JP2017188519A - Metal base circuit board and manufacturing method of the same - Google Patents

Metal base circuit board and manufacturing method of the same Download PDF

Info

Publication number
JP2017188519A
JP2017188519A JP2016074900A JP2016074900A JP2017188519A JP 2017188519 A JP2017188519 A JP 2017188519A JP 2016074900 A JP2016074900 A JP 2016074900A JP 2016074900 A JP2016074900 A JP 2016074900A JP 2017188519 A JP2017188519 A JP 2017188519A
Authority
JP
Japan
Prior art keywords
metal base
circuit board
insulating layer
base circuit
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016074900A
Other languages
Japanese (ja)
Inventor
明紀 恵島
Akinori Ejima
明紀 恵島
吉拡 鶴野
Kichikaku Tsuruno
吉拡 鶴野
久人 小林
Hisato Kobayashi
久人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016074900A priority Critical patent/JP2017188519A/en
Publication of JP2017188519A publication Critical patent/JP2017188519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable metal base circuit board which is excellent in thermal conductivity and electric insulation and is useful as a printed wiring board for electronic circuits handling large electric power or a mounting board for heat generating electronic elements.SOLUTION: In a metal base circuit board composed of an insulating layer sandwiched between a circuit foil and a metal base, by containing organic short fibers having thermal conductivity in a longitudinal direction of the insulating layer of 50 W/mK or more, and a fiber diameter of 3 μm or more and 50 μm or less in a state oriented in an upright direction with respect to the metal base surface, a metal base circuit board that is compatible with electrical insulation and high heat dissipation is obtained.SELECTED DRAWING: None

Description

本発明は、プリント配線板に用いられる金属ベース基板とその製造方法に関する。 The present invention relates to a metal base substrate used for a printed wiring board and a manufacturing method thereof.

近年、高電圧で駆動するパワートランジスタやハイブリッドIC(Integrated Circuit)を高密度に実装備する例が増加し、放熱設計の問題が重要になっているため放熱性に優れた金属ベース基板が使用されるようになってきた。また、屋外で使用されるケースも増えてきており、絶縁層だけでなく、表面へコーティングする樹脂(ソルダーレジスト)の耐湿性や絶縁性等の信頼性向上も求められており、それに対応するコーティング樹脂が開示されている(特許文献1参照)。   In recent years, examples of high-density power transistors and hybrid ICs (Integrated Circuits) that are driven at high voltages have increased, and the problem of heat dissipation design has become important, so a metal base substrate with excellent heat dissipation has been used. It has come to be. In addition, the number of cases used outdoors is increasing, and not only the insulating layer but also the improvement in reliability such as moisture resistance and insulation of the resin (solder resist) to be coated on the surface is required. Resin is disclosed (refer patent document 1).

しかしながら、本発明者の検討結果によれば、耐湿性が良好とされるコーティング樹脂(ソルダーレジスト)を塗工しても、耐湿試験時の電気特性は満足するレベルにないことが確認されている。   However, according to the examination results of the present inventors, it has been confirmed that even if a coating resin (solder resist) that is considered to have good moisture resistance is applied, the electrical properties during the moisture resistance test are not at a satisfactory level. .

また、このようなコーティング樹脂は、熱伝導性に乏しく、実装部品から発せられる熱を断熱してしまい、悪影響を及ぼすことが確認されている。   In addition, it has been confirmed that such a coating resin has poor thermal conductivity and insulates the heat generated from the mounted components, thereby adversely affecting the coating resin.

また、このようなコーティング樹脂は、塗工後、UV(紫外線)にて露光し、不要部分を現像液にて除去するとの製法が一般的であり、樹脂組成もエポキシ樹脂とアクリル樹脂を併用する系となるため、耐熱および耐湿といった絶縁信頼性に劣ることが確認されている。   In addition, such a coating resin is generally produced by applying UV (ultraviolet rays) after coating and removing unnecessary portions with a developer, and the resin composition also uses an epoxy resin and an acrylic resin together. Since it is a system, it has been confirmed that the insulation reliability such as heat resistance and moisture resistance is inferior.

一方、特許文献2では、複数の粒径を有する無機フィラーを高充填することにより、高い放熱性を実現し、かつ高湿度に耐えうる金属ベース回路基板が開示されている。 On the other hand, Patent Document 2 discloses a metal base circuit board that achieves high heat dissipation and can withstand high humidity by highly filling an inorganic filler having a plurality of particle sizes.

しかしながら、本発明者の検討結果によれば、特許文献2の発明による絶縁層は、無機フィラーの高充填により放熱性は高くなるものの、熱伝達効率が悪く、フィラーを高充填しているため、硬く、脆い材料となり、耐衝撃性が悪くなる。   However, according to the examination results of the present inventors, the insulating layer according to the invention of Patent Document 2 has high heat dissipation due to high filling of the inorganic filler, but has poor heat transfer efficiency and high filling of the filler. Hard and brittle material, resulting in poor impact resistance.

特開2007−224169号公報JP 2007-224169 A 特開2009−164540号公報JP 2009-164540 A

そこで、本発明の目的は、熱伝達方向に熱伝導性が熱伝達方向に熱伝導性が優れた金属ベース回路基盤を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a metal base circuit board having excellent heat conductivity in the heat transfer direction and excellent heat conductivity in the heat transfer direction.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
[1]回路箔と金属ベースに挟まれた絶縁層からなる金属ベース回路基板において、前記絶縁層に長さ方向の熱伝導率が50W/mK以上であり、繊維径が3μm以上50μm以下である有機短繊維が金属ベース面に対して直立方向に配向された状態で含有されていることを特徴とする金属ベース回路基板。
「2」前記絶縁層中に含有されている有機短繊維の、金属ベース面に対する配向角度が60°から120°の範囲の傾きである本数が、全本数の50%以上であることを特徴とする[1]記載の金属ベース回路基板。
[3]前記金属ベース回路基板の面積が500平方cm以上であることを特徴とする[1]または[2]に記載の金属ベース回路基板
「4」金属ベースまたは回路箔のいずれかに、静電植毛により前記有機短繊維を直立させる工程を含む[1]から[3]のいずれかに記載の金属ベース回路基板を製造する方法。
[5]少なくとも、あらかじめ接着剤を塗布した金属ベース、またはあらかじめ接着剤を塗布した回路箔を用いる[4]に記載の金属ベース回路基板の製造方法。
[6]長さ方向の熱伝導率が50W/mK以上であり、繊維径が3μm以上50μm以下である有機短繊維が厚さ方向に配向された状態で含有されている絶縁層に回路箔と金属ベースを接着することによる[1]から[3]のいずれかに記載の金属ベース回路基板を製造する方法。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention.
That is, this invention consists of the following structures.
[1] In a metal base circuit board comprising an insulating layer sandwiched between a circuit foil and a metal base, the insulating layer has a thermal conductivity in the length direction of 50 W / mK or more and a fiber diameter of 3 μm or more and 50 μm or less. An organic short fiber is contained in a state of being oriented in an upright direction with respect to a metal base surface.
“2” The number of organic short fibers contained in the insulating layer having an inclination angle in the range of 60 ° to 120 ° with respect to the metal base surface is 50% or more of the total number. The metal base circuit board according to [1].
[3] The metal base circuit board “4” according to [1] or [2], wherein the area of the metal base circuit board is 500 square centimeters or more. The method of manufacturing the metal base circuit board in any one of [1] to [3] including the process of making the said organic short fiber stand upright by electric flocking.
[5] The method for producing a metal base circuit board according to [4], wherein at least a metal base previously coated with an adhesive or a circuit foil previously coated with an adhesive is used.
[6] A circuit foil and an insulating layer containing organic short fibers having a thermal conductivity in the length direction of 50 W / mK or more and a fiber diameter of 3 μm or more and 50 μm or less oriented in the thickness direction The method for producing a metal base circuit board according to any one of [1] to [3], wherein the metal base is bonded.

