JP2000191987A - Thermally conductive adhesive film and semiconductive device - Google Patents

Thermally conductive adhesive film and semiconductive device

Info

Publication number
JP2000191987A
JP2000191987A JP37181298A JP37181298A JP2000191987A JP 2000191987 A JP2000191987 A JP 2000191987A JP 37181298 A JP37181298 A JP 37181298A JP 37181298 A JP37181298 A JP 37181298A JP 2000191987 A JP2000191987 A JP 2000191987A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
based
adhesive film
conductive adhesive
thermally conductive
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP37181298A
Other languages
Japanese (ja)
Inventor
Kikuo Fujiwara
Masayuki Hida
紀久夫 藤原
雅之 飛田
Original Assignee
Ne Chemcat Corp
Polymatech Co Ltd
エヌ・イーケムキャット株式会社
ポリマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To obtain a thermally conductive adhesive film having good peel strength, excellent in heat-releasing property and useful for semiconductor devices by orientating carbon fiber to which a ferromagnetic material is applied in a definite direction and forming the carbon fiber into a sheet by using a solid-like adhesive. SOLUTION: A carbon fiber to which a ferromagnetic material comprising at least one kind of metal, alloy or compound selected from a group comprising nickel-based, iron-based, ferrite-based, chromium-based, cobalt-based, manganese-based or rare earth- based compound, e.g. nickel is applied in a range of film thickness of 0.01-5 μm by electroless plating method is orientated in definite direction and at least one side of carbon fiber having 10 μm to 2 mm thickness is subjected to electric insulating treatment by using a thermosetting solid-like adhesive in semi-cured state containing at least one kind of polymer selected from a group of epoxy-based, polyimide-based, acrylic, urethane-based, vinyl-based and silicone-based resins and thermoplastic elastomer to provide the objective thermally conductive adhesive film. A semiconductor element 8 and a heat transfer member such as die pad are bonded and integrated with the above adhesive film 3 to produce the objective semiconductive device.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、電気製品に使用される半導体素子や電源、光源などの部品から発生する熱を効果的に放散させる高い熱伝導性が要求される熱伝導性接着フィルムおよび放熱性に優れる半導体装置に関する。 The present invention relates to a semiconductor device and power used in electric products, thermally conductive adhesive film effectively high thermal conductivity for dissipating heat generated from components such as the light source is required and a semiconductor device which is excellent in heat dissipation.

【0002】 [0002]

【従来の技術】従来より、発熱する半導体素子や電子部品と放熱させる伝熱部材あるいは絶縁性基板と金属箔や電極などとを接合させる目的で各種の熱伝導性接着フィルムが使用されている。 Conventionally, semiconductor devices and electronic parts and the heat transfer member or the insulating substrate and the metal foil and various thermally conductive adhesive film with the purpose of joining and the electrode to dissipate the heat generation is used. これらの熱伝導性接着フィルムには、熱伝導性を高めるために、銀、銅、金、アルミニウム、ニッケルなどの熱伝導率の大きい金属や合金、化合物、あるいは酸化アルミニウム、酸化マグネシウム、 These thermally-conductive adhesive film, in order to increase the thermal conductivity, silver, copper, gold, aluminum, large metal or alloy of the thermal conductivity, such as nickel, compounds, or aluminum oxide, magnesium oxide,
酸化ケイ素、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素などの電気絶縁性セラミックス製の粉末状の充填剤、カーボンブラックやダイヤモンドなどの粉粒体形状や繊維形状の熱伝導性充填剤が配合されている。 Silicon oxide, boron nitride, aluminum nitride, silicon nitride, electrically insulating ceramic powdery fillers such as silicon carbide, the heat conductive filler of the granular material shape or fiber shape, such as carbon black or diamond is formulated ing.

【0003】熱伝導性充填材として炭素繊維を接着性高分子に配合する熱伝導性接着剤は公知である。 [0003] thermally conductive adhesive to be blended in the adhesive polymer of carbon fibers as a thermally conductive filler are known. たとえば、特開昭63−305520号公報では、炭素系の微粉末や炭素繊維を充填したダイボンド材料が提唱されている。 For example, in JP-A-63-305520, die bonding materials have been proposed filled with fine powder or carbon fibers of the carbon-based. 特開平6−212137号公報では、熱伝導特性を改良する目的で、特定構造の炭素繊維、すなわちメソフェーズピッチを基材とした3次元構造の炭素繊維を充填した接着性材料が開示されている。 In JP-A 6-212137 discloses, for the purpose of improving the thermal conductivity, the carbon fiber having a specific structure, i.e. adhesive material filled with carbon fibers of the three-dimensional structure in which a mesophase pitch with a substrate is disclosed. また、特開平9− Further, JP-A-9-
324127号公報には、特定の高分子材料を熱処理して得られるグラファイト材を使用した半導体素子用ダイボンド材が開示されている。 The 324,127 discloses, a semiconductor device die bonding material using graphite material obtained by heat-treating a particular polymeric material is disclosed.

【0004】さらに、特開平5−209157号公報、 [0004] Further, JP-A-5-209157, JP-
特開平6−299129号公報によれば、含有させる炭素繊維や金属繊維の構造を、かたまり状や糸まり状、あるいは織布や不織布の形状に特定することによって放熱特性を一層改善した電子デバイス用接着フィルムが提案されている。 According to JP-A-6-299129, for electronic devices that the structure of the carbon fibers or metal fibers to be contained, the mass shape and yarn Mari shape, or a heat radiation characteristic is further improved by identifying the shape of the woven or nonwoven fabric adhesive film has been proposed. 一方、特開昭62−194653号公報、 On the other hand, JP-62-194653, JP-
特開昭63−62762号公報によれば、ニッケルなどの磁性体粉末を含む接着剤を磁場中で厚み方向に配向させて熱伝導率を向上させる接着方法が開示されている。 According to JP 63-62762, JP-bonding method an adhesive containing a magnetic powder such as nickel by orienting in the thickness direction in a magnetic field to improve the thermal conductivity is disclosed.

【0005】 [0005]

【発明が解決しようとする課題】しかし、最近の半導体素子をはじめとする電子部品、電気製品の高密度化、高性能化に伴う発熱量は著しく増大する傾向にあり、上述したように様々な熱伝導性充填剤を応用した従来の改善方法によっても十分に高い熱伝導特性を有する接着フィルムが得られなかった。 [SUMMARY OF THE INVENTION] However, the electronic components including the recent semiconductor devices, a high density of electrical products, heating value due to high performance tends to increase significantly, various as described above adhesive film having a sufficiently high thermal conductivity characteristics by conventional improved method applying a heat conductive filler was not obtained. また、磁性体粉末を含む接着剤を磁場中で厚み方向に配向させる接着方法は、通常の粉末状あるいは針状のニッケル系や鉄系では、その素材自体の熱伝導率が100W/mKにも満たないので、磁場で配向させても接着剤として十分な高い熱伝導率を発現することはできなかった。 The adhesive method of orienting in the thickness direction of an adhesive containing a magnetic powder in a magnetic field is in a normal powder or needle-like nickel-based and iron-based, in that the thermal conductivity of the material itself is 100W / mK since less than, be oriented in a magnetic field was not possible to express a sufficient high thermal conductivity as the adhesive. そして接着時に磁場を与える方法は必ずしも簡便ではなかった。 And method for providing a magnetic field at the time of bonding was not always easy.

