JP2001081418A - Heat conductive adhesive film and its production and electronic part - Google Patents

Heat conductive adhesive film and its production and electronic part

Info

Publication number
JP2001081418A
JP2001081418A JP25654099A JP25654099A JP2001081418A JP 2001081418 A JP2001081418 A JP 2001081418A JP 25654099 A JP25654099 A JP 25654099A JP 25654099 A JP25654099 A JP 25654099A JP 2001081418 A JP2001081418 A JP 2001081418A
Authority
JP
Japan
Prior art keywords
adhesive film
conductive adhesive
polybenzazole
heat
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25654099A
Other languages
Japanese (ja)
Inventor
Tsunehisa Kimura
恒久 木村
Masabumi Yamato
正文 山登
Masayuki Hida
雅之 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP25654099A priority Critical patent/JP2001081418A/en
Publication of JP2001081418A publication Critical patent/JP2001081418A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrical insulating heat conductive adhesive film capable of effectively dissipating heat generated from the parts of semiconductor elements, power sources, light sources and the like which are used in electric appliances and a method of producing the same, and an electronic part having excellent heat dissipation properties. SOLUTION: A heat-conductive adhesive film 3 has polybenzazole staple fibers 13 having been oriented to a definite direction in a solid adhesive. Further, a method of producing a heat conducting adhesive film comprises applying a magnetic field to an adhesive composition containing polybenzazole short fibers to orient the polybenzazole staple fibers in the composition to a definite direction and then, solidifying the adhesive. An electronic part is obtained by bonding an exothermic element 2 to a heat transfer member 4 with a heat conductive adhesive film 3 having polybenzazole staple fibers 13 having been oriented in a definite direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高い熱伝導性が要求
される熱伝導性接着フィルムおよびその製造方法ならび
に電子部品に関する。さらに詳しくは、電気製品に使用
される半導体素子や電源、光源などの部品から発生する
熱を効果的に放散させることができる電気絶縁性の熱伝
導性接着フィルムおよびその製造方法ならびに放熱性に
すぐれる電子部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive adhesive film requiring high heat conductivity, a method for producing the same, and an electronic component. More specifically, an electrically insulating heat conductive adhesive film capable of effectively dissipating heat generated from components such as a semiconductor element, a power supply, and a light source used in an electric product, a method for manufacturing the same, and a method for quickly dissipating heat. Electronic components.

【0002】[0002]

【従来の技術】従来より、発熱する半導体素子などと放
熱させる伝熱部材あるいは絶縁性基板と金属箔や電極な
どとを接合させる目的で各種の熱伝導性接着フィルムが
使用されている。これらの熱伝導性接着フィルムには、
熱伝導性を高めるために、銀、銅、金、アルミニウム、
ニッケルなどの熱伝導率の大きい金属や合金、化合物、
あるいは酸化アルミニウム、酸化マグネシウム、酸化ケ
イ素、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭
化ケイ素などの電気絶縁性セラミックス製の粉末状の充
填材、カーボンブラックやダイヤモンドなどの粉粒体形
状や繊維形状の熱伝導性充填材が配合されている。
2. Description of the Related Art Conventionally, various types of heat conductive adhesive films have been used for the purpose of bonding a heat generating member or an insulating substrate to a metal foil, an electrode, or the like with a semiconductor element or the like that generates heat and dissipating heat. These thermally conductive adhesive films include:
Silver, copper, gold, aluminum,
Metals and alloys with high thermal conductivity, such as nickel, compounds,
Alternatively, powdery fillers made of electrically insulating ceramics such as aluminum oxide, magnesium oxide, silicon oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, etc .; A conductive filler is included.

【0003】特開昭63−305520号公報では、炭
素系の微粉末や炭素繊維を充填したダイボンド材料、特
開平6−212137号公報では、熱伝導特性を改良す
る目的で、特定構造の炭素繊維、すなわちメソフェーズ
ピッチを基材とした3次元構造の炭素繊維を充填した接
着性材料が開示されている。さらに、特開平5−209
157号公報、特開平6−299129号公報によれ
ば、含有させる炭素繊維や金属繊維の構造を、かたまり
状や糸まり状、あるいは織布や不織布の形状に特定する
ことによって放熱特性を一層改善した電子デバイス用接
着フィルムが提案されている。一方、特開平2−455
81号公報では、有機質短繊維を分散させた制振用の接
着シートが提案されている。
Japanese Patent Application Laid-Open No. Sho 63-305520 discloses a die bond material filled with carbon-based fine powder or carbon fiber, and Japanese Patent Application Laid-Open No. 6-212137 discloses a carbon fiber having a specific structure for the purpose of improving heat conduction characteristics. That is, an adhesive material filled with carbon fibers having a three-dimensional structure using a mesophase pitch as a base material is disclosed. Further, Japanese Patent Application Laid-Open No. 5-209
According to Japanese Patent No. 157 and JP-A-6-299129, the heat radiation characteristics are further improved by specifying the structure of the carbon fiber or metal fiber to be contained in a lump-like or thread-like shape, or a woven or non-woven fabric. Adhesive films for electronic devices have been proposed. On the other hand, JP-A-2-455
No. 81 proposes an adhesive sheet for vibration damping in which organic short fibers are dispersed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
特開昭63−305520号公報、特開平6−2121
37号公報、特開平5−209157号公報、特開平6
−299129号公報などは、いずれも導電性の高い炭
素材料や金属系の繊維を用いるために、電気絶縁性を要
求される用途には使用できなかった。
However, Japanese Patent Application Laid-Open No. 63-305520 and Japanese Patent Application Laid-Open No.
No. 37, JP-A-5-209157, JP-A-6
Japanese Patent Application Laid-Open No. 299129/1992 cannot be used for applications requiring electrical insulation, since it uses a carbon material or a metal fiber having high conductivity.

【0005】また、特開平2−45581号公報は、有
機質短繊維としてレーヨン、ビニロン、綿糸、ポリエス
テル繊維、ポリアミド繊維などの電気絶縁性の短繊維を
配合した制振用複合金属板を制振接着層として用いるも
ので、熱伝導性を改良したものではなかった。すなわ
ち、電気絶縁性が良好で高い熱伝導特性を有する接着フ
ィルムが開発されないために、半導体素子などの電子部
品からの多大な発熱によって、電気化学的なマイグレー
ションが加速されたり、配線やパッド部の腐食が促進さ
れたり、発生する熱応力によって構成材料にクラックが
生じたり、破壊したり、構成材料の接合部の界面が剥離
して電子部品の寿命を損なう様々なトラブルが発生して
いた。
Japanese Patent Application Laid-Open No. 2-45581 discloses a vibration damping composite metal plate in which electrically insulating short fibers such as rayon, vinylon, cotton yarn, polyester fiber and polyamide fiber are blended as organic short fibers. It was used as a layer and did not improve thermal conductivity. That is, since an adhesive film having good electrical insulation properties and high thermal conductivity has not been developed, electrochemical migration is accelerated due to a large amount of heat generated from an electronic component such as a semiconductor element, or wiring and a pad portion are not formed. Corrosion has been promoted, and cracks have occurred or been broken in the constituent materials due to the generated thermal stress, and various troubles have occurred in which the interface of the joining portions of the constituent materials has separated and the life of the electronic component has been impaired.

【0006】一方、本出願人による特願平11−874
82号公報の熱伝導性接着フィルムでは、熱伝導率が2
0W/m・K以上の反磁性充填材を固体状接着剤中に一
定方向に配向させているけれども、反磁性充填材として
ポリベンザゾール短繊維は対象としていなかった。
On the other hand, Japanese Patent Application No. 11-874 filed by the present applicant has been disclosed.
No. 82, the heat conductive adhesive film has a heat conductivity of 2
Although a diamagnetic filler of 0 W / m · K or more is oriented in a fixed direction in the solid adhesive, polybenzazole short fibers were not targeted as the diamagnetic filler.