本発明の金属ベース回路基板は、絶縁層部に特定の有機短繊維を厚さ方向に配向させた方向で含有することにより、絶縁層の放熱性能を維持したまま、さらに高信頼性を有する金属ベース回路基板を提供することができる。
絶縁層に繊維を組み合わせる手法はプリント配線板では広く行われている。しかしながら一般のプリント配線板に使用されるガラス繊維は熱伝導率が低く、絶縁層の放熱特性を高める上では効果が得られない。
本発明では、特定の有機短繊維を絶縁層の厚さ方向に配向させて含有することにより高い放熱性を実現する効果を得る。さらに驚くべき事には、かかる金属ベース回路基板を製造する上において、厚さ方向に繊維を配向させているにもかかわらず、回路箔と金属ベースの接合をスムーズに行うことが出来る。
本発明では金属表面に静電植毛を用いて短繊維を縦方向に配列しマトリクス樹脂で充填固定化して絶縁層とした後に対向する側の金属面とで挟むことによって金属ベース回路基板とするが、静電植毛で短繊維を基板面上に縦方向に配向させた場合、必ずしもすべての短繊維が基板に接触した状態で配向・配列されるわけではなく、少なくない割合の短繊維が、基板から離れた状態で配列されてしまう。従って短繊維を配列した面は繊維がばらばらに飛び出した状態となる。この様な状態では、マトリクス樹脂で短繊維間を充填し対向面と挟んで固定する場合に飛び出した繊維が接合の障害となる。また飛び出した繊維間の残存気体によってボイドが残るなどの不具合が生じる。
しかしながら、本発明の有機短繊維は、引っ張り方向の弾性率に対して圧縮方向の弾性率が小さいため、厚さ方向の圧縮により容易に変形し、厚さ方向の十分な配向度を維持したまま金属基板間を絶縁層として充填できるため、ボイドなどの無い、信頼性に優れた金属ベース回路基板を得ることができる。
The metal base circuit board of the present invention contains a specific organic short fiber in the insulating layer portion in a direction oriented in the thickness direction, thereby maintaining the heat dissipation performance of the insulating layer and further improving the reliability. A base circuit board can be provided.
A technique for combining fibers with an insulating layer is widely used in printed wiring boards. However, the glass fiber used for a general printed wiring board has a low thermal conductivity, and an effect cannot be obtained in enhancing the heat dissipation characteristics of the insulating layer.
In this invention, the effect of implement | achieving high heat dissipation is acquired by containing the specific organic short fiber oriented in the thickness direction of an insulating layer. Further surprisingly, in manufacturing such a metal base circuit board, the circuit foil and the metal base can be smoothly joined despite the fact that the fibers are oriented in the thickness direction.
In the present invention, the metal base circuit board is obtained by arranging the short fibers in the vertical direction using electrostatic flocking on the metal surface, filling and fixing with a matrix resin to form an insulating layer, and sandwiching between the opposing metal surfaces. When short fibers are oriented in the vertical direction on the substrate surface by electrostatic flocking, not all short fibers are necessarily oriented and arranged in contact with the substrate. It will be arranged away from. Accordingly, the surface on which the short fibers are arranged is in a state in which the fibers are scattered apart. In such a state, when the short fibers are filled with the matrix resin and fixed with being sandwiched between the opposing surfaces, the protruding fibers become an obstacle to bonding. In addition, defects such as voids remain due to the residual gas between the jumped fibers.
However, since the organic short fiber of the present invention has a smaller elastic modulus in the compression direction than that in the tensile direction, it is easily deformed by compression in the thickness direction and maintains a sufficient degree of orientation in the thickness direction. Since the space between the metal substrates can be filled as an insulating layer, a highly reliable metal base circuit board free from voids can be obtained.

本発明の絶縁層に用いるバインダ樹脂としては、耐熱性や熱安定性に優れることが好ましく、使用樹脂を適切に選択することで、これらの物性を所望の範囲に調製することが可能である。また、密着性を考慮して、柔軟性に優れる樹脂もしくは接着性を有する樹脂を選定することが好ましい。例えば、柔軟性に優れる材質としては、シリコーン系樹脂、アクリル系樹脂、ウレタン系樹脂、EPDM、ポリカーボネート系樹脂が挙げられ、接着性を有する材質としては、熱可塑性樹脂や熱硬化性樹脂の半硬化状態のものが挙げられる。柔軟性に優れる材質としては、特にヒートサイクルによる物性変化が少なく劣化しにくいシリコーン系樹脂が好ましい。接着性を有する材質としては、発熱体との接着界面での耐熱衝撃性の観点から衝撃吸収性の良いウレタン系樹脂が好ましい。また難燃性の材質を選択することで難燃性を付与することも可能である。   The binder resin used in the insulating layer of the present invention is preferably excellent in heat resistance and thermal stability, and these physical properties can be adjusted to a desired range by appropriately selecting the resin used. In view of adhesion, it is preferable to select a resin having excellent flexibility or a resin having adhesiveness. For example, examples of materials having excellent flexibility include silicone resins, acrylic resins, urethane resins, EPDM, and polycarbonate resins, and examples of materials having adhesive properties include semi-curing of thermoplastic resins and thermosetting resins. The thing of a state is mentioned. As a material excellent in flexibility, a silicone resin that is less susceptible to deterioration due to a change in physical properties due to heat cycle is particularly preferable. The material having adhesiveness is preferably a urethane-based resin having good shock absorption from the viewpoint of thermal shock resistance at the bonding interface with the heating element. It is also possible to impart flame retardancy by selecting a flame retardant material.