【0006】すなわち、より一層高度な熱伝導特性を有する接着フィルムが開発されないために、半導体素子などの電子部品からの多大な発熱によって、電気化学的なマイグレーションが加速されたり、配線やパッド部の腐食が促進されたり、発生する熱応力によって構成材料にクラックが生じたり、破壊したり、構成材料の接合部の界面が剥離して電子部品の寿命を損なう様々なトラブルが発生していた。 Namely, since the adhesive film having a more sophisticated thermal conductivity characteristics are not developed, the tremendous heat generated from electronic components such as semiconductor devices, or electrochemical migration is accelerated, the wiring and the pad portion or corrosion is promoted, a crack in the material by the thermal stress or caused to occur, or destruction, various troubles impairing the service life of the electronic components the interfaces of the bonding portions of the material is peeled off has occurred.

【0007】 [0007]

【課題を解決するための手段】本発明は、上述の課題を解決する目的で、電気製品に使用される半導体素子や電源、光源などの部品から発生する熱を効果的に放散させる熱伝導性接着フィルムおよび放熱特性に優れる半導体装置を提供するものである。 The present invention SUMMARY OF], for the purpose of solving the above problem, a semiconductor device and power used in electric products, thermally conductive to effectively dissipate heat generated from components such as the light source there is provided a semiconductor device which is excellent in the adhesive film and heat dissipation characteristics. すなわち、本発明は、炭素繊維と固体状接着剤とを配合してなる熱伝導性接着フィルムにおいて、強磁性体を被覆した炭素繊維が一定方向に配向していることを特徴とする熱伝導性接着フィルムである。 That is, the present invention provides a thermally-conductive adhesive film obtained by blending the carbon fiber and solid-like adhesive, thermal conductivity, characterized in that carbon fibers coated with ferromagnetic material are oriented in a predetermined direction an adhesive film. さらに本発明は、半導体素子と伝熱部材間を、 The invention further between the semiconductor element and the heat transfer member,
強磁性体を被覆した炭素繊維が一定方向に配向した熱伝導性接着フィルムで接着したことを特徴とする半導体装置である。 A semiconductor device which is characterized in that carbon fibers coated with a ferromagnetic body is bonded with a thermally conductive adhesive film oriented in a certain direction.

【0008】本発明で使用する強磁性体を被覆した炭素繊維は、炭素繊維に強磁性体を無電解メッキ法、電解メッキ法、真空蒸着やスパッタリングなどによる物理的蒸着法、化学的蒸着法、塗装、浸漬、微細粒子を機械的に炭素繊維表面に固着させるメカノケミカル法などの方法によって調製することができる。 [0008] Carbon fibers coated with ferromagnetic material used in the present invention, an electroless plating method ferromagnetic carbon fiber, electrolytic plating, physical vapor deposition method such as vacuum deposition or sputtering, chemical vapor deposition, painting, dipping, can be prepared by methods such as mechanically mechanochemical method of fixing the carbon fiber surface of fine particles. 強磁性体としては、ニッケル系およびニッケル系合金、鉄系合金、窒化鉄系、 The ferromagnetic, nickel and nickel alloy, an iron alloy, iron nitride,
フェライト系、バリウムフェライト系、コバルト系合金、マンガン系合金、ネオジウム/鉄/ホウ素系やサマリウム/コバルト系などの希土類系合金が用いられる。 Ferritic, barium ferrite, cobalt-based alloys, manganese-based alloy, neodymium / iron / boron or samarium / rare earth alloys such as cobalt are used.
なかでもニッケル系、鉄系、フェライト系、クロム系、 Among them, nickel-based, iron-based, ferritic, chromium-based,
コバルト系、マンガン系あるいは希土類系より選ばれる少なくとも1種の金属、合金、化合物よりなる強磁性体が好ましい。 Cobalt, at least one metal selected from manganese or rare earth alloy, ferromagnetic material consists of those compounds are preferred.

【0009】被覆する強磁性体の膜厚については限定するものではないけれども、0.01μm〜5μmの範囲が好ましい。 [0009] While not limiting the thickness of the ferromagnetic material covering the range of 0.01μm~5μm is preferred. 0.01μmよりも薄いと外部磁場の磁力で強磁性体を被覆した炭素繊維を配向させる場合に磁性が不十分で繊維が配向しにくい。 Thin and magnetism is insufficient fiber hardly oriented when orienting the carbon fiber coated with ferromagnetic material in the magnetic force of the external magnetic field than 0.01 [mu] m. 5μmを越えると磁力で配向しやすくなるけれども、接着フィルムとして熱伝導率が低下してしまうので好ましくない。 Although easily oriented magnetically exceeds 5 [mu] m, unfavorably the thermal conductivity decreases as the adhesive film. さらに好ましい強磁性体の膜厚は、0.05μm〜2μmの範囲である。 Thickness of more preferred ferromagnetic material is in the range of 0.05Myuemu~2myuemu.

【0010】また、炭素繊維に強磁性体を被覆する前工程として、あるいは強磁性体を被覆した後の炭素繊維の表面に、銀、銅、金、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、炭化ケイ素などの熱伝導率が大きい公知の金属、合金、セラミックスなどを重ねるように被覆して熱伝導性を向上することもできる。 Further, as a step prior to coating the ferromagnetic carbon fiber, or on the surface of the carbon fiber after coating the ferromagnetic, silver, copper, gold, aluminum oxide, magnesium oxide, aluminum nitride, silicon carbide a high thermal conductivity known metal, such as, can also improve the alloy, and coated to overlap and ceramic thermal conductivity. 被覆する強磁性体がニッケルなどの電気伝導性の場合には、酸化アルミニウム、酸化マグネシウム、窒化アルミニウムあるいは炭化ケイ素などの電気絶縁性のセラミックスや有機系高分子材料を最表面に被覆することによって、本発明の熱伝導性接着フィルムを電気絶縁性にすることが可能である。 When the ferromagnetic material covering the electrical conductivity such as nickel, aluminum oxide, magnesium oxide, by coating on the outermost surface of the electrical insulating ceramic and an organic polymer material such as aluminum nitride or silicon carbide, a thermally conductive adhesive film of the present invention can be in electrical insulation.

【0011】炭素繊維の種類や大きさ、形状については特定するものではない。 [0011] Carbon fibers of type and size, and does not specify on the shape. 原料についてはPAN系よりもメソフェーズピッチ系を主原料として溶融紡糸、不融化、炭化などの処理工程後に2000〜3000℃あるいは3000℃を越える高温で熱処理したグラファイト構造の発達した炭素繊維の方が繊維長さ方向の熱伝導率が大きくて好ましい。 Melting raw material mesophase pitch than PAN-based for the main raw material spinning, infusible, towards the carbon fiber having a developed graphite structure was heat-treated at a high temperature exceeding 2000 to 3000 ° C. or 3000 ° C. after processing steps such as carbonized fibers the preferred length direction of the heat conductivity is large. さらに気相成長法によって得られる炭素繊維も使用できる。 Furthermore the carbon fiber obtained by a vapor deposition method may be used. この炭素繊維の繊維長さ方向の熱伝導率は200W/mK以上が好適で、好ましくは400W/mK以上、さらに好ましくは1000W/m Fiber length direction of the thermal conductivity of the carbon fiber is preferred over 200 W / mK, preferably 400W / mK or more, more preferably 1000W / m
K以上である。 It is K or more.