【0007】[0007]

【課題を解決するための手段】これらの課題を解決する
ために鋭意検討した結果、ポリベンザゾール短繊維が固
体状接着剤中に一定方向に配向された熱伝導性接着フィ
ルムが電気絶縁性と熱伝導性にすぐれること、および、
ポリベンザゾール短繊維が磁場中で磁力線に沿って配向
する性質を利用した熱伝導性接着フィルムの製造方法な
らびにそれを用いた電子部品を見出し、本発明に到達し
た。
Means for Solving the Problems As a result of diligent studies to solve these problems, a heat conductive adhesive film in which polybenzazole short fibers are oriented in a certain direction in a solid adhesive has an electric insulating property. Excellent thermal conductivity, and
A method for producing a heat conductive adhesive film utilizing the property that polybenzazole short fibers are oriented along the lines of magnetic force in a magnetic field, and an electronic component using the same have been found, and have reached the present invention.

【0008】[0008]

【発明の実施の形態】すなわち、本発明は、ポリベンザ
ゾール短繊維が固体状接着剤中に一定方向に配向されて
いることを特徴とする熱伝導性接着フィルム、さらに、
ポリベンザゾール短繊維を含む接着剤組成物に磁場を印
加させて組成物中のポリベンザゾール短繊維を一定方向
に配向させたのちに固化させることを特徴とする熱伝導
性接着フィルムの製造方法、ならびに発熱する素子と伝
熱部材間を、ポリベンザゾール短繊維を一定方向に配向
した熱伝導性接着フィルムで接着したことを特徴とする
電子部品である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a heat conductive adhesive film characterized in that polybenzazole short fibers are oriented in a fixed direction in a solid adhesive.
A method for producing a heat-conductive adhesive film, comprising applying a magnetic field to an adhesive composition containing short polybenzazole fibers to orient and uniformly solidify short polybenzazole fibers in the composition. An electronic component characterized in that a heat-generating element and a heat transfer member are bonded with a heat-conductive adhesive film in which polybenzazole short fibers are oriented in a certain direction.

【0009】本発明で使用するポリベンザゾール短繊維
は、ポリベンザゾールポリマーより構成される短繊維で
あり、ポリベンザゾール(PBZ)とは、ポリベンゾオ
キサゾールホモポリマー(PBO)、ポリベンゾチアゾ
ールホモポリマー(PBT)およびそれらPBO、PB
Tのランダムコポリマー、シーケンシャルコポリマー、
ブロックコポリマーあるいはグラフトコポリマーを意味
するものである。ポリベンザゾール短繊維の直径、断面
形状等ついては特定するものではないけれども、ポリベ
ンザゾール短繊維の長さは1mm以下であることが好ま
しい。1mmよりも長いポリベンザゾール短繊維を用い
ると、接着性高分子に均一に分散しにくく、接着剤組成
物としての粘度が上昇して成形性が悪化するので好まし
くない。
The polybenzazole short fiber used in the present invention is a short fiber composed of a polybenzazole polymer. Polybenzazole (PBZ) is a polybenzoxazole homopolymer (PBO) or a polybenzothiazole homopolymer. Polymers (PBT) and their PBO, PB
T random copolymer, sequential copolymer,
It means a block copolymer or a graft copolymer. Although the diameter, cross-sectional shape and the like of the polybenzazole short fiber are not specified, the length of the polybenzazole short fiber is preferably 1 mm or less. It is not preferable to use polybenzazole short fibers longer than 1 mm, because it is difficult to uniformly disperse them in the adhesive polymer, the viscosity of the adhesive composition increases, and the moldability deteriorates.

【0010】より好ましいポリベンザゾール短繊維の長
さは0.8mm以下、さらに好ましくは0.5mm以下、
さらに好ましくは0.2mm以下である。また、ポリベ
ンザゾール短繊維の形状は、通常の短繊維形状のほか、
ウィスカー形状やパルプ形状のポリベンザゾール短繊維
も使用することができる。本発明の熱伝導性接着フィル
ムに含有させるポリベンザゾール短繊維の量は、固体状
接着剤100重量部に対して0.1〜50重量部が好ま
しい。0.1重量部よりも少ないと熱伝導性の向上効果
が小さく、50重量部を越えて含有させると接着剤組成
物の粘度が増大して流動性が損なわれて成形加工が困難
になり、かつ気泡の混入が避けられないので不適であ
る。さらに好ましいポリベンザゾール短繊維の添加量は
0.5〜30重量部、さらに好ましくは1〜20重量部
である。
More preferably, the length of the polybenzazole short fiber is 0.8 mm or less, more preferably 0.5 mm or less,
More preferably, it is 0.2 mm or less. In addition, the shape of the polybenzazole short fiber is, in addition to the normal short fiber shape,
Whisker-shaped or pulp-shaped polybenzazole short fibers can also be used. The amount of polybenzazole short fibers contained in the heat conductive adhesive film of the present invention is preferably 0.1 to 50 parts by weight based on 100 parts by weight of the solid adhesive. When the amount is less than 0.1 part by weight, the effect of improving the thermal conductivity is small, and when the amount exceeds 50 parts by weight, the viscosity of the adhesive composition increases, the fluidity is impaired, and molding processing becomes difficult. In addition, it is not suitable because air bubbles cannot be mixed. More preferably, the amount of the added polybenzazole short fiber is 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight.

【0011】ポリベンザゾール短繊維は、ポリベンザゾ
ール長繊維を一定長さに切断する方法などによって製造
することが可能であり、市販品(東洋紡績株式会社製
商品名=ザイロン)を容易に入手することができる。ポ
リベンザゾール短繊維の引張強度については、4GPa
以上でかつ初期引張弾性率が140GPa以上を有する
ことが好ましい。引張強度、初期引張弾性率がこの範囲
であるポリベンザゾール短繊維を使用することによっ
て、本発明の熱伝導性接着フィルムおよび電子部品は高
い熱伝導性を発現することができる。
Polybenzazole short fibers can be produced by, for example, cutting polybenzazole long fibers into fixed lengths, and are commercially available (manufactured by Toyobo Co., Ltd.).
(Product name = Zylon) can be easily obtained. Regarding the tensile strength of polybenzazole short fiber, 4 GPa
It is preferable that the above-mentioned and the initial tensile modulus be 140 GPa or more. By using a polybenzazole short fiber having a tensile strength and an initial tensile modulus in this range, the heat conductive adhesive film and the electronic component of the present invention can exhibit high heat conductivity.

【0012】なお、ポリベンザゾール短繊維以外の繊維
として、少量のアラミド繊維やポリエステル繊維、脂肪
族ポリアミド繊維、ビニロン繊維などの有機繊維、天然
繊維、炭素繊維、金属繊維、さらにこれらの繊維を複合
した複合繊維からなる短繊維や長繊維、あるいはそれら
の少量の織布や不織布などを混在させることも可能であ
る。しかしながら、本発明の熱伝導性接着フィルムは電
気絶縁性にすぐれることも特徴のひとつであり、導電性
の高い炭素繊維、金属繊維、金属被覆繊維などはなるべ
く混在させない方が好ましい。
As the fibers other than the polybenzazole short fibers, a small amount of organic fibers such as aramid fibers, polyester fibers, aliphatic polyamide fibers, and vinylon fibers, natural fibers, carbon fibers, metal fibers, and composite fibers of these fibers. It is also possible to mix short fibers and long fibers made of the above-mentioned composite fibers, or a small amount of woven or non-woven fabric thereof. However, one of the features of the heat conductive adhesive film of the present invention is that it has excellent electrical insulation properties, and it is preferable that carbon fibers, metal fibers, metal-coated fibers, and the like having high conductivity are not mixed as much as possible.

【0013】本発明で使用する固体状接着剤としては、
常温で固体状、あるいは加熱して半硬化状態で固体状に
なるエポキシ系、ポリイミド系、アクリル系、ポリ酢酸
ビニルなどのビニル系、ウレタン系、シリコーン系、オ
レフィン系、ポリアミド系、ポリアミドイミド系、フェ
ノール系、アミノ系、ビスマレイミド系、ポリイミドシ
リコーン系、飽和および不飽和ポリエステル系、ジアリ
ルフタレート系、尿素系、メラミン系、アルキッド系、
ベンゾシクロブテン系、ポリブタジエンやクロロプレン
ゴム、ニトリルゴムなどの合成ゴム系、天然ゴム系、ス
チレン系熱可塑性エラストマーなどの公知の樹脂やゴム
からなる材料が好ましい。
The solid adhesive used in the present invention includes:
Epoxy-based, polyimide-based, acrylic-based, vinyl-based such as polyvinyl acetate, urethane-based, silicone-based, olefin-based, polyamide-based, polyamideimide-based, which are solid at room temperature or become solid in a semi-cured state when heated. Phenol, amino, bismaleimide, polyimide silicone, saturated and unsaturated polyester, diallyl phthalate, urea, melamine, alkyd,
Materials made of known resins and rubbers such as benzocyclobutene, synthetic rubbers such as polybutadiene, chloroprene rubber, and nitrile rubber, natural rubbers, and styrene-based thermoplastic elastomers are preferable.

