curing was performed while applying a magnetic field of 00 Gauss. Further, the electrode portion of the semiconductor chip 8 and the lead portion of the lead frame 11 are electrically connected by the bonding wire 9 (FIG.
4) Transfer molding was performed with the epoxy-based sealant 10 to manufacture semiconductor devices shown in FIGS. 8-5 and 8-6. This apparatus was energized, and the change with time of the temperature at the center of the die pad 7 was measured and is shown in FIG. The temperature at the center of the die pad 7 after 52 minutes from the current supply was 52 ° C.

【0032】[0032]

【比較例6】実施例14と同様に、リードフレーム6の
ダイパッド7と半導体チップ8を、比較例4の接着フィ
ルム3で加熱硬化させた。さらにボンディングワイヤー
9で半導体チップ8の電極部とリードフレーム11のリ
ード部を電気的に接続し、エポキシ系封止剤10でトラ
ンスファーモールドして半導体装置図9を製造した。こ
の装置に通電し、ダイパッド7中心部の温度の経時変化
を測定して図12に記した。また、通電10分後のダイ
パッド7の中央部の温度は65℃であった。
Comparative Example 6 As in Example 14, the die pad 7 and the semiconductor chip 8 of the lead frame 6 were cured by heating with the adhesive film 3 of Comparative Example 4. Further, the electrode portion of the semiconductor chip 8 and the lead portion of the lead frame 11 were electrically connected with the bonding wire 9 and transfer-molded with the epoxy-based sealant 10 to manufacture a semiconductor device shown in FIG. This apparatus was energized, and the change with time of the temperature at the center of the die pad 7 was measured and is shown in FIG. The temperature at the center of the die pad 7 after 10 minutes of energization was 65 ° C.

【0033】[0033]

【発明の効果】表2に記したように本発明の強磁性体を
被覆した炭素繊維が一定方向に配向した熱伝導性接着フ
ィルムは、引き剥がし強度が良好で熱伝導率が大きく放
熱性に優れている。さらに、本発明の熱伝導性接着フィ
ルムを、発熱量が大きい半導体パッケージとヒートシン
クなどの放熱器との接着、あるいは半導体チップとダイ
パッド部との接着に応用して放熱特性に優れる有用な半
導体装置を提供することができる。
As shown in Table 2, the heat conductive adhesive film of the present invention in which the carbon fibers coated with the ferromagnetic material are oriented in a certain direction has good peeling strength, high heat conductivity, and high heat dissipation. Are better. Further, the heat conductive adhesive film of the present invention is applied to the bonding between a semiconductor package having a large amount of heat and a radiator such as a heat sink, or the bonding between a semiconductor chip and a die pad portion to provide a useful semiconductor device having excellent heat radiation characteristics. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱伝導性接着フィルムを使用した半導
体装置の例(ボールグリッドアレイ型半導体パッケージ
2と放熱器4の接着に使用)
FIG. 1 shows an example of a semiconductor device using the heat conductive adhesive film of the present invention (used for bonding a ball grid array type semiconductor package 2 and a radiator 4).

【図2】本発明の熱伝導性接着フィルムを使用した半導
体装置の例(チップサイズ半導体パッケージ2とプリン
ト基板1の接着に使用)
FIG. 2 shows an example of a semiconductor device using the heat conductive adhesive film of the present invention (used for bonding a chip size semiconductor package 2 and a printed circuit board 1).

【図3】本発明の熱伝導性接着フィルムを使用した半導
体装置の例(ピングリッドアレイ型半導体パッケージ2
とヒートシンク5の接着に使用)
FIG. 3 shows an example of a semiconductor device using the thermally conductive adhesive film of the present invention (pin grid array type semiconductor package 2).
(Used for bonding heat sink 5)

【図4】本発明の熱伝導性接着フィルムを使用した半導
体装置の例(半導体チップ8とダイパッド7の接着に使
用)
FIG. 4 shows an example of a semiconductor device using the heat conductive adhesive film of the present invention (used for bonding a semiconductor chip 8 and a die pad 7).

【図5】(1)〜(5)は本発明の熱伝導性接着フィル
ムを製造する方法、(6)は(5)の炭素繊維の配向状
態を示す概念図
FIGS. 5 (1) to (5) are conceptual diagrams showing a method for producing a heat conductive adhesive film of the present invention, and (6) is a conceptual diagram showing an orientation state of carbon fibers of (5).

【図6】(1)〜(4)は本発明の半導体装置を製造す
る方法、(5)は(4)の炭素繊維の配向状態を示す概
念図
FIGS. 6 (1) to (4) are conceptual diagrams showing a method for manufacturing a semiconductor device of the present invention, and (5) is a conceptual diagram showing an orientation state of carbon fibers in (4).