【0012】炭素繊維の平均直径としては5〜20μ [0012] as the average diameter of the carbon fiber is 5~20μ
m、平均長さは10〜800μmの範囲が固体状接着剤へ容易に充填でき、得られる熱伝導性接着フィルムの熱伝導率が大きくなるので好ましい。 m, the average length can easily fill a range of 10~800μm is the solid adhesive, the thermal conductivity of the heat conductive adhesive film obtained is increased preferably. 平均直径が5μmよりも小さい場合や、平均長さが800μmよりも長い場合は、固体状接着剤中に高濃度で配合することが困難になる。 And when the average diameter is less than 5 [mu] m, when the average length is longer than 800μm, it is difficult to formulate in high concentrations in the solid-like adhesive. また、平均直径が20μmを越える炭素繊維は、 Further, the carbon fiber having an average diameter exceeding 20μm, the
その生産性が悪化するので好ましくない。 It is not preferable because the productivity is deteriorated. 平均長さが1 The average length of 1
0μmよりも短いとかさ比重が小さくなり、製造工程中の取扱い性や作業性に問題が生じることがある。 The smaller the short and bulk specific gravity than 0μm, there may be a problem in the handling and workability during the manufacturing process occurs. なお、 It should be noted that,
これらの炭素繊維表面は、あらかじめ電解酸化などによる公知の酸化処理を施しておいても差し支えない。 These carbon fiber surface, no problem be previously subjected to a known oxidation treatment with such pre-electrolytic oxidation.

【0013】強磁性体を被覆した炭素繊維を充填する固体状接着剤としては、常温で固体状、あるいは加熱して半硬化状態で固体状になるエポキシ系、ポリイミド系、 [0013] As the solid adhesive that fills the carbon fibers coated ferromagnetic, solid, or heated to epoxy systems become solid at a semi-cured state at room temperature, polyimide,
アクリル系、ポリ酢酸ビニルなどのビニル系、ウレタン系、シリコーン系、オレフィン系、ポリアミド系、ポリアミドイミド系、フェノール系、アミノ系、ビスマレイミド系、ポリイミドシリコーン系、飽和および不飽和ポリエステル系、ジアリルフタレート系、尿素系、メラミン系、アルキッド系、ベンゾシクロブテン系、ポリブタジエンやクロロプレンゴム、ニトリルゴムなどの合成ゴム系、天然ゴム系、スチレン系熱可塑性エラストマーなどの公知の樹脂やゴムからなる材料が好ましい。 Acrylic, vinyl, such as polyvinyl acetate, urethane, silicone, olefin, polyamide, polyamideimide, phenol, amino-based, bismaleimide, polyimide silicone, saturated and unsaturated polyester, diallyl phthalate system, urea, melamine, alkyd, benzocyclobutene, polybutadiene or chloroprene rubber, synthetic rubber such as nitrile rubber, natural rubber, material made from known resin or rubber such as styrene-based thermoplastic elastomer is preferred .

【0014】硬化形態については、熱硬化性、熱可塑性、紫外線や可視光硬化性、常温硬化性、湿気硬化性など公知のあらゆる硬化形態の接着性高分子を使用できる。 [0014] For curing forms, thermoset, thermoplastic, ultraviolet or visible light curing, room temperature curable, the adhesive polymer of any known curing forms such as moisture-curing can be used. なかでも、電子部品を構成する材料の各種金属やセラミックス、プラスチックやゴム、エラストマーとの接着性が良好なエポキシ系、ポリイミド系、アクリル系、 Among them, various metals and ceramics of the material of the electronic component, plastic and rubber, adhesion good epoxy and elastomers, polyimide, acrylic,
ウレタン系、シリコーン系より選ばれる少なくとも1種の熱硬化性の固体状接着剤が好適である。 Urethane, at least one thermally curable solid adhesive selected from silicone is suitable. さらに、固体状接着剤が熱硬化性の場合には、強磁性体を被覆した炭素繊維を充填して一定方向に配向させてからBステージなどの半硬化状態にした熱伝導性接着フィルムが接着強度や信頼性の点で好ましい。 Furthermore, when the solid adhesive is a thermosetting, the thermally conductive adhesive film was half-cured state, such as B-stage from by orienting in a certain direction by filling carbon fibers coated ferromagnetic adhesion preferable in terms of strength and reliability. また、繊維の表面処理を目的として、強磁性体を被覆した炭素繊維の表面を公知のカップリング剤やサイジング剤で処理することによって固体状接着剤との濡れ性を向上させたり充填性を改良した熱伝導性接着フィルムを得ることが可能である。 Further, improvements for the purpose of surface treatment of the fibers, the filling property or improve the wettability of the solid adhesive by treating the surface of carbon fibers coated with a ferromagnetic material in a known coupling agent or sizing agent it is possible to obtain a thermally conductive adhesive film.

【0015】本発明の熱伝導性接着フィルムには、溶剤、チキソトロピー性付与剤、分散剤、硬化剤、硬化促進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤など公知の添加剤を配合することができる。 [0015] thermally conductive adhesive film of the present invention, solvents, thixotropic agents, dispersing agents, curing agents, curing accelerators, retarders, tackifiers, plasticizers, flame retardants, antioxidants, stabilizers It may be blended with known additives such as coloring agents. 特に固体状接着剤と強磁性体を被覆した炭素繊維を配合した際の組成物の粘度が大きい場合には、溶剤を添加して組成物の粘度を低減させることによって、強磁性体を被覆した炭素繊維の磁場配向を促進させることができる。 Particularly when the large viscosity of the composition when formulated with carbon fibers coated with solid adhesive and ferromagnetic body, by reducing the viscosity of the composition by addition of solvent, was coated ferromagnetic it can promote the magnetic orientation of the carbon fibers. さらに、粉末形状や繊維形状の金属やセラミックス、具体的には、銀、銅、金、酸化アルミニウム、 Furthermore, powder form or fiber form of the metal or ceramics, specifically, silver, copper, gold, aluminum oxide,
酸化マグネシウム、窒化アルミニウム、炭化ケイ素などや金属被覆樹脂などの従来の熱伝導性接着剤に使用されている充填剤や、強磁性体を被覆していない通常の炭素繊維などを併用することも可能である。 Magnesium oxide, aluminum nitride, conventional and thermally conductive adhesive filler used in such as silicon carbide, etc. and metal-coated resin, can also be used together, such as ordinary carbon fiber not covered with ferromagnetic material it is.

【0016】フィルムの膜厚については特定するものではないけれども、10μm〜2mmの範囲が好ましい。 [0016] While not intending to identify for the thickness of the film, the range of 10μm~2mm is preferred.
配合する強磁性体を被覆した炭素繊維を厚み方向に配向させる場合には、膜厚は用いる繊維の長さよりも厚くした方が好適である。 When orienting the carbon fiber ferromagnetic coated to blend in the thickness direction, the thickness is suitably better to thicker than the length of the fibers used.

【0017】 [0017]

【発明の実施の形態】本発明の熱伝導性接着フィルムを製造する方法としては、強磁性体を被覆した炭素繊維と固体状接着剤を主成分として調製した組成物をポリエチレンテレフタレートシートやフッ素系シート上にバーコーターやブレード、ロールなどでフィルム状に塗布し、 As a method for producing a thermally-conductive adhesive film of the embodiment of the present invention include polyethylene terephthalate sheets or fluorine the composition prepared as a main component of carbon fiber and solid-like adhesive coated ferromagnetic applying a bar coater or a blade, roll or the like into a film on a sheet,
外部磁場によってフィルム組成物中の強磁性体を被覆した炭素繊維を一定方向に配向させ、半硬化状態まで加熱し乾燥させる方法が好ましい。 Carbon fibers coated with ferromagnetic material in the film composition by an external magnetic field is oriented in a certain direction, a method of drying by heating to a semi-cured state is preferred. 強磁性体を被覆した炭素繊維と接着剤組成物が未硬化時には液状であっても、加熱乾燥して半硬化状態で固体状にすることによってフィルム化することができる。 Also the adhesive composition and carbon fibers coated with a ferromagnetic body is a liquid at the time of the uncured, it may be a film by the solid dried by heating in a semi-cured state.