熱伝導性向上のために、無機フィラーを絶縁層中に添加し、有機短繊維と併用してもよい。
熱伝導性向上のための無機フィラーとしては酸化アルミニウム、窒化珪素、酸化マグネシウム、窒化アルミニウム、窒化珪素、窒化ホウ素等、電気絶縁性で樹脂よりも熱伝導性に優れるものならば、いずれのものでも使用できる。また、無機フィラーの形状は球状、破砕状、棒状、繊維状のいずれのものでも使用できる。
本発明の無機フィラーの平均粒子径は0.3μm以上、20μm以下である事が好ましく、さらに0.5μm以上12μm以下が好ましく、0.9μm以上、6μm以下が好ましい。ここに平均粒子径は光散乱法で求められるD50である。本発明の有機フィラーの平均粒子径は有機短繊維の繊維径と同サイズから繊維径の1/10の範囲である事が好ましい。両者のサイズの比がこの範囲に入る場合に特に好ましく熱の授受が行われる。
In order to improve thermal conductivity, an inorganic filler may be added to the insulating layer and used in combination with the organic short fibers.
As an inorganic filler for improving thermal conductivity, aluminum oxide, silicon nitride, magnesium oxide, aluminum nitride, silicon nitride, boron nitride, etc., as long as they are electrically insulating and have better thermal conductivity than resin, Can be used. In addition, the inorganic filler may be spherical, crushed, rod-shaped, or fibrous.
The average particle size of the inorganic filler of the present invention is preferably from 0.3 μm to 20 μm, more preferably from 0.5 μm to 12 μm, and preferably from 0.9 μm to 6 μm. Here, the average particle diameter is D50 determined by the light scattering method. The average particle diameter of the organic filler of the present invention is preferably in the range of the same size as the fiber diameter of the organic short fiber to 1/10 of the fiber diameter. Heat transfer is particularly preferably performed when the ratio of the sizes falls within this range.

このような無機フィラーを含有する系ではシランカップリング剤などのカップリング剤を樹脂中に配合することが好ましい。吸湿時の電気特性を劣化させるイオン性不純物は、無機フィラーにより絶縁層中に多量に導入されるのでイオン吸着無機物質と組み合わせ使用することにより顕著な特性向上を図ることができる。また吸湿時の電気特性の劣化は、無機フィラーと樹脂との界面密着性によっても大きく影響され、界面密着性に寄与するカップリング剤の添加は必須である。絶縁層中の無機フィラーは、添加する目的によるが、樹脂100質量部に対して、10質量部以上80質量部以下の添加が好ましく、さらに20質量部以上50質量部の添加が好ましい。
カップリング剤は、無機フィラー粒子の表面積を少なくても単分子層で覆る添加量として、カップリング剤の単位重量あたりの被覆面積と無機フィラー表面積から計算して求める。
In a system containing such an inorganic filler, it is preferable to add a coupling agent such as a silane coupling agent to the resin. Since ionic impurities that deteriorate the electrical characteristics during moisture absorption are introduced in a large amount into the insulating layer by the inorganic filler, a significant improvement in characteristics can be achieved by using in combination with an ion-adsorbing inorganic substance. In addition, the deterioration of electrical characteristics during moisture absorption is greatly influenced by the interfacial adhesion between the inorganic filler and the resin, and the addition of a coupling agent that contributes to the interfacial adhesion is essential. Although the inorganic filler in an insulating layer is based on the objective to add, addition of 10 mass parts or more and 80 mass parts or less is preferable with respect to 100 mass parts of resin, and also addition of 20 mass parts or more and 50 mass parts is preferable.
The coupling agent is calculated from the coating area per unit weight of the coupling agent and the surface area of the inorganic filler as an addition amount to be covered with the monomolecular layer even if the surface area of the inorganic filler particles is small.

本発明では、絶縁層の任意の位置にて面方向に対して垂直に切断した断面において、シート面に対して60°から120°の範囲の傾きの有機短繊維の本数が50%以上であることが好ましい。
シート面に対して60°から120°の範囲の傾きの有機短繊維の本数は50%以上であり、好ましくは60%以上、さらに好ましくは75%以上、なおさらに好ましくは85%以上である。シート面に対して60°から120°の範囲の傾きの有機短繊維の本数が所定の範囲に満たないと有機短繊維の厚さ方向への配向度が低く、厚さ方向の熱伝導性が低下する。
In the present invention, the number of organic short fibers having an inclination in the range of 60 ° to 120 ° with respect to the sheet surface is 50% or more in a cross section cut perpendicularly to the surface direction at an arbitrary position of the insulating layer. It is preferable.
The number of organic short fibers having an inclination in the range of 60 ° to 120 ° with respect to the sheet surface is 50% or more, preferably 60% or more, more preferably 75% or more, and still more preferably 85% or more. If the number of organic short fibers having an inclination in the range of 60 ° to 120 ° with respect to the sheet surface is less than the predetermined range, the degree of orientation of the organic short fibers in the thickness direction is low, and the thermal conductivity in the thickness direction is low. descend.

本発明における有機短繊維の配向角およびその割合は後述の実施例の方法により評価することができる。 The orientation angle and the ratio of the organic short fibers in the present invention can be evaluated by the methods of Examples described later.

本発明の金属ベース回路基板は、
・金属ベースまたは回路箔のいずれかに、静電植毛により前記有機短繊維を直立させる工程を含む方法で製造することができる。
また、
・少なくとも、あらかじめ接着剤を塗布した金属ベース、またはあらかじめ接着剤を塗布した回路箔を用いることが好ましい。
The metal base circuit board of the present invention comprises:
-It can manufacture by the method including the process of making the said organic short fiber stand upright by electrostatic flocking to either a metal base or circuit foil.
Also,
It is preferable to use at least a metal base coated with an adhesive in advance, or a circuit foil coated with an adhesive beforehand.

本発明の金属ベース回路基板は少なくとも以下の(3)〜(8)の工程を含む方法により製造することが好ましく、さらに(2)の工程を含むことが好ましく、(1)の工程を含むことがより好ましい。
(1)前記有機短繊維をバインダ樹脂とは異なる樹脂で被覆する、または電子線照射する工程。
(2)有機短繊維を任意の長さに切断する工程。
(3)接着剤を塗布した金属ベースまたは回路箔のいずれかを基材とし、基材上に静電植毛により有機短繊維を直立させる工程。
(4)直立した有機短繊維を加熱により接着固定する工程。
(5)基材に直立固定された有機短繊維にバインダ樹脂を含浸させバインダ樹脂を硬化させる工程。
(6)基材そのままで、表面を研磨により成形し、厚さを調整するする工程。
(7)未硬化の熱硬化樹脂に熱伝導フィラーを分散させた樹脂層を厚さ調製した成形体表面に配置させる工程。
(8)未硬化の樹脂層の上に、金属ベースまたは回路箔をプレス、ないしラミネートにより貼り合わせる工程 。
The metal base circuit board of the present invention is preferably manufactured by a method including at least the following steps (3) to (8), preferably further including the step (2), and including the step (1). Is more preferable.
(1) A step of coating the organic short fibers with a resin different from the binder resin or irradiating with an electron beam.
(2) A step of cutting the organic short fibers into an arbitrary length.
(3) A process in which either a metal base coated with an adhesive or a circuit foil is used as a base material, and organic short fibers are erected on the base material by electrostatic flocking.
(4) A step of bonding and fixing upright organic short fibers by heating.
(5) A step of impregnating a binder resin into organic short fibers fixed upright on a substrate to cure the binder resin.
(6) A step of forming the surface by polishing and adjusting the thickness of the substrate as it is.
(7) The process of arrange | positioning the resin layer which disperse | distributed the heat conductive filler to uncured thermosetting resin on the molded object surface which prepared thickness.
(8) A step of bonding a metal base or circuit foil on an uncured resin layer by pressing or laminating.