【0014】硬化形態については、熱硬化性、熱可塑
性、紫外線や可視光硬化性、常温硬化性、湿気硬化性な
ど公知のあらゆる硬化形態の接着性高分子を使用でき
る。なかでも、電子部品を構成する材料の各種金属やセ
ラミックス、プラスチックやゴム、エラストマーとの接
着性が良好なエポキシ系、ポリイミド系、アクリル系、
ウレタン系、シリコーン系より選ばれる少なくとも1種
の熱硬化性の固体状接着剤が好適である。
As for the curing form, any of known adhesive curing polymers such as thermosetting, thermoplastic, ultraviolet or visible light curable, room temperature curable, and moisture curable can be used. Among them, epoxy, polyimide, acrylic, etc., which have good adhesion to various metals and ceramics, plastics, rubber, and elastomers of materials that make up electronic components,
At least one thermosetting solid adhesive selected from urethane and silicone is preferred.

【0015】さらに、固体状接着剤が熱硬化性の場合に
は、ポリベンザゾール短繊維を配合して一定方向に配向
させてからBステージなどの半硬化状態にした熱伝導性
接着フィルムが接着強度や信頼性の点で好ましい。ま
た、ポリベンザゾール短繊維の表面処理を目的として、
ポリベンザゾール短繊維の表面を公知のカップリング剤
やサイジング剤で処理することによって固体状接着剤と
の濡れ性を向上させたり充填性を改良した熱伝導性接着
フィルムを得ることが可能である。
Further, when the solid adhesive is thermosetting, a heat conductive adhesive film which is blended with polybenzazole short fibers and oriented in a predetermined direction, and then is made into a semi-cured state such as a B stage is used for bonding. It is preferable in terms of strength and reliability. Also, for the purpose of surface treatment of polybenzazole short fibers,
By treating the surface of polybenzazole short fibers with a known coupling agent or sizing agent, it is possible to improve the wettability with a solid adhesive or obtain a thermally conductive adhesive film with improved filling properties. .

【0016】本発明の熱伝導性接着フィルムには、溶
剤、チキソトロピー性付与剤、分散剤、硬化剤、硬化促
進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止
剤、安定剤、着色剤など公知の添加剤を配合することが
できる。特に固体状接着剤とポリベンザゾール短繊維を
配合した際の組成物の粘度が大きい場合には、溶剤を添
加して組成物の粘度を低減させることによって、ポリベ
ンザゾール短繊維の磁場配向を促進させることができ
る。
The heat conductive adhesive film of the present invention contains a solvent, a thixotropic agent, a dispersant, a curing agent, a curing accelerator, a retarder, a tackifier, a plasticizer, a flame retardant, an antioxidant, and a stabilizer. A known additive such as a coloring agent can be blended. In particular, when the viscosity of the composition when the solid adhesive and the polybenzazole short fiber are blended is large, the magnetic field orientation of the polybenzazole short fiber is reduced by adding a solvent to reduce the viscosity of the composition. Can be promoted.

【0017】さらに、粉末形状や繊維形状の金属やセラ
ミックス、具体的には、銀、銅、金、酸化アルミニウ
ム、酸化マグネシウム、窒化アルミニウム、炭化ケイ素
などや金属被覆樹脂などの従来の熱伝導性接着剤に使用
されている充填剤などを適宜併用することも可能であ
る。しかしながら、本発明の熱伝導性接着フィルムは電
気絶縁性にすぐれることも特徴のひとつであり、導電性
の高い金属などの充填剤はなるべく混在させない方が好
ましい。
Further, conventional heat conductive adhesives such as powdered or fibrous metals and ceramics, specifically, silver, copper, gold, aluminum oxide, magnesium oxide, aluminum nitride, silicon carbide, and metal-coated resins. It is also possible to appropriately use a filler or the like used for the agent in combination. However, one of the features of the heat conductive adhesive film of the present invention is that it has excellent electrical insulation properties, and it is preferable that a filler such as a metal having high conductivity be mixed as little as possible.

【0018】フィルムの膜厚については特定するもので
はないけれども、10μm〜2mmの範囲が好ましい。
配合するポリベンザゾール短繊維を厚み方向に配向させ
る場合には、膜厚は用いるポリベンザゾール短繊維の配
向した最大長さよりも厚くした方がフィルムが平坦にな
りやすく好適である。
The thickness of the film is not specified, but is preferably in the range of 10 μm to 2 mm.
In the case where the polybenzazole short fibers to be blended are oriented in the thickness direction, it is preferable that the film thickness be larger than the oriented maximum length of the polybenzazole short fibers to be used because the film becomes flatter.

【0019】固体状接着剤中にポリベンザゾール短繊維
を一定方向に配向させる方法としては、流動場あるいは
せん断場を利用する方法、磁場を利用する方法、電場を
利用する方法、静電植毛法などが挙げられる。いずれの
方法によってもポリベンザゾール短繊維を固体状接着剤
中で一定方向に配向させることができ、本発明の熱伝導
性接着フィルムを得ることができる。
As a method for orienting the polybenzazole short fibers in a fixed direction in the solid adhesive, a method using a flow field or a shear field, a method using a magnetic field, a method using an electric field, an electrostatic flocking method And the like. Either method allows the polybenzazole short fibers to be oriented in a fixed direction in the solid adhesive, and the heat conductive adhesive film of the present invention can be obtained.

【0020】けれども、本発明ではポリベンザゾール短
繊維の磁化率の異方性を利用し、磁場を印加してポリベ
ンザゾール短繊維を配向させる方法によった。この方法
が特に任意の方向にポリベンザゾール短繊維を効果的に
配向させることができ、熱伝導性がすぐれる熱伝導性接
着フィルムを製造する方法として適している。なお、本
発明者らがポリベンザゾール繊維(東洋紡績株式会社製
ザイロンHM)の異方性磁化率χを磁気異方性トル
ク計(株式会社玉川製作所)で測定したところ、6.1
×10−7であった。すなわち、ポリベンザゾール短繊
維を含む固体状接着剤組成物に磁場を印加させて組成物
中のポリベンザゾール短繊維を一定方向に配向させ、固
化させることが本発明の熱伝導性接着フィルムの製造方
法の特徴である。
However, in the present invention, the method of orienting the polybenzazole short fiber by applying a magnetic field utilizing the anisotropy of the magnetic susceptibility of the short fiber is used. This method is particularly suitable as a method for producing a thermally conductive adhesive film having excellent thermal conductivity, in which polybenzazole short fibers can be effectively oriented in any direction. It should be noted that, when the inventors of the present invention to measure the anisotropic magnetic susceptibility χ a polybenzazole fiber (manufactured by Toyobo Co., Ltd. Zylon HM) in the magnetic anisotropy torque meter (Co., Ltd. Tamagawa Seisakusho), 6.1
× 10 −7 . That is, by applying a magnetic field to the solid adhesive composition containing polybenzazole short fibers to orient the polybenzazole short fibers in the composition in a certain direction, it is possible to solidify the heat conductive adhesive film of the present invention. This is a feature of the manufacturing method.