【0018】次いで、未硬化時に外部磁場を与え接着フィルム中の強磁性体を被覆した炭素繊維を磁力線に沿って配向させることによって、繊維の配向方向に対応するフィルムの熱伝導性を向上させることができる。 [0018] Then, by orienting the carbon fiber ferromagnetic member was coated in the adhesive film applied external magnetic field when uncured along magnetic field lines, to improve the thermal conductivity of the film corresponding to the orientation direction of the fibers can. 被着体の間隙方向すなわち接着フィルムの厚み方向に繊維を立てるように揃えて配向させるには、厚み方向に永久磁石や電磁石のN極とS極を対向させ磁力線の向きが所望の繊維の配向方向に対応するように設置する。 To be oriented aligned to the thickness direction of the gap direction, that the adhesive film of the adherend make a fiber orientation direction of the magnetic field lines are opposed to the N pole and S pole of the permanent magnet or electromagnet in the thickness direction of the desired fiber placed so as to correspond to the direction.

【0019】一方、接着フィルムの面内方向の熱伝導性を向上させる場合には、厚み方向に対して垂直の方向に磁石のN極とS極を対向させれば繊維を面内方向に揃えて配向させることができる。 Meanwhile, in order to improve the in-plane direction of the thermally conductive adhesive film aligned fibers if caused to face the N pole and the S pole of the magnet in the direction perpendicular to the plane direction to the thickness direction it can be oriented Te. あるいは、磁石のN極とN Alternatively, N-pole of the magnet and N
極、またはS極とS極を厚み方向に対向させても繊維を面内方向に揃えることができる。 Pole, or S pole and S pole of fibers also are opposed in the thickness direction can be aligned in-plane direction. また、磁石については必ずしも両側に対向させる必要はなく、片側のみに配置した磁石によっても接着フィルム中の強磁性体を被覆した炭素繊維を配向させることが可能である。 Moreover, it is not always necessary to opposite sides for magnet, it is also possible to orient the carbon fibers coated with ferromagnetic material in the adhesive film by the magnets disposed only on one side. 外部磁場として使用する磁場発生手段としては永久磁石でも電磁石でも差し支えないけれども、磁束密度としては200ガウス〜20000ガウスの範囲が実用的で良好な配向が達成できる。 Although as the magnetic field generating means to be used as the external magnetic field no harm be a permanent magnet or an electromagnet, a range of 200 gauss ~20000 Gauss achievable practical good alignment as the magnetic flux density.

【0020】強磁性体を被覆した炭素繊維は、接着フィルム中に多量に充填するほど接着フィルムの熱伝導率が大きくなる。 The carbon fibers coated with ferromagnetic material, the thermal conductivity of the adhesive film as a large amount of filler in the adhesive film is increased. けれども、実際には多量に充填すると混入した気泡が除去しにくく、配向も困難になるなどの不具合を生じる場合がある。 But, in practice, difficult to remove the air bubbles mixed with is a large amount of filling, there may be problems, such as it becomes difficult orientation. 従って、使用する強磁性体を被覆した炭素繊維および固体状接着剤や溶剤、配合剤の種類、目的とする最終製品の特性によって任意に決定することができるけれども、熱伝導性接着フィルム中の強磁性体を被覆した炭素繊維の充填率は、5〜90体積%、 Thus, carbon fiber and solid-like adhesive or a solvent and the ferromagnetic covering to be used, the type of formulations, but can be arbitrarily determined by the properties of the final product of interest, the strength of the thermally-conductive adhesive film in filling of the carbon fiber coated with magnetic material, 5 to 90% by volume,
さらに好ましくは10〜60体積%の範囲が実用的である。 More preferably in the range of 10 to 60 vol% practical.

【0021】電気絶縁性が要求される用途の場合には、 [0021] For applications where electrical insulation is required,
フィルムの少なくとも片面を電気絶縁性処理することによって対応できる。 It can respond by treating electrically insulating at least one surface of the film. 電気絶縁性処理の方法としては、導電性がある強磁性体を被覆した炭素繊維を含まない組成物から構成される1〜500μmの電気絶縁性接着剤層を積層する方法が好ましい。 As a method for electrically insulating the process, a method of laminating an electrically insulating adhesive layer 1~500μm configured ferromagnetic material conductivity from the composition without the coated carbon fibers are preferred. さらに、その電気絶縁性接着剤層には、酸化ケイ素や窒化ケイ素、酸化アルミニウム、窒化アルミニウム、炭化ケイ素などの熱伝導率が大きくて電気絶縁性の充填剤を配合し、接着層全体の熱伝導率を大きく維持する方が望ましい。 Furthermore, the its electrically insulative adhesive layer, silicon or silicon nitride oxide, aluminum oxide, aluminum nitride, greater thermal conductivity, such as silicon carbide blended with electrically insulating filler, the overall adhesive layer thermal conductivity How to keep the rate increase is desirable. 一方、強磁性体を被覆した炭素繊維の最表面を電気絶縁性のセラミックスや高分子からなる被覆した繊維を使用することによっても電気絶縁性を保持できる。 On the other hand, it can hold an electrical insulating property even by the use of coated fibers comprising the outermost surface of the carbon fibers coated ferromagnetic an electrically insulating ceramic or a polymer.

【0022】半導体素子と伝熱部材間に、本発明の強磁性体を被覆した炭素繊維が一定方向に配向した熱伝導性接着フィルムを挟んで接着させることによって図1〜図4のような本発明の半導体装置を製造することができる。 [0022] between the semiconductor elements and the heat transfer member, the present as shown in FIG. 1 to FIG. 4 by the carbon fiber ferromagnetic coated of the present invention to adhere to sandwich the heat-conductive adhesive film oriented in a predetermined direction it is possible to manufacture the semiconductor device of the invention. 本発明の熱伝導性接着フィルムは、フィルム中で強磁性体を被覆した炭素繊維がすでに一定方向に配向しているので、接着時には外部磁場を与える必要はないけれども、より繊維の配向を維持させる目的で加圧加熱など接着時に外部磁場を与えても良い。 Thermally conductive adhesive film of the present invention, since carbon fibers coated ferromagnetic in the film is already oriented in a certain direction, but there is no need to provide an external magnetic field at the time of bonding, to maintain a more orientation of the fibers it may be given an external magnetic field at the time of bonding, such as the purpose pressurizing and heating. 半導体装置と伝熱部材間を、強磁性体を被覆した炭素繊維が一定方向に配向した熱伝導性接着フィルムで接着することによって本発明の半導体装置を製造することができる。 Between the semiconductor device and the heat transfer member may be carbon fibers coated with ferromagnetic material to produce a semiconductor device of the present invention by bonding a thermally conductive adhesive film oriented in a certain direction. ここで、伝熱部材としては、通常の放熱器や冷却器、ヒートシンク、 Here, the heat transfer member, the usual radiator and condenser, heat sink,
ヒートスプレッダー、ダイパッド、プリント基板、冷却ファン、ヒートパイプ、筐体などが挙げられる。 Heat spreader, die pad, printed circuit board, cooling fan, heat pipe, and a housing.

【0023】以下、実施例をあげて本発明をさらに詳細に説明する。 [0023] Hereinafter, the present invention will be described more specifically by way of Examples.