【図7】従来の炭素繊維を含む熱伝導性接着フィルムを
使用した半導体装置の例
FIG. 7 shows an example of a conventional semiconductor device using a thermally conductive adhesive film containing carbon fibers.

【図8】(1)〜(5)は本発明の半導体装置を製造す
る方法、(6)は(5)の炭素繊維の配向状態を示す概
念図
8 (1) to 8 (5) are conceptual diagrams showing a method for manufacturing a semiconductor device of the present invention, and FIG. 8 (6) is a conceptual diagram showing an orientation state of carbon fibers in (5).

【図9】従来の炭素繊維を含む熱伝導性接着フィルムを
使用した半導体装置の例
FIG. 9 shows an example of a conventional semiconductor device using a thermally conductive adhesive film containing carbon fibers.

【図10】実施例13の本発明の半導体装置の通電時の
温度分布を示す図
FIG. 10 is a diagram showing a temperature distribution during energization of the semiconductor device according to the thirteenth embodiment of the present invention;

【図11】比較例5の半導体装置の通電時の温度分布を
示す図
FIG. 11 is a diagram showing a temperature distribution during energization of the semiconductor device of Comparative Example 5;

【図12】実施例14および比較例6の半導体装置の温
度の経時変化を示す図
FIG. 12 is a graph showing changes over time in temperature of the semiconductor devices of Example 14 and Comparative Example 6.

【図13】表1FIG. 13 Table 1

【図14】表2FIG. 14 Table 2

【符号の説明】[Explanation of symbols]

1 プリント基板 2 半導体パッケージ 3 熱伝導性接着フィルム 4 放熱器 5 ヒートシンク 6 リードフレーム 7 ダイパッド 8 半導体チップ 9 ボンディングワイヤー 10 封止剤 11 ポリエチレンテレフタレートシート 12 磁石 13 強磁性体を被覆した炭素繊維 14 従来の炭素繊維 DESCRIPTION OF SYMBOLS 1 Printed board 2 Semiconductor package 3 Heat conductive adhesive film 4 Heat sink 5 Heat sink 6 Lead frame 7 Die pad 8 Semiconductor chip 9 Bonding wire 10 Sealant 11 Polyethylene terephthalate sheet 12 Magnet 13 Ferromagnetic coated carbon fiber 14 Conventional Carbon fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 紀久夫 東京都港区浜松町2丁目4番1号世界貿易 センタービル エヌ・イーケムキャット株 式会社内 Fターム(参考) 4F100 AA23B AB02B AB13B AB14B AB15B AB16B AB31B AD11A AK25A AK33A AK42C AK49A AK51A AK52A AK53A AL09A AR00B BA02 BA03 BA07 BA10A BA10C CB00A DG01A GB41 JB13A JB16A JG04B JG06B JJ01 4J004 AA05 AA10 AA11 AA13 AB05 BA02 4J040 DF021 DM011 EC001 EF001 EH031 EK001 HA026 HA076 HA136 JA09 JB02 KA04 LA08 LA09 NA20 5F036 AA01 BB21 BD21  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kikuo Fujiwara F-term (reference) 4F100 AA23B AB02B AB13B AB14B AB15B AB16B AB31B AD11A AK25A AK33A AK42C AK49A AK51A AK52A AK53A AL09A AR00B BA02 BA03 BA07 BA10A BA10C CB00A DG01A GB41 JB13A JB16A JG04B JG06B JJ01 4J004 AA05 AA10 AA11 AA13 AB05 BA02 4J040 DF021 DM011 EC001 EF001 EH031 EK001 HA026 HA076 HA136 JA09 JB02 KA04 LA08 LA09 NA20 5F036 AA01 BB21 BD21