【0021】外部から磁場を印加して接着剤組成物中の
ポリベンザゾール短繊維を磁力線に沿って一定方向に配
向させ、配向したポリベンザゾール短繊維の繊維方向の
高熱伝導性を生かし、一定方向の熱伝導率を著しく向上
させた熱伝導性接着フィルムを得ることができる。例え
ば、熱伝導性接着フィルムの厚み方向にポリベンザゾー
ル短繊維を揃えて配向させるには、厚み方向に永久磁石
や電磁石のN極とS極を対向させ磁力線の向きが所望の
ポリベンザゾール短繊維の配向方向に対応するように設
置する。
By applying a magnetic field from the outside, the polybenzazole short fibers in the adhesive composition are oriented in a certain direction along the lines of magnetic force, and the high thermal conductivity of the oriented polybenzazole short fibers in the direction of the fibers is utilized. A thermally conductive adhesive film having significantly improved thermal conductivity in the direction can be obtained. For example, in order to align polybenzazole short fibers in the thickness direction of the heat conductive adhesive film and align them, the north and south poles of a permanent magnet or an electromagnet are opposed in the thickness direction, and the direction of the magnetic field lines is the desired polybenzazole short fiber. It is installed so as to correspond to the orientation direction of the fiber.

【0022】一方、熱伝導性接着フィルムの面内の縦方
向と横方向あるいは縦横の水平方向に一定方向の熱伝導
性を向上させる場合には、厚み方向に対して垂直の方向
に磁石のN極とS極を対向させればポリベンザゾール短
繊維を面内の方向に揃えて配向させることができる。あ
るいは、磁石のN極とN極、またはS極とS極を厚み方
向に対向させてもポリベンザゾール短繊維を面内方向に
揃えることができる。
On the other hand, in order to improve the thermal conductivity in a certain direction in the longitudinal direction and the horizontal direction or the horizontal direction in the plane of the heat conductive adhesive film, the N When the pole and the S pole are opposed to each other, the polybenzazole short fibers can be aligned in the in-plane direction. Alternatively, even if the N and N poles or the S and S poles of the magnet are opposed in the thickness direction, the polybenzazole short fibers can be aligned in the in-plane direction.

【0023】また、磁力線は必ずしも直線状でなくても
良く、曲線状や矩形、あるいは2方向以上であってもか
まわない。すなわち、任意の一定方向にポリベンザゾー
ル短繊維を配向させて熱伝導性の異方性を付与させるこ
とが可能である。また、磁石については必ずしも両側に
対向させる必要はなく、片側のみに配置した磁石によっ
ても原料組成物中のポリベンザゾール短繊維を配向させ
ることが可能である。外部磁場として使用する磁場発生
手段としては永久磁石でも電磁石でもコイルでも差し支
えないけれども、磁束密度としては0.05テスラ〜3
0テスラの範囲が実用的なポリベンザゾール短繊維の配
向が達成できる。
The lines of magnetic force are not necessarily linear, but may be curved, rectangular, or two or more directions. That is, the polybenzazole short fibers can be oriented in any given direction to impart anisotropy of thermal conductivity. Further, it is not always necessary to oppose both sides of the magnet, and it is possible to orient the short polybenzazole fibers in the raw material composition by using a magnet arranged only on one side. The magnetic field generating means used as an external magnetic field may be a permanent magnet, an electromagnet or a coil, but the magnetic flux density is 0.05 Tesla to 3 Tesla.
In the range of 0 Tesla, practical orientation of polybenzazole short fibers can be achieved.

【0024】また、本発明はポリベンザゾール短繊維の
非常に弱い異方性磁化率を利用するので、より強い磁場
雰囲気で、ポリベンザゾール短繊維を十分に配向させて
から、熱硬化反応や冷却させることによってマトリック
スの高分子を固化させる必要がある。配向しやすい好ま
しい磁束密度は0.5テスラ以上、さらに好ましくは1
テスラ以上である。
Further, the present invention utilizes the very weak anisotropic magnetic susceptibility of the polybenzazole short fiber, so that the polybenzazole short fiber is sufficiently oriented in a stronger magnetic field atmosphere before the heat curing reaction or the like. It is necessary to solidify the matrix polymer by cooling. The preferred magnetic flux density for easy orientation is 0.5 Tesla or more, more preferably 1 Tesla.
More than Tesla.

【0025】ポリベンザゾール短繊維と接着性高分子と
の濡れ性や接着性を向上させるために、ポリベンザゾー
ル短繊維の表面をあらかじめ脱脂や洗浄処理したり、紫
外線照射処理、コロナ放電処理、プラズマ処理、火炎処
理、イオン注入などの活性化処理を施すことが好まし
い。さらに、これらの表面処理後にシラン系やチタン
系、アルミニウム系などの通常のカップリング剤で処理
することによって、さらに多量のポリベンザゾール短繊
維を容易に分散混合しやすくなり、得られる熱伝導性接
着フィルムの一層の高熱伝導率化が達成できる。
In order to improve the wettability and adhesion between the polybenzazole short fiber and the adhesive polymer, the surface of the polybenzazole short fiber is previously degreased or washed, or subjected to ultraviolet irradiation treatment, corona discharge treatment, or the like. It is preferable to perform activation treatment such as plasma treatment, flame treatment, and ion implantation. Further, after these surface treatments, by treating with a normal coupling agent such as a silane-based, titanium-based, or aluminum-based material, a large amount of short polybenzazole fibers can be easily dispersed and mixed. Further higher thermal conductivity of the adhesive film can be achieved.

【0026】発熱する素子と伝熱部材間を、本発明の熱
伝導性接着フィルムで接着することによって本発明の電
子部品を製造することができる。伝熱部材としては、通
常の放熱器や冷却器、ヒートシンク、ヒートスプレッダ
ー、リードフレーム、ダイパッド、プリント基板、冷却
ファン、ヒートパイプ、筐体などが挙げられる。
The electronic component of the present invention can be manufactured by bonding the heat generating element and the heat transfer member with the heat conductive adhesive film of the present invention. Examples of the heat transfer member include ordinary radiators and coolers, heat sinks, heat spreaders, lead frames, die pads, printed boards, cooling fans, heat pipes, housings, and the like.

【0027】図1に本発明の熱伝導性接着フィルムをボ
ールグリッドアレイ型半導体パッケージ2と放熱器4の
接着に使用した電子部品の例を示す。図2に本発明の熱
伝導性接着フィルムをチップサイズ半導体パッケージ2
とプリント基板1の接着に使用した電子部品の例を示
す。図3に本発明の熱伝導性接着フィルムをピングリッ
ドアレイ型半導体パッケージ2とヒートシンク5の接着
に使用した電子部品の例を示す。図4に本発明の熱伝導
性接着フィルムを半導体チップ8とダイパッド7の接着
に使用した電子部品の例を示す。
FIG. 1 shows an example of an electronic component in which the heat conductive adhesive film of the present invention is used for bonding a ball grid array type semiconductor package 2 and a radiator 4. FIG. 2 shows the heat conductive adhesive film of the present invention in chip size semiconductor package 2.
An example of an electronic component used for bonding the printed circuit board 1 to the electronic component is shown. FIG. 3 shows an example of an electronic component in which the heat conductive adhesive film of the present invention is used for bonding the pin grid array type semiconductor package 2 and the heat sink 5. FIG. 4 shows an example of an electronic component using the heat conductive adhesive film of the present invention for bonding the semiconductor chip 8 and the die pad 7.

【0028】以下、実施例に基づき本発明をさらに詳し
く説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【実施例1】ビスフェノールA型エポキシ樹脂(油化シ
ェルエポキシ株式会社製:エピコート828)45重量
部、クレゾールノボラック型エポキシ樹脂(住友化学工
業株式会社製:ESCN001)15重量部、硬化剤と
してビスフェノールA型ノボラック樹脂(大日本インキ
化学工業株式会社製:LF2882)40重量部、硬化
促進剤として1−シアノエチル−2−メチルイミダゾー
ル(四国化成工業株式会社製:キュアゾール2PN−C
N)1重量部からなる接着剤の組成物(これをエポキシ
系固体接着剤とする)100重量部に同一重量部のメチ
ルエチルケトンを添加し、次いでポリベンザゾール短繊
維(東洋紡績株式会社製 ザイロンHM:直径11μ
m、長さ50μm)4重量部を混合し3本ロールで混練
してから真空脱泡した。
Example 1 45 parts by weight of a bisphenol A type epoxy resin (Epicoat 828 manufactured by Yuka Shell Epoxy), 15 parts by weight of a cresol novolak type epoxy resin (ESCN001 manufactured by Sumitomo Chemical Co., Ltd.), and bisphenol A as a curing agent 40 parts by weight of a novolak resin (manufactured by Dainippon Ink and Chemicals, Inc .: LF2882), 1-cyanoethyl-2-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd .: Cureazole 2PN-C) as a curing accelerator
N) To 100 parts by weight of an adhesive composition consisting of 1 part by weight (this is referred to as an epoxy-based solid adhesive), the same part by weight of methyl ethyl ketone is added, and then polybenzazole staple fiber (Zylon HM manufactured by Toyobo Co., Ltd.) : Diameter 11μ
m, 50 μm in length), 4 parts by weight were mixed and kneaded with three rolls, followed by vacuum defoaming.