【実施例】(強磁性体を被覆した炭素繊維の調製) 強磁性体を被覆した炭素繊維として、平均直径10μ As EXAMPLES carbon fibers coated ferromagnetic (Preparation of carbon fibers coated ferromagnetic), the average diameter of 10μ
m、平均長さ80μm、繊維方向の熱伝導率が400W m, average length 80 [mu] m, the fiber direction of the thermal conductivity 400W
/mKのピッチ系黒鉛化炭素繊維Dに、無電解メッキ法によってニッケルを膜厚0.2μm被覆し、強磁性体を被覆した炭素繊維Aを調製した。 / Pitch based graphitized carbon fiber D of mK, nickel and the thickness 0.2μm coating by electroless plating, to prepare a carbon fiber A coated with ferromagnetic material. 同様に、表1(図13) Similarly, Table 1 (Fig. 13)
に記したピッチ系炭素繊維に強磁性体としてニッケルあるいはコバルトを無電解メッキ法で被覆して炭素繊維B、Cを調製した。 The nickel or cobalt coated with an electroless plating method as the ferromagnetic body in the pitch-based carbon fibers noted were prepared carbon fibers B, and C.

【0024】 [0024]

【実施例1】ビスフェノールA型エポキシ樹脂(油化シェルエポキシ株式会社製:エピコート828)45重量部、クレゾールノボラック型エポキシ樹脂(住友化学工業株式会社製:ESCN001)15重量部、硬化剤としてビスフェノールA型ノボラック樹脂(大日本インキ化学工業株式会社製:LF2882)40重量部、硬化促進剤として1−シアノエチル−2−メチルイミダゾール(四国化成工業株式会社製:キュアゾール2PN−C EXAMPLE 1 Bisphenol A type epoxy resin (Yuka Shell Epoxy Co., Ltd. Epikote 828) 45 parts by weight, cresol novolac type epoxy resin (manufactured by Sumitomo Chemical Co., Ltd.: ESCN001) 15 parts by weight, bisphenol A as a curing agent -type novolak resin (manufactured by DIC Corporation: LF2882) 40 parts by weight, as a curing accelerator 1-cyanoethyl-2-methylimidazole (manufactured by Shikoku Chemicals Corporation: Curezol 2PN-C
N)1重量部からなる接着剤の組成物(これをエポキシ系固体接着剤とする)80体積%に同一重量部のメチルエチルケトンを添加し、次いで強磁性体としてニッケルを被覆した炭素繊維Aを20体積%を混合し3本ロールで混練してから真空脱泡した。 The composition of the adhesive agent comprising N) 1 part by weight (referred to as epoxy-based solid adhesive) of methyl ethyl ketone was added in the same parts by weight of 80% by volume, then the carbon fibers A with nickel coated ferromagnetic body 20 was vacuum degassed after mixing with three rolls was mixed volume%. 得られた組成物を厚さ1 The thickness of the resulting composition is 1
00μmの片面離型処理したポリエチレンテレフタレートシート上にドクターブレード法で塗布し、図5-3のように厚み方向に磁束密度6000ガウスのN極とS極が対向する磁場雰囲気で110℃で15分間加熱乾燥し、厚みが80μmのBステージ状態の熱伝導性接着フィルムを作製した。 It was applied by a doctor blade method 00μm sided release-treated polyethylene terephthalate sheet, 15 minutes at 110 ° C. in a magnetic field atmosphere where N pole and S pole of the magnetic flux density 6000 Gauss in the thickness direction are opposed as shown in Fig. 5-3 heated and dried, the thickness is to prepare a thermally conductive adhesive film in the B stage state of 80 [mu] m. 得られた熱伝導性接着フィルムの厚み方向の熱伝導率および90度引き剥がし強度を測定して結果を表2に記した。 Results by measuring the thermal conductivity and 90 ° peel strength in the thickness direction of the obtained thermally conductive adhesive film noted in Table 2. 熱伝導率はレーザーフラッシュ法で測定した。 The thermal conductivity was measured by laser flash method. 90度引き剥がし強度は、JISC64 90 degrees peel strength, JISC64
71に準じて厚さ35μmの銅箔と厚さ1.5mmのアルミニウム板との間に挟み、圧力2MPa、170℃、 In accordance with 71 sandwiched between the aluminum plate between the copper foil and the thickness 1.5mm thickness 35 [mu] m, the pressure 2 MPa, 170 ° C.,
30分間加圧加熱して接着した試料で測定した。 It was measured by adhering the sample by heating for 30 minutes pressurized and.

【0025】 [0025]

【実施例2】メチルメタクリレート30重量部、2−ヒドロキシエチルメタクリレート40重量部、スチレン系熱可塑性エラストマー(シェル化学株式会社製:クレイトンG1650)30重量部、硬化剤としてパーヘキサ3M(日本油脂株式会社製)3重量部からなる固体状接着剤の組成物(これをアクリル系固体接着剤とする)8 Example 2 Methyl methacrylate 30 parts by weight, 40 parts by weight of 2-hydroxyethyl methacrylate, styrene-based thermoplastic elastomer (Shell Chemical Co., Ltd.: Kraton G1650) 30 parts by weight, Perhexa 3M as a curing agent (NOF Corporation ) solid adhesive composition comprising 3 parts by weight (referred to as acrylic solid adhesive) 8
0体積%に同一重量部のトルエンとメチルエチルケトンの混合溶媒を添加し、次いで強磁性体としてニッケルを被覆した炭素繊維Bを20体積%を混合し3本ロールで混練し真空脱泡した。 0 and% by volume of toluene are added and methyl ethyl ketone mixed solvent of the same parts, and then vacuum defoaming carbon fiber B coated with nickel was kneaded with three rolls by mixing 20 vol% ferromagnetic. 得られた組成物を厚さ100μm The thickness 100μm resulting composition
の片面離型処理したポリエチレンテレフタレートシート上にバーコーター法で塗布し、厚み方向に磁束密度60 It was applied by a bar coater method to one side release-treated polyethylene terephthalate sheet of flux density 60 in the thickness direction
00ガウスのN極とS極が対向する磁場雰囲気で120 00 120 in a magnetic field atmosphere where Gaussian N and S poles are opposed
℃で20分間加熱乾燥し、厚みが80μmのBステージ状態の熱伝導性接着フィルムを作製した。 ℃ in heated and dried for 20 minutes, the thickness was produced a thermally conductive adhesive film in the B stage state of 80 [mu] m. 得られた熱伝導性接着フィルムの熱伝導率および90度引き剥がし強度を測定して結果を表2に記した。 Results by measuring the thermal conductivity and 90 degrees peel strength of the resulting thermally-conductive adhesive film was noted in Table 2. 熱伝導率と90度引き剥がし強度は実施例1と同様に評価した。 Thermal conductivity and 90 degrees peel strength was evaluated in the same manner as in Example 1.

【0026】 [0026]

【実施例3〜12】実施例1と同様に、表2に記す配合組成の実施例1と同様のエポキシ系固体状接着剤あるいは実施例2と同様のアクリル系固体接着剤と、強磁性体を被覆した炭素繊維からなる組成物を使用し、表2に記す磁束密度の条件下で熱伝導性接着フィルムを作製した。 EXAMPLE 3-12 In the same manner as in Example 1, the same acrylic-based solid adhesives of Example 1 similar to epoxy-based solid-like adhesive or Example 2 of the formulation composition shown in Table 2, a ferromagnetic material use a composition comprising coated carbon fibers, to produce a thermally conductive adhesive film under the conditions of the magnetic flux density shown in Table 2. なお、表2に記載した固体接着剤のポリイミドはポリイミド系接着剤、ウレタンはウレタン系接着剤、シリコーンは付加型シリコーンゴム系接着剤を表すものである。 Incidentally, the polyimide of the solid adhesive described in Table 2 polyimide adhesive, urethane-urethane-based adhesive, silicone is representative of the addition type silicone rubber adhesive. 熱伝導率と90度引き剥がし強度は実施例1と同様に評価した。 Thermal conductivity and 90 degrees peel strength was evaluated in the same manner as in Example 1.