本発明で好ましく用いられる金属ベースは金属の板材であれば、特に限定されないが、アルミニウム、アルミニウム合金、銅、銅合金を好ましく用いることができる。
本発明における回路箔としては、銅箔、銅合金泊、ニッケル箔、アルミニウム箔、銀箔、銀合金箔を好ましく用いることができる
The metal base preferably used in the present invention is not particularly limited as long as it is a metal plate material, but aluminum, aluminum alloy, copper, and copper alloy can be preferably used.
As the circuit foil in the present invention, copper foil, copper alloy stay, nickel foil, aluminum foil, silver foil, silver alloy foil can be preferably used.

本発明で用いられる有機短繊維は、繊維径が3μm以上50μm以下である。本発明の有機短繊維の繊維径は5μm以上30μmであることが好ましく、7μm以上30μm以下である事が好ましい。繊維径は繊維の電子顕微鏡などにより拡大像を得て、スケールで実測すればよい。
有機短繊維の繊維径は、別途配合される熱伝導性フィラーとの相互作用を得るために重要であり、繊維径が所定の範囲を上回ると、熱伝導フィラーとの熱の授受が速やかに行われなくなる。繊維径が所定の範囲を下回る場合には、本来的には熱の授受効果が高くなるのであるが、繊維の比表面積が増えるためにバインダ樹脂の吸液量が増し、絶縁層のフォーミュレーションが難しくなる。
The organic short fiber used in the present invention has a fiber diameter of 3 μm or more and 50 μm or less. The fiber diameter of the organic short fiber of the present invention is preferably 5 μm or more and 30 μm, and preferably 7 μm or more and 30 μm or less. The fiber diameter may be measured on a scale by obtaining an enlarged image of the fiber with an electron microscope or the like.
The fiber diameter of the organic short fiber is important for obtaining an interaction with the heat conductive filler that is separately blended. When the fiber diameter exceeds the predetermined range, heat is transferred to and from the heat conductive filler quickly. I will not be broken. When the fiber diameter is below the specified range, the heat transfer effect is essentially increased, but the specific surface area of the fiber increases, so the amount of binder resin absorbed increases and the insulation layer is formed. Becomes difficult.

本発明の有機短繊維の熱伝導率は25W/mK以上が必須で有り、さらに35W/mであることが好ましく、さらに50W/mであることがなお好ましい。
繊維種としては電気絶縁性であり、所定の高い熱伝導性と繊維径を有する繊維であれば特に限定するものではなく、例えば、高強度ポリエチレン繊維、ポリベンザゾール繊維、芳香族ポリアミド繊維などが挙げられるが、特に耐熱性を兼ね備え、入手が容易であるポリベンザゾール繊維が好ましい。ポリベンザゾール繊維としてはポリベンゾオキサゾール繊維、ポリベンゾチアゾール繊維、ポリベンゾイミダゾール繊維を用いることができる。これら内、ポリベンザゾール繊維の一種である東洋紡株式会社製 Zylon を好ましく用いることができる。本発明の有機短繊維の断面形状は円形が好ましい。
The thermal conductivity of the organic short fiber of the present invention is essential to be 25 W / mK or more, more preferably 35 W / m, and still more preferably 50 W / m.
The fiber type is not particularly limited as long as it is electrically insulating and has a predetermined high thermal conductivity and fiber diameter, and examples thereof include high-strength polyethylene fiber, polybenzazole fiber, and aromatic polyamide fiber. Among them, polybenzazole fibers that have heat resistance and are easily available are particularly preferable. Polybenzoxazole fiber, polybenzothiazole fiber, and polybenzimidazole fiber can be used as the polybenzazole fiber. Among these, Zylon manufactured by Toyobo Co., Ltd., which is a kind of polybenzazole fiber, can be preferably used. The cross-sectional shape of the organic short fiber of the present invention is preferably circular.

本発明で用いられる有機短繊維の長さは30μm以上500μm以下であることが好ましく、さらに40μm以上250μm以下であることが好ましく、さらに50μm以上150μm以下であることが好ましい。   The length of the organic short fiber used in the present invention is preferably 30 μm or more and 500 μm or less, more preferably 40 μm or more and 250 μm or less, and further preferably 50 μm or more and 150 μm or less.

静電植毛とは2つの電極の片方に基材、もう片方に短繊維を配置し、高電圧を印加することで短繊維を帯電させ基材側に投錨、接着剤により固定化するものである。 Electrostatic flocking is a method in which a base material is placed on one side of two electrodes, and short fibers are placed on the other side. By applying a high voltage, the short fibers are charged and cast on the base material side and fixed by an adhesive. .

本発明における静電植毛は高い植毛密度を得られる静電植毛方法で行うことが好ましく、アップ法が好ましい。ダウン法は、静電引力により電気力線に沿って対抗電極へ引き付けられる短繊維に加え、重力により自然落下する短繊維も植毛されるため繊維の直立性に乏しくなる。その結果、傾斜して植毛された繊維により別の繊維の侵入が妨げられるため、高密度に植毛することが困難である。一方、アップ法は静電引力で引き付けられる短繊維のみが植毛されるため直立性が良好であり、高密度に植毛が可能である。 The electrostatic flocking in the present invention is preferably performed by an electrostatic flocking method capable of obtaining a high flocking density, and an up method is preferred. In the down method, short fibers that naturally fall by gravity are planted in addition to the short fibers that are attracted to the counter electrode along the lines of electric force by electrostatic attraction, so that the uprightness of the fibers is poor. As a result, infiltration of another fiber is prevented by the fibers that are planted at an inclination, so that it is difficult to plant at a high density. On the other hand, the up method has good uprightness because only short fibers attracted by electrostatic attraction are implanted, and can be implanted at high density.

本発明における静電植毛の電極間距離r(cm)と印加電圧V(kV)の積である電界強さEは式1の範囲内であることが好ましく、かつ、有機短繊維の繊維長(mm)と繊度(D)の商aは式2の範囲内であることが好ましい。Eが式1の範囲以下では電界の強さが不十分であり高密度に植毛が行えない。Eが8以上では絶縁破壊が発生し静電植毛が正常に行えない。aが1.5以下では繊維のアスペクト比が大きくなり自重により直立性を維持することが困難になる。aが10.2以上ではアスペクト比が小さくなり繊維内での繊維軸方向の分極率が小さくなるため、高密度に植毛が行えない。
0.25a+3.37≦E≦8・・・式1
(r:電極間距離(cm)、V:印加電圧(kV)、E=V/r)
2≦a≦10・・・式2
(a:繊度(D)/繊維長(mm))
上述の範囲内において静電植毛を行うことで、有機短繊維の貫通密度を高い割合で達成することが可能である。
The electric field strength E, which is the product of the inter-electrode distance r (cm) of the electrostatic flocking and the applied voltage V (kV) in the present invention, is preferably within the range of Formula 1, and the fiber length ( The quotient a of mm) and the fineness (D) is preferably within the range of Formula 2. If E is equal to or less than the range of Formula 1, the electric field strength is insufficient and high density hair transplantation cannot be performed. When E is 8 or more, dielectric breakdown occurs and electrostatic flocking cannot be performed normally. When a is 1.5 or less, the aspect ratio of the fiber becomes large, and it becomes difficult to maintain uprightness by its own weight. When a is 10.2 or more, the aspect ratio becomes small, and the polarizability in the fiber axis direction in the fiber becomes small.
0.25a + 3.37 ≦ E ≦ 8 Equation 1
(R: distance between electrodes (cm), V: applied voltage (kV), E = V / r)
2 ≦ a ≦ 10 Formula 2
(A: Fineness (D) / Fiber length (mm))
By performing electrostatic flocking within the above-mentioned range, it is possible to achieve a high density of organic short fiber penetration density.