【0029】得られた接着剤組成物を厚さ100μmの
片面離型処理したポリエチレンテレフタレートシート上
にドクターブレード法で塗布し、図5(1)〜図5
(3)のように厚み方向に磁束密度6テスラのN極とS
極が対向する磁場雰囲気で110℃で15分間加熱乾燥
し、ポリベンザゾール短繊維を配向させて、厚みが12
0μmのBステージ状態の熱伝導性接着フィルムを作製
した。得られた熱伝導性接着フィルムの厚み方向の熱伝
導率、90度引き剥がし強度、体積抵抗率を測定して結
果を表1に記した。熱伝導率はレーザーフラッシュ法で
測定した。90度引き剥がし強度は、JISC6471
に準じて厚さ35μmの銅箔と厚さ1.5mmのアルミ
ニウム板との間に挟み、圧力2MPa、170℃、30
分間加圧加熱して接着した試料で測定した。体積抵抗率
はJIS−K6911に準拠して測定した。
The adhesive composition obtained was applied on a 100 μm-thick single-sided release-treated polyethylene terephthalate sheet by a doctor blade method.
As shown in (3), the N pole and the S pole in the thickness direction have a magnetic flux density of 6 Tesla.
Heat drying at 110 ° C. for 15 minutes in a magnetic field atmosphere where the poles face each other to orient the polybenzazole short fibers to a thickness of 12
A heat conductive adhesive film in a B stage state of 0 μm was produced. The thermal conductivity, the 90-degree peel strength, and the volume resistivity of the obtained thermally conductive adhesive film in the thickness direction were measured, and the results are shown in Table 1. Thermal conductivity was measured by the laser flash method. 90 degree peeling strength is JISC6471
Sandwiched between a copper foil having a thickness of 35 μm and an aluminum plate having a thickness of 1.5 mm.
The measurement was performed on a sample adhered by heating under pressure for one minute. The volume resistivity was measured according to JIS-K6911.

【0030】[0030]

【実施例2】メチルメタクリレート30重量部、2−ヒ
ドロキシエチルメタクリレート40重量部、スチレン系
熱可塑性エラストマー(シェル化学株式会社製:クレイ
トンG1650)30重量部、硬化剤としてパーヘキサ
3M(日本油脂株式会社製)3重量部からなる固体状接
着剤の組成物(これをアクリル系固体接着剤とする)1
00重量部に同一重量部のトルエンとメチルエチルケト
ンの混合溶媒を添加し、次いでポリベンザゾール短繊維
(東洋紡績株式会社製 ザイロンHM:直径11μm、
長さ100μm)4重量部を混合し3本ロールで混練し
真空脱泡した。
Example 2 30 parts by weight of methyl methacrylate, 40 parts by weight of 2-hydroxyethyl methacrylate, 30 parts by weight of a styrene-based thermoplastic elastomer (Clayton G1650, manufactured by Shell Chemical Co., Ltd.), and Perhexa 3M (manufactured by NOF Corporation) as a curing agent ) 3 parts by weight of a solid adhesive composition (this is referred to as an acrylic solid adhesive) 1
A mixed solvent of the same parts by weight of toluene and methyl ethyl ketone was added to 00 parts by weight, and then polybenzazole staple fiber (Zylon HM manufactured by Toyobo Co., Ltd .: 11 μm in diameter,
4 parts by weight (length 100 μm) were mixed, kneaded with three rolls, and defoamed in vacuo.

【0031】得られた接着剤組成物を厚さ100μmの
片面離型処理したポリエチレンテレフタレートシート上
にバーコーター法で塗布し、厚み方向に磁束密度6テス
ラのN極とS極が対向する磁場雰囲気で120℃で20
分間加熱乾燥し、ポリベンザゾール短繊維を配向させ
て、厚みが120μmのBステージ状態の熱伝導性接着
フィルムを作製した。得られた熱伝導性接着フィルムの
熱伝導率および90度引き剥がし強度を測定して結果を
表1に記した。熱伝導率、90度引き剥がし強度、体積
抵抗率は実施例1と同様に評価した。
The obtained adhesive composition is applied on a 100 μm-thick single-sided release-treated polyethylene terephthalate sheet by a bar coater method, and a magnetic field atmosphere in which the N-pole and the S-pole having a magnetic flux density of 6 Tesla are opposed in the thickness direction. 20 at 120 ° C
After heating and drying for minutes, the polybenzazole short fibers were oriented to produce a B-staged thermally conductive adhesive film having a thickness of 120 μm. The thermal conductivity and peel strength at 90 degrees of the obtained thermal conductive adhesive film were measured, and the results are shown in Table 1. The thermal conductivity, 90 degree peel strength, and volume resistivity were evaluated in the same manner as in Example 1.

【0032】[0032]

【実施例3〜12】実施例1と同様に、表に記す配合組
成の実施例1と同様のエポキシ系固体状接着剤あるいは
実施例2と同様のアクリル系固体接着剤と、ポリベンザ
ゾール短繊維からなる組成物を使用し、表1に記す磁束
密度の条件下でポリベンザゾール短繊維を配向させて、
熱伝導性接着フィルムを作製した。なお、表1に記載し
た固体接着剤のポリイミドはポリイミド系接着剤、ウレ
タンはウレタン系接着剤、シリコーンは付加型シリコー
ンゴム系接着剤を使用した。熱伝導率、90度引き剥が
し強度、体積抵抗率は実施例1と同様に評価した。
Examples 3 to 12 Similarly to Example 1, the same epoxy-based solid adhesive as in Example 1 or the same acryl-based solid adhesive as in Example 2 having the composition shown in the table, and polybenzazole short Using a composition consisting of fibers, orienting the polybenzazole short fibers under the conditions of magnetic flux density described in Table 1,
A heat conductive adhesive film was produced. In addition, the polyimide of the solid adhesive shown in Table 1 used the polyimide adhesive, the urethane used the urethane adhesive, and the silicone used the addition type silicone rubber adhesive. The thermal conductivity, 90 degree peel strength, and volume resistivity were evaluated in the same manner as in Example 1.

【0033】[0033]

【比較例1】ビスフェノールA型エポキシ樹脂(油化シ
ェルエポキシ株式会社製:エピコート828)45重量
部、クレゾールノボラック型エポキシ樹脂(住友化学工
業株式会社製:ESCN001)15重量部、硬化剤と
してビスフェノールA型ノボラック樹脂(大日本インキ
化学工業株式会社製:LF2882)40重量部、硬化
促進剤として1−シアノエチル−2−メチルイミダゾー
ル(四国化成工業株式会社製:キュアゾール2PN−C
N)1重量部からなる接着剤の組成物(これをエポキシ
系固体接着剤とする)100重量部に同一重量部のメチ
ルエチルケトンを添加し、次いでポリベンザゾール短繊
維(東洋紡績株式会社製 ザイロンHM:直径11μ
m、長さ50μm)4重量部を混合し3本ロールで混練
してから真空脱泡した。
Comparative Example 1 45 parts by weight of a bisphenol A type epoxy resin (Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd.), 15 parts by weight of a cresol novolak type epoxy resin (ESCN001 manufactured by Sumitomo Chemical Co., Ltd.), and bisphenol A as a curing agent 40 parts by weight of a novolak resin (manufactured by Dainippon Ink and Chemicals, Inc .: LF2882), 1-cyanoethyl-2-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd .: Cureazole 2PN-C) as a curing accelerator
N) To 100 parts by weight of an adhesive composition consisting of 1 part by weight (this is referred to as an epoxy-based solid adhesive), the same part by weight of methyl ethyl ketone is added, and then polybenzazole staple fiber (Zylon HM manufactured by Toyobo Co., Ltd.) : Diameter 11μ
m, 50 μm in length), 4 parts by weight were mixed and kneaded with three rolls, followed by vacuum defoaming.