【0027】 [0027]

【比較例1】表1の強磁性体を被覆していない炭素繊維Dを20体積%、実施例1と同様のエポキシ系固体状接着剤80体積%からなる組成物を使用し、磁場を与えないほかは実施例1と同様に熱伝導性接着フィルムを作製した。 [Comparative Example 1] 20% by volume of carbon fiber D, not covered with ferromagnetic Table 1, using a composition composed of the same epoxy solid adhesive 80 vol% in Example 1, giving a magnetic field no choice was made a thermally conductive adhesive film as in example 1. 熱伝導率と90度引き剥がし強度は実施例1と同様に評価した。 Thermal conductivity and 90 degrees peel strength was evaluated in the same manner as in Example 1.

【0028】 [0028]

【比較例2〜4】比較例1と同様に、表2に記す配合組成の実施例1と同様のエポキシ系固体状接着剤と炭素繊維からなる組成物を調製し、比較例1と同様に磁場を与えずに熱伝導性接着フィルムを作製した。 [Comparative Example 2-4] in the same manner as in Comparative Example 1, a composition composed of the same epoxy solid adhesive and carbon fiber as in Example 1 of formulation composition shown in Table 2 were prepared, in the same manner as in Comparative Example 1 to prepare a thermally conductive adhesive film without causing magnetic field. 熱伝導率と9 Thermal conductivity and 9
0度引き剥がし強度は実施例1と同様に評価した。 0 degree peel strength was evaluated in the same manner as in Example 1.

【0029】 [0029]

【実施例13】図6-1に記すプリント基板1に実装したボールグリッドアレイ型の半導体パッケージ2上に本発明の実施例10の熱伝導性接着フィルム3を使用し(図6-2)、図6-3のように上部に放熱器4を配置して加圧加熱して半導体装置図6-4、図6-5を作製した。 EXAMPLE 13 Using a thermally conductive adhesive film 3 of Example 10 of the present invention on the semiconductor package 2 of a ball grid array type mounted on the printed circuit board 1 referred in Figure 6-1 (Figure 6-2), the semiconductor device Figure 6-4 pressurized and heated by placing the radiator 4 to the upper portion as shown in Figure 6-3, to prepare a Figure 6-5. この装置に通電し、放熱器4の2分後と4分後の温度分布をサーモビュアで観察した結果を Energized this apparatus, the results of the temperature distribution after 2 minutes after the fourth of the radiator 4 was observed with thermoviewer

【図10】に記した。 It noted in FIG. 10. 通電10分後の放熱器4の中央部と外縁部の温度差は12℃で、中央部の温度は最高で3 The temperature difference between the center and the outer edge of the energization after 10 minutes radiator 4 at 12 ° C., the temperature of the central portion is the highest 3
8℃であった。 It was 8 ℃. これは、放熱器と半導体パッケージの間に介在する熱伝導性接着フィルムの熱伝導特性が良好であることを意味している。 This thermal conductivity of the thermally conductive adhesive film interposed between the radiator and the semiconductor package is meant to be good.

【0030】 [0030]

【比較例5】実施例13と同様に、プリント基板に実装したボールグリッドアレイ型の半導体パッケージ上に表2の比較例1の熱伝導性接着フィルム3を使用し上部に放熱器4を配置して加圧加熱して半導体装置図7を作製した。 Similarly to Comparative Example 5] Example 13, on a semiconductor package of a ball grid array type mounted on the printed circuit board using a thermally conductive adhesive film 3 of Comparative Example 1 in Table 2 Place the radiator 4 to the upper to prepare a semiconductor device 7 pressurized and heated Te. 実施例13と同様に、この装置に通電し、放熱器4の2分後と4分後の温度分布をサーモビュアで観察した結果を図11に記した。 As in Example 13, is energized in this device, describing the temperature distribution after 2 minutes after the fourth of the radiator 4 in Figure 11 the results of observation with thermoviewer. 通電10分後の放熱器4の中央部と外縁部の温度差は23℃で、中央部の温度は最高で61℃であった。 The temperature difference between the center and the outer edge of the energization after 10 minutes radiator 4 at 23 ° C., the temperature of the central portion was highest at 61 ° C..

【0031】 [0031]

【実施例14】図8-1、図8-2に示すようにリードフレーム6のダイパッド7と半導体チップ8の間に本発明の実施例7の熱伝導性接着フィルム3を挟み図8-3に記すように配置した磁石12で厚み方向に磁束密度20 Example 14 Figure 8-1, Figure sandwiched a thermally conductive adhesive film 3 of Example 7 of the present invention during the die pad 7 and the semiconductor chip 8 of the lead frame 6 as shown in Figure 8-2 8-3 the magnetic flux density 20 in the arranged the thickness direction with a magnet 12 as noted in
00ガウスの磁場を与えながら加熱硬化させた。 00 cured by heating while applying a Gauss magnetic field. さらにボンディングワイヤー9で半導体チップ8の電極部とリードフレーム11のリード部を電気的に接続し(図8- Further the lead portion of the electrode portion and the lead frame 11 of the semiconductor chip 8 are electrically connected by bonding wires 9 (FIG. 8
4)、エポキシ系封止剤10でトランスファーモールドして半導体装置図8-5、図8-6を製造した。 4), the semiconductor device Figure 8-5 by transfer molding with an epoxy sealant 10 was prepared Figure 8-6. この装置に通電し、ダイパッド7中心部の温度の経時変化を測定して図12に記した。 Energized this device, it noted in FIG. 12 by measuring the time course of the temperature of the die pad 7 center. また、通電10分後のダイパッド7の中央部の温度は52℃であった。 The temperature of the central portion of the die pad 7 after energization 10 minutes was 52 ° C..

【0032】 [0032]

【比較例6】実施例14と同様に、リードフレーム6のダイパッド7と半導体チップ8を、比較例4の接着フィルム3で加熱硬化させた。 Similarly to Comparative Example 6 Example 14, a die pad 7 and the semiconductor chip 8 of the lead frame 6, cured by heating an adhesive film 3 of Comparative Example 4. さらにボンディングワイヤー9で半導体チップ8の電極部とリードフレーム11のリード部を電気的に接続し、エポキシ系封止剤10でトランスファーモールドして半導体装置図9を製造した。 Further electrically connected to the lead portion of the electrode portion and the lead frame 11 of the semiconductor chip 8 by bonding wires 9, a semiconductor device was manufactured 9 by transfer molding with an epoxy sealant 10. この装置に通電し、ダイパッド7中心部の温度の経時変化を測定して図12に記した。 Energized this device, it noted in FIG. 12 by measuring the time course of the temperature of the die pad 7 center. また、通電10分後のダイパッド7の中央部の温度は65℃であった。 The temperature of the central portion of the die pad 7 after energization 10 minutes was 65 ° C..