植毛密度すなわち繊維の貫通密度は、印加電圧および電極間距離によってEを調整することにより制御可能である。あらかじめEと繊維の貫通密度の検量線を作成して、所望の貫通密度に適したEにて静電植毛することで調整できる。 The flocking density, that is, the fiber penetration density, can be controlled by adjusting E according to the applied voltage and the interelectrode distance. It can be adjusted by preparing a calibration curve of penetration density of E and fiber in advance and electrostatic flocking with E suitable for the desired penetration density.

本発明では好ましくは接着剤を塗布した回路箔または金属ベースに静電植毛を行う。ここで用いる接着剤の材質は特に限定されるものではないが、未硬化状態において導電性を有する方が静電植毛を高密度に行える点で好ましい。本発明では水分散性の接着剤を用いることが好ましく、例えば、エチレン酢酸ビニル共重合体、水分散性アイオノマー、水分散性アクリル樹脂、水分散性エポキシ樹脂などを用いた水系接着剤を用いることができる。 本発明では、十分な静電植毛密度が得られる場合には溶剤系、ないしホットメルト系の接着剤を用いることもできる。静電植毛において高い植毛密度を得るためには、静電引力を高める為に接着剤の塗工厚さは小さい方が好ましいが、接着剤層に投錨した繊維を固定可能な程度に大きい必要があるため、好ましくは10μm以上50μm以下、より好ましくは10μm以上30μm以下であることが好ましい。   In the present invention, electrostatic flocking is preferably performed on a circuit foil or metal base coated with an adhesive. Although the material of the adhesive agent used here is not specifically limited, the direction which has electroconductivity in a non-hardened state is preferable at the point which can carry out electrostatic flocking at high density. In the present invention, it is preferable to use a water-dispersible adhesive, for example, an aqueous adhesive using an ethylene vinyl acetate copolymer, a water-dispersible ionomer, a water-dispersible acrylic resin, a water-dispersible epoxy resin, or the like. Can do. In the present invention, when a sufficient electrostatic flocking density is obtained, a solvent-based or hot-melt adhesive can also be used. In order to obtain a high flocking density in electrostatic flocking, it is preferable that the coating thickness of the adhesive is small in order to increase electrostatic attraction, but it is necessary to be large enough to fix the fibers cast on the adhesive layer. Therefore, it is preferably 10 μm or more and 50 μm or less, more preferably 10 μm or more and 30 μm or less.

本発明の製造工程において基材に直立固定された有機短繊維にバインダ樹脂を含浸させバインダ樹脂を硬化させる工程は以下に示すいずれの方法でも可能である。(i)バインダ樹脂を何らかの溶媒に溶解、またはエマルジョンの状態で含浸し、加熱により溶媒を揮発させ固化させる方法、(ii)加熱により溶融した状態で含浸し、冷却により硬化させる方法、(iii)モノマーの状態で含浸し、加熱、もしくは紫外線、赤外線、電子線などのエネルギー線で硬化させる方法。 In the production process of the present invention, the step of impregnating the organic short fibers fixed upright on the base material with the binder resin and curing the binder resin can be performed by any of the following methods. (i) a method in which a binder resin is dissolved in some solvent or impregnated in an emulsion state, and the solvent is evaporated and solidified by heating; (ii) a method in which the binder resin is melted by heating and is cured by cooling; and (iii) A method of impregnation in the state of monomer and heating or curing with energy rays such as ultraviolet rays, infrared rays or electron beams.

本発明ではバインダー樹脂と有機短繊維からなる絶縁樹脂層を平坦化する処理を含んでも良い。ここで研磨手段としてはスライス加工、型押し加工、研磨加工を行う事ができる。
本発明における研磨は、研削盤や研磨機、ラップ盤、ポリッシングマシーン、ホーニングマシン、バフ研磨機、CMP装置などが使用できる。
In this invention, you may include the process which planarizes the insulating resin layer which consists of binder resin and an organic short fiber. Here, as the polishing means, slicing, embossing, and polishing can be performed.
For the polishing in the present invention, a grinding machine, a polishing machine, a lapping machine, a polishing machine, a honing machine, a buffing machine, a CMP apparatus, or the like can be used.

本発明では回路箔を一般的なエッチング加工、あるいは高出力のレーザーによる切削加工など適宜公知の加工方法を選択してパターン化することができる。   In the present invention, the circuit foil can be patterned by appropriately selecting a known processing method such as general etching processing or cutting processing with a high-power laser.

本発明において、
・あらかじめ、長さ方向の熱伝導率が50W/mK以上であり、繊維径が3μm以上50μm以下である有機短繊維が厚さ方向に配向された状態で含有されている絶縁層を準備し、その絶縁層に回路箔と金属ベースを接着することにより、金属ベース回路基板を製造することも可能である。
この場合は、仮基板上に、同様に有機短繊維の配向、固定化、バインダ樹脂の含浸を行い、必要に応じて表面研磨の後、回路箔と金属ベースをで挟み、プレス、ラミネートなどで積層すればよい。この場合、絶縁層表面に接着層を別途設けても良い。さらに前記接着層に熱伝導性フィラーを含有させても良い。
In the present invention,
Prepare in advance an insulating layer containing organic short fibers having a thermal conductivity in the length direction of 50 W / mK or more and a fiber diameter of 3 μm to 50 μm oriented in the thickness direction, It is also possible to manufacture a metal base circuit board by adhering a circuit foil and a metal base to the insulating layer.
In this case, the organic short fibers are similarly oriented, fixed, and impregnated with a binder resin on the temporary substrate. After surface polishing as necessary, the circuit foil and the metal base are sandwiched by pressing, laminating, etc. What is necessary is just to laminate. In this case, an adhesive layer may be separately provided on the surface of the insulating layer. Further, the adhesive layer may contain a heat conductive filler.