【0034】得られた組成物を厚さ100μmの片面離
型処理したポリエチレンテレフタレートシート上にドク
ターブレード法で塗布し、磁場を印加しないで110℃
で15分間加熱乾燥し、厚みが120μmのBステージ
状態の熱伝導性接着フィルムを作製した。熱伝導率、9
0度引き剥がし強度、体積抵抗率は実施例1と同様に評
価した。
The obtained composition was applied to a 100 μm-thick single-sided release-treated polyethylene terephthalate sheet by a doctor blade method, and was applied at 110 ° C. without applying a magnetic field.
For 15 minutes to produce a B-staged thermally conductive adhesive film having a thickness of 120 μm. Thermal conductivity, 9
The 0 degree peeling strength and the volume resistivity were evaluated in the same manner as in Example 1.

【0035】[0035]

【比較例2】ポリベンザゾール短繊維(東洋紡績株式会
社製 ザイロンHM:直径11μm、長さ100μm)
を2重量部、実施例1と同様のエポキシ系固体状接着剤
100重量部からなる組成物を使用し、実施例1と同様
に厚み方向に磁束密度0.2テスラのN極とS極が対向
する磁場雰囲気で110℃で15分間加熱乾燥し、厚み
が120μmのBステージ状態の熱伝導性接着フィルム
を作製した。熱伝導率、90度引き剥がし強度、体積抵
抗率は実施例1と同様に評価した。
Comparative Example 2 Polybenzazole short fibers (Zylon HM manufactured by Toyobo Co., Ltd .: diameter 11 μm, length 100 μm)
Was used, a composition consisting of 2 parts by weight and 100 parts by weight of the same epoxy-based solid adhesive as in Example 1 was used, and the N and S poles having a magnetic flux density of 0.2 Tesla in the thickness direction were used in the same manner as in Example 1. The resultant was dried by heating at 110 ° C. for 15 minutes in an opposed magnetic field atmosphere to produce a B-stage thermally conductive adhesive film having a thickness of 120 μm. The thermal conductivity, 90 degree peel strength, and volume resistivity were evaluated in the same manner as in Example 1.

【0036】[0036]

【比較例3、4】比較例1と同様に、表1に記す配合組
成の固体状接着剤とポリベンザゾール短繊維からなる組
成物を調製し、比較例1と同様に磁場を与えずに熱伝導
性接着フィルムを作製した。熱伝導率、90度引き剥が
し強度、体積抵抗率は実施例1と同様に評価した。
Comparative Examples 3 and 4 In the same manner as in Comparative Example 1, a composition comprising a solid adhesive having the composition shown in Table 1 and polybenzazole short fibers was prepared. A heat conductive adhesive film was produced. The thermal conductivity, 90 degree peel strength, and volume resistivity were evaluated in the same manner as in Example 1.

【0037】[0037]

【実施例13】図6(1)〜(4)に本実施例における
製造方法を示す。プリント基板1に実装したボールグリ
ッドアレイ型の半導体パッケージ2上に、本発明の実施
例5のシリコーン系熱伝導性接着フィルム3を使用し、
さらに上部に放熱器4を配置し、加圧加熱して接着され
た電子部品を作製した。図6(4)は用いた熱伝導性接
着フィルム中のポリベンザゾール短繊維の配向した状態
を示す概念図である。硬化した熱伝導性フィルム中のポ
リベンザゾール短繊維は厚み方向に揃って配向してい
た。この電子部品に通電して10分後の熱抵抗値を測定
したところ、0.28℃/Wであった。
Embodiment 13 FIGS. 6 (1) to 6 (4) show a manufacturing method in this embodiment. Using a silicone-based thermally conductive adhesive film 3 of Example 5 of the present invention on a ball grid array type semiconductor package 2 mounted on a printed circuit board 1,
Further, the radiator 4 was disposed on the upper part, and an electronic component bonded by heating under pressure was manufactured. FIG. 6D is a conceptual diagram showing an oriented state of the polybenzazole short fibers in the used heat conductive adhesive film. The polybenzazole short fibers in the cured thermally conductive film were aligned in the thickness direction. The electric resistance of the electronic component was measured after 10 minutes from the energization, and was found to be 0.28 ° C./W.

【0038】[0038]

【比較例5】実施例13と同様に、プリント基板に実装
したボールグリッドアレイ型の半導体パッケージ上に、
比較例3のシリコーン系熱伝導性接着フィルムを使用
し、さらに上部に放熱器4を配置し加圧加熱して接着さ
れた、図7に示す電子部品を作製した。硬化した熱伝導
性接着フィルム中のポリベンザゾール短繊維は図7のよ
うにランダムに分散していた。実施例13と同様に、こ
の電子部品に通電して10分後の熱抵抗値を測定したと
ころ、0.40℃/Wであった。
Comparative Example 5 As in Example 13, a ball grid array type semiconductor package mounted on a printed circuit board was mounted on a printed circuit board.
An electronic component shown in FIG. 7 was produced by using the silicone-based heat conductive adhesive film of Comparative Example 3, further arranging a radiator 4 on the upper part, and applying pressure and heat to bond the radiator. The polybenzazole short fibers in the cured thermally conductive adhesive film were randomly dispersed as shown in FIG. As in Example 13, the electric resistance of the electronic component was measured after 10 minutes from the energization, and it was 0.40 ° C./W.

【0039】[0039]

【実施例14】図8(1)〜(5)に本実施例における
製造方法を示す。リードフレーム6のダイパッド7と半
導体チップ8の間に、本発明の実施例1のエポキシ系熱
伝導性接着フィルム3を挟み、図8(3)のように磁石
12で厚み方向に磁束密度6テスラの磁場を与えながら
加熱硬化させた。さらにボンディングワイヤー9で半導
体チップ8の電極部とリードフレーム11のリード部を
電気的に接続し、エポキシ系封止剤10でトランスファ
ーモールドして電子部品を製造した。図8(5)は用い
た熱伝導性接着フィルム中のポリベンザゾール短繊維の
配向した状態を示す概念図である。硬化した熱伝導性フ
ィルム中のポリベンザゾール短繊維は厚み方向に揃って
配向していた。この電子部品に通電して10分後の熱抵
抗値を測定したところ、0.31℃/Wであった。
Embodiment 14 FIGS. 8 (1) to 8 (5) show a manufacturing method in this embodiment. The epoxy-based thermally conductive adhesive film 3 according to the first embodiment of the present invention is sandwiched between the die pad 7 of the lead frame 6 and the semiconductor chip 8, and the magnetic flux density is 6 Tesla in the thickness direction by the magnet 12 as shown in FIG. And cured by applying a magnetic field. Further, the electrode part of the semiconductor chip 8 and the lead part of the lead frame 11 were electrically connected with the bonding wire 9, and transfer-molded with the epoxy-based sealant 10 to manufacture an electronic component. FIG. 8 (5) is a conceptual diagram showing an oriented state of polybenzazole short fibers in the used heat conductive adhesive film. The polybenzazole short fibers in the cured thermally conductive film were aligned in the thickness direction. When a thermal resistance value was measured 10 minutes after energizing the electronic component, it was 0.31 ° C./W.