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維と固体状接着剤を配合してなる熱
伝導性接着フィルムにおいて、強磁性体を被覆した炭素
繊維が一定方向に配向していることを特徴とする熱伝導
性接着フィルム
1. A heat conductive adhesive film comprising a carbon fiber and a solid adhesive, wherein the carbon fiber coated with a ferromagnetic material is oriented in a certain direction.
【請求項2】強磁性体がニッケル系、鉄系、フェライト
系、クロム系、コバルト系、マンガン系あるいは希土類
系より選ばれる少なくとも1種の金属、合金、化合物で
ある請求項1に記載の熱伝導性接着フィルム
2. The heat according to claim 1, wherein the ferromagnetic material is at least one metal, alloy, or compound selected from nickel, iron, ferrite, chromium, cobalt, manganese and rare earths. Conductive adhesive film
【請求項3】固体状接着剤がエポキシ系、ポリイミド
系、アクリル系、ウレタン系、ビニル系、シリコーン系
あるいは熱可塑性エラストマー系より選ばれる少なくと
も1種である請求項1あるいは2に記載の熱伝導性接着
フィルム
3. The heat conduction according to claim 1, wherein the solid adhesive is at least one selected from epoxy, polyimide, acrylic, urethane, vinyl, silicone and thermoplastic elastomer. Adhesive film
【請求項4】固体状接着剤が熱硬化性であり、かつ半硬
化状態である請求項1、2あるいは3に記載の熱伝導性
接着フィルム
4. The heat conductive adhesive film according to claim 1, wherein the solid adhesive is thermosetting and in a semi-cured state.
【請求項5】少なくとも片面を電気絶縁処理したことを
特徴とする請求項1、2、3あるいは4に記載の熱伝導
性接着フィルム
5. The heat conductive adhesive film according to claim 1, wherein at least one surface is subjected to an electrical insulation treatment.
【請求項6】半導体素子と伝熱部材間を、強磁性体を被
覆した炭素繊維が一定方向に配向した熱伝導性接着フィ
ルムで接着したことを特徴とする半導体装置
6. A semiconductor device wherein a carbon fiber coated with a ferromagnetic material is bonded between a semiconductor element and a heat transfer member with a thermally conductive adhesive film oriented in a predetermined direction.
【請求項7】強磁性体がニッケル系、鉄系、フェライト
系、クロム系、コバルト系、マンガン系あるいは希土類
系より選ばれる少なくとも1種の金属、合金、化合物で
ある請求項6に記載の半導体装置
7. The semiconductor according to claim 6, wherein the ferromagnetic material is at least one metal, alloy or compound selected from nickel, iron, ferrite, chromium, cobalt, manganese and rare earths. apparatus
JP10371812A 1998-12-28 1998-12-28 Thermally conductive adhesive film and semiconductive device Withdrawn JP2000191987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371812A JP2000191987A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive film and semiconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371812A JP2000191987A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive film and semiconductive device

Publications (1)

Publication Number Publication Date
JP2000191987A true JP2000191987A (en) 2000-07-11

Family

ID=18499352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371812A Withdrawn JP2000191987A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive film and semiconductive device

Country Status (1)