本発明の金属ベース回路基板の面積は500平方cm以上であり900平方cm以上である事が好ましく、1600平方cm以上がさらに好ましい。なお、金属ベース回路基板の面積の上限は好ましくは14400平方cm程度である。   The area of the metal base circuit board of the present invention is 500 square cm or more, preferably 900 square cm or more, and more preferably 1600 square cm or more. The upper limit of the area of the metal base circuit board is preferably about 14400 square cm.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。
1.高熱伝導性繊維の傾きおよびその割合
高熱伝導性繊維の傾きおよびその割合については、以下の方法により評価した。
(1)植毛シートをエポキシ樹脂で包埋し、研磨してシートの厚さ方向断面を出す。
(2)シートの厚さ方向断面を落射型光学顕微鏡の倍率20レンズで撮影する。
(3)繊維100本を無作為に選び平滑面に対する繊維長方向の角度を計測する。
(4)得られた角度データより、角度の平均値、60°以上120℃以下の配向角を有する繊維の本数、80°以上100°以下の繊維の本数を計数し、母数100本に対する%を求めた。
2.金属ベース回路基板の熱抵抗
銅箔上にTO−220型トランジスターを半田付けし、水冷した放熱フィン上に放熱グリースを介して固定した。トランジスターに通電し、トランジスターを発熱させ、トランジスター表面と金属基裏面の温度差を測定し、熱抵抗値を測定し、放熱グリースの熱抵抗値を補正することにより求める試験片の熱抵抗値を測定した。
3.金属ベース回路基板の耐電圧
測定用試料として、作製した金属ベース回路基板の原板をエッチング処理し、所望の回路を作製したものを試料とし、
・初期
・マイグレーション試験後:85℃、湿度85%RH、DC1000V、1000時間の条件(マイグレーション試験)下に暴露した後
・PCT試験後:121℃、湿度100%RH、2atm、96時間の条件(PCT処理)下に暴露した後、
についてJIS C 2110に基づき平行平板、直流印可時の絶縁破壊電圧を測定し、絶縁破壊電圧を絶縁層の厚さで除して絶縁破壊強度を求めた。測定器には、菊水電子工業社製TOS−8700を用いた。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited by a following example. In addition, the evaluation method of the physical property in the following examples is as follows.
1. The inclination of the high thermal conductivity fiber and the ratio thereof The inclination and the ratio of the high thermal conductivity fiber were evaluated by the following methods.
(1) A flocked sheet is embedded with an epoxy resin and polished to obtain a cross section in the thickness direction of the sheet.
(2) Photograph the cross section in the thickness direction of the sheet with a 20-magnification lens of an epi-illumination optical microscope.
(3) Select 100 fibers at random and measure the angle in the fiber length direction with respect to the smooth surface.
(4) From the obtained angle data, the average value of the angles, the number of fibers having an orientation angle of 60 ° or more and 120 ° C. or less, and the number of fibers of 80 ° or more and 100 ° or less are counted. Asked.
2. A TO-220 type transistor was soldered on the heat resistance copper foil of the metal base circuit board, and fixed on the water-cooled heat radiation fin via heat radiation grease. Energize the transistor, heat the transistor, measure the temperature difference between the transistor surface and the back of the metal base, measure the thermal resistance value, and correct the thermal resistance value of the heat dissipation grease to measure the thermal resistance value of the test piece did.
3. As a sample for measuring the withstand voltage of the metal base circuit board, the original plate of the metal base circuit board that was produced was etched, and the desired circuit was produced as a sample.
・ Initial ・ After migration test: after exposure under conditions of 85 ° C., humidity 85% RH, DC 1000V, 1000 hours (migration test) ・ After PCT test: conditions of 121 ° C., humidity 100% RH, 2 atm, 96 hours ( After exposure under PCT treatment)
In accordance with JIS C 2110, the dielectric breakdown voltage was measured when a parallel plate and DC were applied, and the dielectric breakdown strength was determined by dividing the dielectric breakdown voltage by the thickness of the insulating layer. As a measuring instrument, TOS-8700 manufactured by Kikusui Electronics Co., Ltd. was used.

〔実施例〕
以下に具体的な実施例を述べる。
(実施例1)
有機短繊維として、長さ120μmにカットしたザイロンHM(東洋紡製;繊維径12μm、繊維軸方向の熱伝導率は、60W/mK、有機短繊維A)を使用した。バインダ樹脂溶液として、東洋紡製 飽和共重合ポリエステルウレタン溶液 UR3600/80.9重量部、東洋紡製飽和共重合ポリエステルウレタン溶液BX−10SS/12.0重量部、東洋紡製 エポキシ樹脂 AH−120/7.1重量部、メチルエチルケトン100重量部を混合した溶液を使用した。接着剤として、水系エポキシ樹脂10質量%、硬化剤(水溶性ポリアミン)1質量%を含む水溶液を使用した。金属ベースとして、幅520mm、長さ620mm、厚さ1.5mmのアルミニウム板を使用した。正電極板上に基材を設置し、接着剤を厚さ25μmに塗工した。ここへ電極間距離10mm、印可電圧6kVで5分間静電植毛し、ザイロンが植毛された金属ベース板を作製した。
植毛された金属ベース板にバインダ樹脂溶液を含浸させ、真空脱泡したのち、100℃、6時間加熱し乾燥・半硬化状態とした。その上に、厚さ70μmの銅箔を重ね、真空プレスにて140℃2時間加熱して硬化を完了させ、金属ベース回路基板の原板を作製した。
〔Example〕
Specific examples will be described below.
Example 1
As the organic short fiber, Zylon HM (manufactured by Toyobo; fiber diameter: 12 μm, thermal conductivity in the fiber axis direction: 60 W / mK, organic short fiber A) cut to a length of 120 μm was used. As binder resin solution, Toyobo saturated copolymer polyester urethane solution UR3600 / 80.9 parts by weight, Toyobo saturated copolymer polyester urethane solution BX-10SS / 12.0 parts by weight, Toyobo epoxy resin AH-120 / 7.1 A solution in which 100 parts by weight of methyl ethyl ketone and 100 parts by weight of methyl ethyl ketone were mixed was used. As an adhesive, an aqueous solution containing 10% by mass of a water-based epoxy resin and 1% by mass of a curing agent (water-soluble polyamine) was used. As the metal base, an aluminum plate having a width of 520 mm, a length of 620 mm, and a thickness of 1.5 mm was used. The substrate was placed on the positive electrode plate, and the adhesive was applied to a thickness of 25 μm. Here, electrostatic flocking was performed for 5 minutes at a distance between electrodes of 10 mm and an applied voltage of 6 kV, and a metal base plate in which xylon was flocked was produced.
The implanted metal base plate was impregnated with a binder resin solution, vacuum degassed, and then heated at 100 ° C. for 6 hours to obtain a dry / semi-cured state. A copper foil having a thickness of 70 μm was overlaid thereon and heated by a vacuum press at 140 ° C. for 2 hours to complete the curing, thereby producing a base plate of a metal base circuit board.

金属ベース回路基板原板の銅箔上にドライフィルムレジストと塩化第二銅エッチング液を用いた常法によりパワートランジスタ実装用の回路パターンと、絶縁耐圧評価用の電極パターンを有する、金属ベース回路基板を得た。   A metal base circuit board having a circuit pattern for mounting a power transistor and an electrode pattern for dielectric breakdown voltage evaluation by a conventional method using a dry film resist and cupric chloride etching solution on a copper foil of a metal base circuit board original plate Obtained.