【0040】[0040]

【比較例6】実施例14と同様に、リードフレーム6の
ダイパッド7と半導体チップ8を、比較例1のエポキシ
系熱伝導性接着フィルム3で加熱硬化させた。さらにボ
ンディングワイヤー9で半導体チップ8の電極部とリー
ドフレーム11のリード部を電気的に接続し、エポキシ
系封止剤10でトランスファーモールドして、図9に示
す電子部品を製造した。硬化した熱伝導性接着フィルム
中のポリベンザゾール短繊維は図9のようにランダムに
分散していた。実施例14と同様に、この電子部品に通
電して10分後の熱抵抗値を測定したところ、0.45
℃/Wであった。
Comparative Example 6 As in Example 14, the die pad 7 of the lead frame 6 and the semiconductor chip 8 were cured by heating with the epoxy-based heat conductive adhesive film 3 of Comparative Example 1. Further, the electrode part of the semiconductor chip 8 and the lead part of the lead frame 11 were electrically connected with the bonding wire 9 and were transfer-molded with the epoxy-based sealant 10 to produce the electronic component shown in FIG. The polybenzazole short fibers in the cured heat conductive adhesive film were randomly dispersed as shown in FIG. As in the case of Example 14, the electronic component was energized, and the thermal resistance value after 10 minutes was measured.
° C / W.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】比較例4はポリベンザゾール短繊維を配
合していない例で熱伝導率が小さい。比較例1、比較例
3はポリベンザゾール短繊維を配合した熱伝導性接着フ
ィルムの例であるけれども、磁場を印加せず一定方向に
ポリベンザゾール短繊維配向していないので熱伝導率が
小さくて放熱性が劣る。比較例2は磁場を印加している
けれどもポリベンザゾール短繊維の配向が不十分なので
熱伝導率が小さい。
Comparative Example 4 is an example in which polybenzazole short fibers are not blended, and has a low thermal conductivity. Comparative Examples 1 and 3 are examples of a heat conductive adhesive film blended with polybenzazole short fibers, but the heat conductivity is small because the polybenzazole short fibers are not oriented in a certain direction without applying a magnetic field. And heat radiation is inferior. In Comparative Example 2, although a magnetic field was applied, the thermal conductivity was small because the orientation of the short polybenzazole fibers was insufficient.

【0043】実施例1〜12のように、本発明の熱伝導
性接着フィルムはポリベンザゾール短繊維を厚み方向の
一定方向に配向したものであり、熱伝導率が大きく放熱
性にすぐれ、かつ電気絶縁性で引剥がし強度も良好であ
る。また、実施例13、14で明らかなように、本発明
のポリベンザゾール短繊維が一定方向に配向した熱伝導
性接着フィルムで接着した電子部品は、発熱量が大きい
半導体パッケージとヒートシンクなどの放熱器との接
着、あるいは半導体チップとダイパッド部との接着に応
用し熱抵抗が小さくて放熱特性にすぐれる有用な電子部
品を提供することができる。
As in Examples 1 to 12, the heat conductive adhesive film of the present invention is obtained by orienting polybenzazole short fibers in a certain direction in the thickness direction, and has a large heat conductivity and excellent heat dissipation. It has electrical insulation and good peel strength. Further, as is apparent from Examples 13 and 14, the electronic component in which the polybenzazole short fiber of the present invention is bonded with the thermally conductive adhesive film oriented in a certain direction is provided with a semiconductor package having a large calorific value and heat radiation such as a heat sink. It is possible to provide a useful electronic component having a small thermal resistance and excellent heat radiation characteristics by applying to bonding to a device or bonding between a semiconductor chip and a die pad portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱伝導性接着フィルムを使用した電子
部品の例
FIG. 1 shows an example of an electronic component using the heat conductive adhesive film of the present invention.

【図2】本発明の熱伝導性接着フィルムを使用した電子
部品の例
FIG. 2 shows an example of an electronic component using the heat conductive adhesive film of the present invention.

【図3】本発明の熱伝導性接着フィルムを使用した電子
部品の例
FIG. 3 shows an example of an electronic component using the heat conductive adhesive film of the present invention.

【図4】本発明の熱伝導性接着フィルムを使用した電子
部品の例
FIG. 4 shows an example of an electronic component using the heat conductive adhesive film of the present invention.

【図5】本発明の熱伝導性接着フィルムを製造する方法
を示す概念図
FIG. 5 is a conceptual diagram showing a method for producing the heat conductive adhesive film of the present invention.

【図6】図1の本発明の電子部品を製造する方法を示す
概念図
FIG. 6 is a conceptual diagram showing a method for manufacturing the electronic component of the present invention in FIG. 1;

【図7】従来のポリベンザゾール短繊維が配向していな
い熱伝導性接着フィルムを使用した電子部品の例
FIG. 7 shows an example of a conventional electronic component using a thermally conductive adhesive film in which polybenzazole short fibers are not oriented.

【図8】図4の本発明の電子部品を製造する方法を示す
概念図
8 is a conceptual diagram showing a method for manufacturing the electronic component of the present invention in FIG.

【図9】従来のポリベンザゾール短繊維が配向していな
い熱伝導性接着フィルムを使用した電子部品の例
FIG. 9 is an example of a conventional electronic component using a thermally conductive adhesive film in which polybenzazole short fibers are not oriented.

【符号の説明】[Explanation of symbols]

1 プリント基板 2 半導体パッケージ 3 熱伝導性接着フィルム 4 放熱器 5 ヒートシンク 6 リードフレーム 7 ダイパッド 8 半導体チップ 9 ボンディングワイヤー 10 封止剤 11 ポリエチレンテレフタレートシート 12 磁石 13 配向しているポリベンザゾール短繊維 14 配向していないポリベンザゾール短繊維 DESCRIPTION OF SYMBOLS 1 Printed circuit board 2 Semiconductor package 3 Heat conductive adhesive film 4 Heat sink 5 Heat sink 6 Lead frame 7 Die pad 8 Semiconductor chip 9 Bonding wire 10 Sealant 11 Polyethylene terephthalate sheet 12 Magnet 13 Oriented polybenzazole short fiber 14 Orientation Polybenzazole staple fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飛田 雅之 東京都北区田端5丁目10番5号ポリマテッ ク株式会社R&Dセンター Fターム(参考) 4J004 AA05 AA06 AA08 AA09 AA10 AA11 AA13 AA14 AB03 AB04 AB05 AB07 BA02 FA05 GA01 5E322 AA01 AA11 AB11 FA05 5F036 AA01 BA23 BC05 BC23 5F047 AA11 BA23 BA34 BA54 BB13 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Tobita 5-10-5 Tabata, Kita-ku, Tokyo R & D Center F-term (reference) 4J004 AA05 AA06 AA08 AA09 AA10 AA11 AA13 AA14 AB03 AB04 AB05 AB07 BA02 FA05 GA01 5E322 AA01 AA11 AB11 FA05 5F036 AA01 BA23 BC05 BC23 5F047 AA11 BA23 BA34 BA54 BB13

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ポリベンザゾール短繊維が固体状接着剤中
に一定方向に配向されていることを特徴とする熱伝導性
接着フィルム
1. A thermally conductive adhesive film wherein polybenzazole short fibers are oriented in a fixed direction in a solid adhesive.
【請求項2】ポリベンザゾール短繊維の長さが1mm以
下、含有量が固体状接着剤100重量部に対して0.1
〜50重量部である請求項1に記載の熱伝導性接着フィ
ルム
2. A polybenzazole short fiber having a length of 1 mm or less and a content of 0.1 to 100 parts by weight of a solid adhesive.
The heat conductive adhesive film according to claim 1, wherein the amount is from 50 to 50 parts by weight.
【請求項3】固体状接着剤が、エポキシ系、ポリイミド
系、アクリル系、ウレタン系、ビニル系あるいはシリコ
ーン系より選ばれる少なくとも1種である請求項1ある
いは請求項2に記載の熱伝導性接着フィルム
3. The thermally conductive adhesive according to claim 1, wherein the solid adhesive is at least one selected from epoxy, polyimide, acrylic, urethane, vinyl, and silicone. the film
【請求項4】固体状接着剤が、熱硬化性であり、かつ半
硬化状態である請求項1、2あるいは3に記載の熱伝導
性接着フィルム
4. The heat conductive adhesive film according to claim 1, wherein the solid adhesive is thermosetting and in a semi-cured state.
【請求項5】固体状接着剤が、熱可塑性エラストマー系
である請求項1あるいは請求項2に記載の熱伝導性接着
フィルム
5. The heat conductive adhesive film according to claim 1, wherein the solid adhesive is a thermoplastic elastomer.
【請求項6】ポリベンザゾール短繊維を含む接着剤組成
物に磁場を印加させて組成物中のポリベンザゾール短繊
維を一定方向に配向させたのちに固化させることを特徴
とする熱伝導性接着フィルムの製造方法
6. Thermal conductivity characterized by applying a magnetic field to an adhesive composition containing polybenzazole staple fibers to orient the polybenzazole staple fibers in the composition in a certain direction and then to solidify. Production method of adhesive film
【請求項7】ポリベンザゾール短繊維の長さが1mm以
下、含有量が固体状接着剤100重量部に対して0.1
〜50重量部である請求項6に記載の熱伝導性接着フィ
ルムの製造方法
7. A polybenzazole short fiber having a length of 1 mm or less and a content of 0.1 to 100 parts by weight of the solid adhesive.
The method for producing a heat conductive adhesive film according to claim 6, wherein the amount is from 50 to 50 parts by weight.
【請求項8】発熱する素子と伝熱部材間を、ポリベンザ
ゾール短繊維が一定方向に配向した熱伝導性接着フィル
ムで接着したことを特徴とする電子部品
8. An electronic component wherein a heat-generating element and a heat transfer member are bonded with a heat conductive adhesive film in which polybenzazole short fibers are oriented in a predetermined direction.
【請求項9】 熱伝導性接着フィルム中のポリベンザゾ
ール短繊維の長さが1mm以下、含有量が固体状接着剤
100重量部に対して0.1〜50重量部である請求項
8に記載の電子部品
9. The method according to claim 8, wherein the length of the polybenzazole short fibers in the heat conductive adhesive film is 1 mm or less, and the content is 0.1 to 50 parts by weight based on 100 parts by weight of the solid adhesive. Electronic components described
JP25654099A 1999-09-10 1999-09-10 Heat conductive adhesive film and its production and electronic part Pending JP2001081418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25654099A JP2001081418A (en) 1999-09-10 1999-09-10 Heat conductive adhesive film and its production and electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25654099A JP2001081418A (en) 1999-09-10 1999-09-10 Heat conductive adhesive film and its production and electronic part