Country Link
JP (1) JP2000191987A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191998A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive, method of adhesion and semiconductor device
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet
JP2009010296A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Heat-conductive adhesive film and method for producing the same
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
WO2009119885A1 (en) * 2008-03-27 2009-10-01 リンテック株式会社 Adhesive composition, adhesive sheet, and adhesive molded product
JP2009244084A (en) * 2008-03-31 2009-10-22 Tokai Rubber Ind Ltd Apparatus and method for measuring thermal conductivity of thermally joined material
WO2011030876A1 (en) * 2009-09-14 2011-03-17 リンテック株式会社 Adhesive composition and adhesive sheet for slide rail, and method for fixing slide rail
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
WO2012101988A1 (en) * 2011-01-28 2012-08-02 日東電工株式会社 Heat-conductive film and production method therefor
WO2012111837A1 (en) * 2011-02-14 2012-08-23 Jnc Corporation High-performance thermal interface films and methods thereof
US20120218713A1 (en) * 2008-11-14 2012-08-30 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
JP2013079371A (en) * 2011-09-20 2013-05-02 Tokai Rubber Ind Ltd Elastomer molded body and method of producing the same
JP5603858B2 (en) * 2009-04-10 2014-10-08 ポリマテック・ジャパン株式会社 Thermally conductive bulk adhesive, thermally conductive adhesive sheet, and production method thereof
JP2015105282A (en) * 2013-11-28 2015-06-08 住友理工株式会社 Elastomer molded body and method for production thereof
JP2016154264A (en) * 2010-08-31 2016-08-25 ポリマテック・ジャパン株式会社 Heat conductive sheet
JP2016534899A (en) * 2013-08-02 2016-11-10 テーザ・ソシエタス・ヨーロピア Adhesive tape, especially for window bonding in mobile devices
CN106147645A (en) * 2015-05-15 2016-11-23 现代自动车株式会社 Electroconductive binder and the composite adhesive bonding method using electroconductive binder
WO2019151645A1 (en) * 2018-02-02 2019-08-08 주식회사 엘지화학 Adhesive film for semiconductor
US11479699B2 (en) 2018-02-02 2022-10-25 Lg Chem, Ltd. Adhesive film for semiconductor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191998A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive, method of adhesion and semiconductor device
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet
JP2009010296A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Heat-conductive adhesive film and method for producing the same
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
WO2009119885A1 (en) * 2008-03-27 2009-10-01 リンテック株式会社 Adhesive composition, adhesive sheet, and adhesive molded product
JP2009244084A (en) * 2008-03-31 2009-10-22 Tokai Rubber Ind Ltd Apparatus and method for measuring thermal conductivity of thermally joined material
US20120218713A1 (en) * 2008-11-14 2012-08-30 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
US8958207B2 (en) * 2008-11-14 2015-02-17 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
JP5603858B2 (en) * 2009-04-10 2014-10-08 ポリマテック・ジャパン株式会社 Thermally conductive bulk adhesive, thermally conductive adhesive sheet, and production method thereof
WO2011030876A1 (en) * 2009-09-14 2011-03-17 リンテック株式会社 Adhesive composition and adhesive sheet for slide rail, and method for fixing slide rail
JP2011057915A (en) * 2009-09-14 2011-03-24 Lintec Corp Adhesive composition for slide rail, adhesive sheet, and method for fixing slide rail
US9376601B2 (en) 2009-09-14 2016-06-28 Lintec Corporation Adhesive composition and adhesive sheet for slide rail, and method for fixing slide rail
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
JP2016154264A (en) * 2010-08-31 2016-08-25 ポリマテック・ジャパン株式会社 Heat conductive sheet
WO2012101988A1 (en) * 2011-01-28 2012-08-02 日東電工株式会社 Heat-conductive film and production method therefor
JP2014511405A (en) * 2011-02-14 2014-05-15 Jnc株式会社 High performance heat conductive film and method thereof
WO2012111837A1 (en) * 2011-02-14 2012-08-23 Jnc Corporation High-performance thermal interface films and methods thereof
JP2013079371A (en) * 2011-09-20 2013-05-02 Tokai Rubber Ind Ltd Elastomer molded body and method of producing the same
JP2016534899A (en) * 2013-08-02 2016-11-10 テーザ・ソシエタス・ヨーロピア Adhesive tape, especially for window bonding in mobile devices
US10232586B2 (en) 2013-08-02 2019-03-19 Tesa Se Pressure-sensitive adhesive tapes for the adhesive bonding of windows more particularly in mobile equipment
JP2015105282A (en) * 2013-11-28 2015-06-08 住友理工株式会社 Elastomer molded body and method for production thereof
CN106147645A (en) * 2015-05-15 2016-11-23 现代自动车株式会社 Electroconductive binder and the composite adhesive bonding method using electroconductive binder
US10351735B2 (en) * 2015-05-15 2019-07-16 Hyundai Motor Company Conductive adhesive and bonding method of composite material using the conductive adhesive
DE102015225077B4 (en) 2015-05-15 2022-12-08 Hyundai Motor Company Conductive adhesive and bonding method for a composite material using the conductive adhesive
WO2019151645A1 (en) * 2018-02-02 2019-08-08 주식회사 엘지화학 Adhesive film for semiconductor
US11479699B2 (en) 2018-02-02 2022-10-25 Lg Chem, Ltd. Adhesive film for semiconductor

Similar Documents

Publication Publication Date Title
JP2000281995A (en) Thermally conductive adhesive film and semiconductor device
JP2000191987A (en) Thermally conductive adhesive film and semiconductive device
JP4528397B2 (en) Bonding method and electronic component
EP1184899A2 (en) Heat conductive adhesive film and manufacturing method thereof and electronic component
JP7053579B2 (en) Heat transfer member and heat dissipation structure including it
JP2000195998A (en) Heat conductive sheet, its manufacture, and semiconductor device
US20070001292A1 (en) Heat radiation member and production method for the same
US6660566B2 (en) Heat conductive molded body and manufacturing method thereof and semiconductor device
JP2002121404A (en) Heat-conductive polymer sheet
JP2002146672A (en) Heat conductive filler, heat conductive adhesive and semiconductor device
JP2002080617A (en) Thermoconductive sheet
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
JP2007269924A (en) Highly heat conductive insulator and method for producing the same
JP2000239542A (en) Powder composition and its production, and heat- conductive substrate and it production
JP2011100959A (en) Flexible board, flexible board module, and method for manufacturing both
JP2000273426A (en) Thermal conductive adhesive, bonding and semiconductor device
JPWO2018235918A1 (en) Resin material, method for producing resin material, and laminate
JP2000191998A (en) Thermally conductive adhesive, method of adhesion and semiconductor device
JP2001081418A (en) Heat conductive adhesive film and its production and electronic part
JP4272767B2 (en) Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same
WO2020013333A1 (en) Pick-up device, mounting device, pick-up method, and mounting method
JP2007084704A (en) Resin composition and circuit board and package using the same
JP6821749B2 (en) Pickup device, mounting device, pickup method, mounting method
JP4709339B2 (en) Thermally conductive adhesive, bonding method, and electronic component
JP2013127041A (en) Anisotropic conductive adhesive, production method thereof, bonded structure and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100326