得られた金属ベース回路基板について、上述のとおりに各特性を調べ、その結果を表1に示した。   Each characteristic of the obtained metal base circuit board was examined as described above, and the results are shown in Table 1.

(実施例2)
有機短繊維を長さ200μmにカットしたダイニーマSK71(東洋紡製;繊維径11μm、繊維軸方向の熱伝導率は50W/mK、有機短繊維B)に変更し、乾燥温度を60℃、真空プレスでの加圧過熱時の温度を80℃に加熱時間を4時間に下以外は実施例1と同様に操作し、金属ベース回路基板原板を作製した。
以下同様にパターンを形成し評価した、結果を表1.に示す
(実施例3)
有機短繊維を長さ80μmにカットしたケブラー(東レデュポン製、アラミド繊維、繊維径11μm、繊維軸方向の熱伝導率は、60W/mK、有機短繊維C)に変更したこと以外は、実施例1と同様にして金属ベース回路基板を得た。同様に評価した結果を表1に示す
(Example 2)
Dyneema SK71 (manufactured by Toyobo; fiber diameter 11 μm, fiber axis thermal conductivity 50 W / mK, organic short fiber B) with organic short fibers cut to a length of 200 μm, drying temperature at 60 ° C. with vacuum press A metal base circuit board original plate was produced in the same manner as in Example 1 except that the temperature at the time of pressure overheating was 80 ° C. and the heating time was 4 hours.
Hereinafter, patterns were similarly formed and evaluated. (Example 3)
Except for changing to Kevlar (manufactured by Toray DuPont, aramid fiber, fiber diameter 11 μm, thermal conductivity in the fiber axis direction is 60 W / mK, organic short fiber C) obtained by cutting organic short fibers into a length of 80 μm. 1 to obtain a metal base circuit board. The results evaluated in the same manner are shown in Table 1.

(実施例4)
樹脂をモメンティブ・パフォーマンス・マテリアルズ社製 液状シリコーンゴム主剤TSE3431−A/100質量部、モメンティブ・パフォーマンス・マテリアルズ社製 液状シリコーンゴム硬化剤 TSE3431−C/30質量部を混合した樹脂溶液(樹脂溶液Y)に替えた以外は、実施例1と同様にして金属ベース回路基板を得た。以下同様に評価した結果を表1.に示す
Example 4
Resin solution (resin solution) mixed with liquid silicone rubber base TSE3431-A / 100 parts by mass of Momentive Performance Materials, and liquid silicone rubber curing agent TSE3431-C / 30 parts by mass of Momentive Performance Materials A metal base circuit board was obtained in the same manner as in Example 1 except for changing to Y). The results evaluated in the same manner are shown in Table 1. Shown in

(実施例5)
バインダ樹脂溶液に無機フィラーとして、二酸化ケイ素(無機フィラーα)平均粒子径0.15μmを添加したこと以外は、実施例1と同様にして金属ベース回路基板を得た。以下同様に評価した結果を表1.に示す
(Example 5)
A metal base circuit board was obtained in the same manner as in Example 1 except that silicon dioxide (inorganic filler α) average particle size of 0.15 μm was added as an inorganic filler to the binder resin solution. The results evaluated in the same manner are shown in Table 1. Shown in

(実施例6)
有機短繊維として、長さ360μmにカットしたザイロンHM(東洋紡製;繊維径12μm、繊維軸方向の熱伝導率は、60W/mK、有機短繊維A)を使用した。バインダ樹脂溶液として、東洋紡製 飽和共重合ポリエステルウレタン溶液 UR3600/80.9重量部、東洋紡製飽和共重合ポリエステルウレタン溶液BX−10SS/12.0重量部、東洋紡製 エポキシ樹脂 AH−120/7.1重量部、メチルエチルケトン100重量部を混合した溶液を使用した。接着剤として、ポリビニルアルコールAH−26(日本合成化学社製)の10wt%水溶液を使用した。仮基板として、厚さ5mmの表面ハードクロム加工したステンレス鋼板を使用した。正電極板上に基材を設置し、接着剤を厚さ25μmに塗工した。ここへ電極間距離30mm、電圧18kVで5分間静電植毛し、ザイロンが植毛された金属ベース板を作製した。
前記バインダ樹脂溶液に、酸化アルミニウム(無機フィラーβ)平均粒子径3.6μmのMEK分散液を混合し、植毛された金属ベース板に混合バインダ樹脂溶液を含浸させ、真空脱泡したのち、100℃、6時間加熱し乾燥・半硬化状態とした。
次いで、表面をバフにて絶縁層厚が150μmになるまで研磨したのち、水槽に沈め、ポリビニルアルコールを膨潤溶解させる事により仮支持基盤から剥離し、80℃にて120分間乾燥し、有機短繊維が厚さ方向に配向した絶縁樹脂層を得た。
金属ベースとして厚さ5mmのアルミニウム板、回路箔として厚さ70μmの銅箔を用い、各々の表面に、前記バインダ樹脂溶液と無機フィラーのMEK分散液の混合液を、乾燥時のフィラー配合量が樹脂分100質量部に対し20質量部、乾燥厚さが8μmとなるように塗布し、100℃1時間過熱して乾燥、半硬化状態とした。
金属ベースの樹脂塗布面に絶縁層を重ね、さらに回路箔の樹脂塗布面が絶縁層側となるように重ね、真空プレスにて加圧し140℃2時間加熱して硬化を完了させ、金属ベース回路基板の原板を作製した。以下同様に評価した結果を表1.に示す
(Example 6)
As the organic short fiber, Zylon HM (manufactured by Toyobo; fiber diameter: 12 μm, thermal conductivity in the fiber axis direction: 60 W / mK, organic short fiber A) cut to a length of 360 μm was used. As binder resin solution, Toyobo saturated copolymer polyester urethane solution UR3600 / 80.9 parts by weight, Toyobo saturated copolymer polyester urethane solution BX-10SS / 12.0 parts by weight, Toyobo epoxy resin AH-120 / 7.1 A solution in which 100 parts by weight of methyl ethyl ketone and 100 parts by weight of methyl ethyl ketone were mixed was used. As an adhesive, a 10 wt% aqueous solution of polyvinyl alcohol AH-26 (manufactured by Nippon Synthetic Chemical Co., Ltd.) was used. As a temporary substrate, a stainless steel plate with a surface hard chrome processed having a thickness of 5 mm was used. The substrate was placed on the positive electrode plate, and the adhesive was applied to a thickness of 25 μm. Here, electrostatic flocking was performed at a distance of 30 mm between electrodes and a voltage of 18 kV for 5 minutes to prepare a metal base plate in which xylon was implanted.
The binder resin solution is mixed with a MEK dispersion having an average particle size of 3.6 μm aluminum oxide (inorganic filler β), impregnated with the mixed binder resin solution on a metal base plate that has been planted, and vacuum degassed. , Heated for 6 hours to a dry / semi-cured state.
Next, the surface is polished with a buff until the insulating layer thickness becomes 150 μm, then submerged in a water tank, and swelled and dissolved in polyvinyl alcohol, peeled off from the temporary support base, dried at 80 ° C. for 120 minutes, and organic short fibers Thus, an insulating resin layer oriented in the thickness direction was obtained.
Using a 5 mm thick aluminum plate as the metal base and a 70 μm thick copper foil as the circuit foil, the mixture of the binder resin solution and the MEK dispersion of the inorganic filler is applied to each surface. It was applied to 20 parts by mass with respect to 100 parts by mass of the resin and a dry thickness of 8 μm, and was heated to 100 ° C. for 1 hour to be dried and semi-cured.
Overlay the insulating layer on the metal-based resin-coated surface, and then stack the circuit foil so that the resin-coated surface is on the insulating layer side, press with a vacuum press and heat at 140 ° C. for 2 hours to complete the curing. An original substrate was produced. The results evaluated in the same manner are shown in Table 1. Shown in