【0033】 [0033]

【発明の効果】表2に記したように本発明の強磁性体を被覆した炭素繊維が一定方向に配向した熱伝導性接着フィルムは、引き剥がし強度が良好で熱伝導率が大きく放熱性に優れている。 Thermally conductive adhesive film in which the carbon fibers coated with a ferromagnetic body is oriented in a certain direction of the present invention as noted in Table 2 according to the present invention, the peel strength is the good thermal conductivity greater heat dissipation Are better. さらに、本発明の熱伝導性接着フィルムを、発熱量が大きい半導体パッケージとヒートシンクなどの放熱器との接着、あるいは半導体チップとダイパッド部との接着に応用して放熱特性に優れる有用な半導体装置を提供することができる。 Further, a thermally conductive adhesive film of the present invention, the radiator, such as calorific value is large semiconductor package and the heat sink adhesive, or a semiconductor chip and semiconductor device useful with excellent heat dissipation characteristics by applying the adhesion between the die pad portion it is possible to provide.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の熱伝導性接着フィルムを使用した半導体装置の例(ボールグリッドアレイ型半導体パッケージ2と放熱器4の接着に使用) Examples of the semiconductor device using a thermally conductive adhesive film of the present invention; FIG (used for adhesion of a ball grid array type semiconductor package 2 and the radiator 4)

【図2】本発明の熱伝導性接着フィルムを使用した半導体装置の例(チップサイズ半導体パッケージ2とプリント基板1の接着に使用) Examples of the semiconductor device using a thermally conductive adhesive film of the present invention; FIG (used for adhesion of a chip size semiconductor package 2 and the printed circuit board 1)

【図3】本発明の熱伝導性接着フィルムを使用した半導体装置の例(ピングリッドアレイ型半導体パッケージ2 Examples of the semiconductor device using a thermally conductive adhesive film of the present invention; FIG (pin grid array type semiconductor package 2
とヒートシンク5の接着に使用) And used in the adhesion of the heat sink 5)

【図4】本発明の熱伝導性接着フィルムを使用した半導体装置の例(半導体チップ8とダイパッド7の接着に使用) Examples of the semiconductor device using a thermally conductive adhesive film of the present invention; FIG (used for adhesion of the semiconductor chip 8 and a die pad 7)

【図5】(1)〜(5)は本発明の熱伝導性接着フィルムを製造する方法、(6)は(5)の炭素繊維の配向状態を示す概念図 [5] (1) A method for producing to (5) of thermally-conductive adhesive film of the present invention, (6) the conceptual view showing the orientation of the carbon fibers (5)

【図6】(1)〜(4)は本発明の半導体装置を製造する方法、(5)は(4)の炭素繊維の配向状態を示す概念図 6 (1) to (4) Method of manufacturing a semiconductor device of the present invention, (5) the conceptual view showing the orientation of the carbon fibers (4)

【図7】従来の炭素繊維を含む熱伝導性接着フィルムを使用した半導体装置の例 Examples of the semiconductor device using a thermally conductive adhesive film comprising [7] Conventional carbon fibers

【図8】(1)〜(5)は本発明の半導体装置を製造する方法、(6)は(5)の炭素繊維の配向状態を示す概念図 8 (1) to (5) the method for manufacturing the semiconductor device of the present invention, (6) the conceptual view showing the orientation of the carbon fibers (5)

【図9】従来の炭素繊維を含む熱伝導性接着フィルムを使用した半導体装置の例 Examples of the semiconductor device using a thermally conductive adhesive film comprising 9 conventional carbon fibers

【図10】実施例13の本発明の半導体装置の通電時の温度分布を示す図 Shows the temperature distribution during the energization of the semiconductor device of the present invention in FIG. 10 Example 13

【図11】比較例5の半導体装置の通電時の温度分布を示す図 11 is a diagram showing the temperature distribution during the energization of the semiconductor device of Comparative Example 5

【図12】実施例14および比較例6の半導体装置の温度の経時変化を示す図 12 shows the time course of the temperature of the semiconductor device of Example 14 and Comparative Example 6 FIG.

【図13】表1 [13] Table 1

【図14】表2 [14] Table 2

【符号の説明】 DESCRIPTION OF SYMBOLS

1 プリント基板 2 半導体パッケージ 3 熱伝導性接着フィルム 4 放熱器 5 ヒートシンク 6 リードフレーム 7 ダイパッド 8 半導体チップ 9 ボンディングワイヤー 10 封止剤 11 ポリエチレンテレフタレートシート 12 磁石 13 強磁性体を被覆した炭素繊維 14 従来の炭素繊維 1 printed board 2 semiconductor package 3 thermally-conductive adhesive film 4 radiator 5 sink 6 lead frame 7 die pad 8 semiconductor chip 9 bonding wire 10 sealant 11 polyethylene terephthalate sheet 12 magnet 13 carbon fibers 14 of the conventional coated ferromagnetic Carbon fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 紀久夫 東京都港区浜松町2丁目4番1号世界貿易 センタービル エヌ・イーケムキャット株 式会社内 Fターム(参考) 4F100 AA23B AB02B AB13B AB14B AB15B AB16B AB31B AD11A AK25A AK33A AK42C AK49A AK51A AK52A AK53A AL09A AR00B BA02 BA03 BA07 BA10A BA10C CB00A DG01A GB41 JB13A JB16A JG04B JG06B JJ01 4J004 AA05 AA10 AA11 AA13 AB05 BA02 4J040 DF021 DM011 EC001 EF001 EH031 EK001 HA026 HA076 HA136 JA09 JB02 KA04 LA08 LA09 NA20 5F036 AA01 BB21 BD21 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Kikuo Fujiwara Tokyo, Minato-ku, Hamamatsu-cho 2-chome fourth No. 1 world trade Center Building NE Chemcat Co., Ltd. in the F-term (reference) 4F100 AA23B AB02B AB13B AB14B AB15B AB16B AB31B AD11A AK25A AK33A AK42C AK49A AK51A AK52A AK53A AL09A AR00B BA02 BA03 BA07 BA10A BA10C CB00A DG01A GB41 JB13A JB16A JG04B JG06B JJ01 4J004 AA05 AA10 AA11 AA13 AB05 BA02 4J040 DF021 DM011 EC001 EF001 EH031 EK001 HA026 HA076 HA136 JA09 JB02 KA04 LA08 LA09 NA20 5F036 AA01 BB21 BD21

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】炭素繊維と固体状接着剤を配合してなる熱伝導性接着フィルムにおいて、強磁性体を被覆した炭素繊維が一定方向に配向していることを特徴とする熱伝導性接着フィルム 1. A thermally conductive adhesive film by blending the carbon fiber and solid-like adhesive, thermally conductive adhesive film, characterized in that carbon fibers coated with a ferromagnetic material are oriented in a predetermined direction
  2. 【請求項2】強磁性体がニッケル系、鉄系、フェライト系、クロム系、コバルト系、マンガン系あるいは希土類系より選ばれる少なくとも1種の金属、合金、化合物である請求項1に記載の熱伝導性接着フィルム Wherein the ferromagnetic material is a nickel-based, iron-based, ferritic, chromium-based, cobalt-based, at least one metal selected from manganese or rare earth alloy, heat according to claim 1 which is a compound conductive adhesive film
  3. 【請求項3】固体状接着剤がエポキシ系、ポリイミド系、アクリル系、ウレタン系、ビニル系、シリコーン系あるいは熱可塑性エラストマー系より選ばれる少なくとも1種である請求項1あるいは2に記載の熱伝導性接着フィルム 3. A solid adhesive epoxy, polyimide, acrylic, urethane, vinyl, thermal conductivity according to claim 1 or 2 is at least one selected from silicone or a thermoplastic elastomer-based gender adhesive film
  4. 【請求項4】固体状接着剤が熱硬化性であり、かつ半硬化状態である請求項1、2あるいは3に記載の熱伝導性接着フィルム 4. The solid adhesive is thermosetting and thermally conductive adhesive film according to claim 1, 2 or 3 is a semi-cured state
  5. 【請求項5】少なくとも片面を電気絶縁処理したことを特徴とする請求項1、2、3あるいは4に記載の熱伝導性接着フィルム 5. The thermally conductive adhesive film according to claim 1, 2, 3 or 4, characterized in that the electrically insulated on at least one side
  6. 【請求項6】半導体素子と伝熱部材間を、強磁性体を被覆した炭素繊維が一定方向に配向した熱伝導性接着フィルムで接着したことを特徴とする半導体装置 6. between the semiconductor element and the heat transfer member, a semiconductor device in which the carbon fibers coated with ferromagnetic material characterized by being bonded with a thermally conductive adhesive film oriented in a predetermined direction
  7. 【請求項7】強磁性体がニッケル系、鉄系、フェライト系、クロム系、コバルト系、マンガン系あるいは希土類系より選ばれる少なくとも1種の金属、合金、化合物である請求項6に記載の半導体装置 7. ferromagnetic nickel-based, iron-based, ferritic, chromium-based, cobalt-based, at least one metal selected from manganese or rare earth semiconductor according to claim 6, wherein the alloy, compound apparatus
JP37181298A 1998-12-28 1998-12-28 Thermally conductive adhesive film and semiconductive device Withdrawn JP2000191987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37181298A JP2000191987A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive film and semiconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37181298A JP2000191987A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive film and semiconductive device