Publications (1)

Publication Number Publication Date
JP2001081418A true JP2001081418A (en) 2001-03-27

Family

ID=17294059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25654099A Pending JP2001081418A (en) 1999-09-10 1999-09-10 Heat conductive adhesive film and its production and electronic part

Country Status (1)

Country Link
JP (1) JP2001081418A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG96210A1 (en) * 2000-04-10 2003-05-23 Jsr Corp Composite sheet and process for producing the same
JP2004288755A (en) * 2003-03-20 2004-10-14 Toshiba Corp Inverter equipment and power semiconductor device
EP1531661A1 (en) * 2003-11-11 2005-05-18 Sumitomo Wiring Systems, Ltd. Circuit assembly and method for producing the same
JP2007169568A (en) * 2005-12-26 2007-07-05 Nitto Shinko Kk Thermally conductive adhesive and thermally conductive adhesive sheet using the thermally conductive adhesive
KR20140147419A (en) * 2013-06-19 2014-12-30 주식회사 엘지화학 Adhesive film and preparation method of adhesive film using electric field
CN104641478A (en) * 2012-09-24 2015-05-20 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic component and method for producing an optoelectronic component
JP2017188519A (en) * 2016-04-04 2017-10-12 東洋紡株式会社 Metal base circuit board and manufacturing method of the same
CN109192693A (en) * 2018-08-22 2019-01-11 京东方科技集团股份有限公司 A kind of board fixing structure and base-board conveying device
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029939B2 (en) * 1972-07-05 1975-09-27
JPH05248788A (en) * 1991-03-04 1993-09-24 Hitachi Ltd Heat transfer apparatus, electronic apparatus, semiconductor device and thermal conductive compound
JPH06299129A (en) * 1993-04-12 1994-10-25 Nec Corp Adhesive for electronic device
JPH09255871A (en) * 1996-03-26 1997-09-30 Toyobo Co Ltd Thermoplastic resin composition and its molding product
JPH1117369A (en) * 1997-06-24 1999-01-22 Toyobo Co Ltd Radiating member and radiator using it
JP2000068429A (en) * 1998-08-19 2000-03-03 Toyobo Co Ltd Heat conducting member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029939B2 (en) * 1972-07-05 1975-09-27
JPH05248788A (en) * 1991-03-04 1993-09-24 Hitachi Ltd Heat transfer apparatus, electronic apparatus, semiconductor device and thermal conductive compound
JPH06299129A (en) * 1993-04-12 1994-10-25 Nec Corp Adhesive for electronic device
JPH09255871A (en) * 1996-03-26 1997-09-30 Toyobo Co Ltd Thermoplastic resin composition and its molding product
JPH1117369A (en) * 1997-06-24 1999-01-22 Toyobo Co Ltd Radiating member and radiator using it
JP2000068429A (en) * 1998-08-19 2000-03-03 Toyobo Co Ltd Heat conducting member

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG96210A1 (en) * 2000-04-10 2003-05-23 Jsr Corp Composite sheet and process for producing the same
JP2004288755A (en) * 2003-03-20 2004-10-14 Toshiba Corp Inverter equipment and power semiconductor device
EP1531661A1 (en) * 2003-11-11 2005-05-18 Sumitomo Wiring Systems, Ltd. Circuit assembly and method for producing the same
JP2007169568A (en) * 2005-12-26 2007-07-05 Nitto Shinko Kk Thermally conductive adhesive and thermally conductive adhesive sheet using the thermally conductive adhesive
CN104641478A (en) * 2012-09-24 2015-05-20 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic component and method for producing an optoelectronic component
JP2015530750A (en) * 2012-09-24 2015-10-15 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic device and method of manufacturing optoelectronic device
US9722159B2 (en) 2012-09-24 2017-08-01 Osram Opto Semiconductors Gmbh Optoelectronic component with a pre-oriented molecule configuration and method for producing an optoelectronic component with a pre-oriented molecule configuration
KR20140147419A (en) * 2013-06-19 2014-12-30 주식회사 엘지화학 Adhesive film and preparation method of adhesive film using electric field
KR101630012B1 (en) 2013-06-19 2016-06-13 주식회사 엘지화학 Adhesive film and preparation method of adhesive film using electric field
JP2017188519A (en) * 2016-04-04 2017-10-12 東洋紡株式会社 Metal base circuit board and manufacturing method of the same
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
CN109192693A (en) * 2018-08-22 2019-01-11 京东方科技集团股份有限公司 A kind of board fixing structure and base-board conveying device

Similar Documents

Publication Publication Date Title
JP4528397B2 (en) Bonding method and electronic component
US6663969B2 (en) Heat conductive adhesive film and manufacturing method thereof and electronic component
JP2000281995A (en) Thermally conductive adhesive film and semiconductor device
US7041535B2 (en) Power module and method of manufacturing the same
JP7053579B2 (en) Heat transfer member and heat dissipation structure including it
US6660566B2 (en) Heat conductive molded body and manufacturing method thereof and semiconductor device
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
US20070001292A1 (en) Heat radiation member and production method for the same
JP2000195998A (en) Heat conductive sheet, its manufacture, and semiconductor device
JP2000191987A (en) Thermally conductive adhesive film and semiconductive device
US20020197923A1 (en) Thermally conductive molded article and method of making the same
JP2002121404A (en) Heat-conductive polymer sheet
JP2002146672A (en) Heat conductive filler, heat conductive adhesive and semiconductor device
WO2014133991A1 (en) High thermal conductivity prepreg, printed wiring board and multilayer printed wiring board using the prepreg, and semiconductor device using the multilayer printed wiring board
JP2011100959A (en) Flexible board, flexible board module, and method for manufacturing both
JP2001081418A (en) Heat conductive adhesive film and its production and electronic part
JP2017092345A (en) Heat conduction sheet and method of manufacturing the same, and semiconductor device
JP3830860B2 (en) Power module and manufacturing method thereof
JP2000273426A (en) Thermal conductive adhesive, bonding and semiconductor device
JP4272767B2 (en) Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same
JP2000191998A (en) Thermally conductive adhesive, method of adhesion and semiconductor device
JP4709339B2 (en) Thermally conductive adhesive, bonding method, and electronic component
CN112602190A (en) Method for manufacturing semiconductor device and heat conductive sheet
JP2007084704A (en) Resin composition and circuit board and package using the same
KR102068493B1 (en) Thermal diffusion sheet and the manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100827