Publications (1)

Publication Number Publication Date
JP2000191987A true true JP2000191987A (en) 2000-07-11

Family

ID=18499352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37181298A Withdrawn JP2000191987A (en) 1998-12-28 1998-12-28 Thermally conductive adhesive film and semiconductive device

Country Status (1)

Country Link
JP (1) JP2000191987A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191998A (en) * 1998-12-28 2000-07-11 Ne Chemcat Corp Thermally conductive adhesive, method of adhesion and semiconductor device
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet
JP2009010296A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Heat-conductive adhesive film and method for producing the same
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
WO2009119885A1 (en) * 2008-03-27 2009-10-01 リンテック株式会社 Adhesive composition, adhesive sheet, and adhesive molded product
JP2009244084A (en) * 2008-03-31 2009-10-22 Fuchigami Micro:Kk Apparatus and method for measuring thermal conductivity of thermally joined material
WO2011030876A1 (en) * 2009-09-14 2011-03-17 リンテック株式会社 Adhesive composition and adhesive sheet for slide rail, and method for fixing slide rail
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
WO2012101988A1 (en) * 2011-01-28 2012-08-02 日東電工株式会社 Heat-conductive film and production method therefor
WO2012111837A1 (en) * 2011-02-14 2012-08-23 Jnc Corporation High-performance thermal interface films and methods thereof
US20120218713A1 (en) * 2008-11-14 2012-08-30 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
JP2013079371A (en) * 2011-09-20 2013-05-02 Tokai Rubber Ind Ltd Elastomer molded body and method of producing the same
JP5603858B2 (en) * 2009-04-10 2014-10-08 ポリマテック・ジャパン株式会社 Thermally conductive bulk adhesive and thermally conductive adhesive sheet and a method for their preparation
JP2015105282A (en) * 2013-11-28 2015-06-08 住友理工株式会社 Elastomer molded body and method for production thereof
JP2016154264A (en) * 2010-08-31 2016-08-25 ポリマテック・ジャパン株式会社 Heat conductive sheet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191998A (en) * 1998-12-28 2000-07-11 Ne Chemcat Corp Thermally conductive adhesive, method of adhesion and semiconductor device
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet
JP2009010296A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Heat-conductive adhesive film and method for producing the same
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
WO2009119885A1 (en) * 2008-03-27 2009-10-01 リンテック株式会社 Adhesive composition, adhesive sheet, and adhesive molded product
JP2009244084A (en) * 2008-03-31 2009-10-22 Fuchigami Micro:Kk Apparatus and method for measuring thermal conductivity of thermally joined material
US8958207B2 (en) * 2008-11-14 2015-02-17 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
US20120218713A1 (en) * 2008-11-14 2012-08-30 Fujitsu Limited Heat radiation material, electronic device and method of manufacturing electronic device
JP5603858B2 (en) * 2009-04-10 2014-10-08 ポリマテック・ジャパン株式会社 Thermally conductive bulk adhesive and thermally conductive adhesive sheet and a method for their preparation
US9376601B2 (en) 2009-09-14 2016-06-28 Lintec Corporation Adhesive composition and adhesive sheet for slide rail, and method for fixing slide rail
JP2011057915A (en) * 2009-09-14 2011-03-24 Honda Motor Co Ltd Adhesive composition for slide rail, adhesive sheet, and method for fixing slide rail
WO2011030876A1 (en) * 2009-09-14 2011-03-17 リンテック株式会社 Adhesive composition and adhesive sheet for slide rail, and method for fixing slide rail
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
JP2016154264A (en) * 2010-08-31 2016-08-25 ポリマテック・ジャパン株式会社 Heat conductive sheet
WO2012101988A1 (en) * 2011-01-28 2012-08-02 日東電工株式会社 Heat-conductive film and production method therefor
JP2014511405A (en) * 2011-02-14 2014-05-15 Jnc株式会社 High-performance thermal conductive film and method
WO2012111837A1 (en) * 2011-02-14 2012-08-23 Jnc Corporation High-performance thermal interface films and methods thereof
JP2013079371A (en) * 2011-09-20 2013-05-02 Tokai Rubber Ind Ltd Elastomer molded body and method of producing the same
JP2015105282A (en) * 2013-11-28 2015-06-08 住友理工株式会社 Elastomer molded body and method for production thereof

Similar Documents

Publication Publication Date Title
US5706579A (en) Method of assembling integrated circuit package
US6469381B1 (en) Carbon-carbon and/or metal-carbon fiber composite heat spreader
US20130034739A1 (en) Microcapsules adapted to rupture in a magnetic field to enable easy removal of one substrate from another for enhanced reworkability
US5798171A (en) Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink
US6423172B1 (en) Method of forming a coating onto a non-random monolayer of particles, and products formed thereby
US6707671B2 (en) Power module and method of manufacturing the same
US20020197923A1 (en) Thermally conductive molded article and method of making the same
US20100226095A1 (en) Heat conductive sheet and power module
US5851644A (en) Films and coatings having anisotropic conductive pathways therein
US20070054105A1 (en) Thermal interface material and method for making same
JPH11220262A (en) Circuit part built-in module and manufacture thereof
WO2011040415A1 (en) Multilayer resin sheet and method for producing same, method for producing multilayer resin sheet cured product, and highly thermally conductive resin sheet laminate and method for producing same
US20010004131A1 (en) Adhesion method and electronic component
JP2005276925A (en) Conductive adhesive film and semiconductor device employing it
JP2006206843A (en) Adhesive film and laminate equipped with the same
JP2002088257A (en) Thermally conductive molded product and its manufacturing method
JPH10237410A (en) Thermally conductive adhesive composition and thermally conductive adhesive film prepared by using the same
EP1199328A1 (en) Thermally conductive polymer sheet
JP2008205453A (en) Heat-dissipating mounting board and method of manufacturing the same
EP1041627A2 (en) Heat conductive molded body and manufacturing method thereof and semiconductor device
US6783828B2 (en) Resin composition, adhesive film for semiconductor device, and laminated film with metallic foil and semiconductor device using the same
JPH10173097A (en) Sheetlike substance for heat conductive substrate, its manufacture, heat conductive substrate using it and its manufacture
JP2007254527A (en) Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
EP0134623A2 (en) Electrically and thermally conductive adhesive transfer tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100326