(比較例1)
静電植毛を行わず、バインダ樹脂に有機短繊維Aを混合し、このバインダ樹脂溶液を用いて、塗布により金属ベース上に絶縁層作製したこと以外は、実施例1と同様にして金属ベース回路基板を得た。以下同様に評価した結果を表1.に示す
(Comparative Example 1)
The metal base circuit was made in the same manner as in Example 1 except that the organic short fiber A was mixed with the binder resin without using the electrostatic flocking, and the insulating layer was formed on the metal base by coating using this binder resin solution. A substrate was obtained. The results evaluated in the same manner are shown in Table 1. Shown in

(比較例2)
有機短繊維を用いず、替わりに、無機フィラーαを用いたこと以外は、比較例1と同様にして金属ベース回路基板を得た。以下同様に評価した結果を表1.に示す
(Comparative Example 2)
A metal base circuit board was obtained in the same manner as in Comparative Example 1 except that the organic short fibers were not used and instead the inorganic filler α was used. The results evaluated in the same manner are shown in Table 1. Shown in

本発明による金属ベース回路基板は、有機短繊維を厚さ方向に配向させた絶縁層を、金属ベースと回路箔との間に積層することにより、熱伝達方向に熱伝導性が高く、また湿熱加速試験後の特性低下も小さく、優れた特性を有するものであり、大電力を扱う電子回路用のプリント配線板、あるいは発熱電子素子の実装基板として優れた特性を発揮することができる。 The metal base circuit board according to the present invention has a high thermal conductivity in the heat transfer direction by laminating an insulating layer in which organic short fibers are oriented in the thickness direction between the metal base and the circuit foil. The characteristic deterioration after the acceleration test is small and has excellent characteristics, and can exhibit excellent characteristics as a printed wiring board for electronic circuits that handle high power or a mounting substrate for heat-generating electronic elements.

Claims (6)

回路箔と金属ベースに挟まれた絶縁層からなる金属ベース回路基板において、前記絶縁層に長さ方向の熱伝導率が50W/mK以上であり、繊維径が3μm以上50μm以下である有機短繊維が金属ベース面に対して直立方向に配向された状態で含有されていることを特徴とする金属ベース回路基板。 A metal base circuit board comprising an insulating layer sandwiched between a circuit foil and a metal base, wherein the insulating layer has a thermal conductivity in the length direction of 50 W / mK or more and a fiber diameter of 3 μm or more and 50 μm or less. Is contained in a state of being oriented in an upright direction with respect to the metal base surface. 前記絶縁層中に含有されている有機短繊維の、金属ベース面に対する配向角度が60°から120°の範囲の傾きである本数が、全本数の50%以上であることを特徴とする請求項1記載の金属ベース回路基板。   The number of organic short fibers contained in the insulating layer having an inclination angle in the range of 60 ° to 120 ° with respect to the metal base surface is 50% or more of the total number. A metal-based circuit board according to claim 1. 前記金属ベース回路基板の面積が500平方cm以上であることを特徴とする請求項1または2に記載の金属ベース回路基板   3. The metal base circuit board according to claim 1, wherein an area of the metal base circuit board is 500 square cm or more. 金属ベースまたは回路箔のいずれかに、静電植毛により前記有機短繊維を直立させる工程を含む請求項1から3のいずれかに記載の金属ベース回路基板を製造する方法。   The method for producing a metal base circuit board according to any one of claims 1 to 3, comprising a step of erecting the organic short fibers on either the metal base or the circuit foil by electrostatic flocking. 少なくとも、あらかじめ接着剤を塗布した金属ベース、またはあらかじめ接着剤を塗布した回路箔を用いる請求項4に記載の金属ベース回路基板の製造方法。   The manufacturing method of the metal base circuit board of Claim 4 using the metal base which apply | coated the adhesive previously, or the circuit foil which apply | coated the adhesive previously. 長さ方向の熱伝導率が50W/mK以上であり、繊維径が3μm以上50μm以下である有機短繊維が厚さ方向に配向された状態で含有されている絶縁層に回路箔と金属ベースを接着することによる請求項1から3のいずれかに記載の金属ベース回路基板を製造する方法。 A circuit foil and a metal base are formed on an insulating layer containing organic short fibers having a thermal conductivity in the length direction of 50 W / mK or more and a fiber diameter of 3 μm to 50 μm oriented in the thickness direction. A method for producing a metal base circuit board according to claim 1 by bonding.
JP2016074900A 2016-04-04 2016-04-04 Metal base circuit board and manufacturing method of the same Pending JP2017188519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074900A JP2017188519A (en) 2016-04-04 2016-04-04 Metal base circuit board and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074900A JP2017188519A (en) 2016-04-04 2016-04-04 Metal base circuit board and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2017188519A true JP2017188519A (en) 2017-10-12

Family

ID=60045005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074900A Pending JP2017188519A (en) 2016-04-04 2016-04-04 Metal base circuit board and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2017188519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230249438A1 (en) * 2022-02-09 2023-08-10 Polytronics Technology Corp. Metal clad substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081418A (en) * 1999-09-10 2001-03-27 Polymatech Co Ltd Heat conductive adhesive film and its production and electronic part
US20100051331A1 (en) * 2008-08-27 2010-03-04 Foxconn Advanced Technology Inc. Circuit substrate for mounting electronic component and circuit substrate assembly having same
WO2015178416A1 (en) * 2014-05-20 2015-11-26 東洋紡株式会社 High-thermoconductivity insulated adhesive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081418A (en) * 1999-09-10 2001-03-27 Polymatech Co Ltd Heat conductive adhesive film and its production and electronic part
US20100051331A1 (en) * 2008-08-27 2010-03-04 Foxconn Advanced Technology Inc. Circuit substrate for mounting electronic component and circuit substrate assembly having same
WO2015178416A1 (en) * 2014-05-20 2015-11-26 東洋紡株式会社 High-thermoconductivity insulated adhesive sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
古田敏康: "KEVLAR繊維と複合材料", 日本複合材料学会誌, vol. 第2巻,第1号, JPN6019050877, 1976, pages 6 - 11, ISSN: 0004294919 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230249438A1 (en) * 2022-02-09 2023-08-10 Polytronics Technology Corp. Metal clad substrate

Similar Documents

Publication Publication Date Title
WO2014203955A9 (en) Insulating and heat-conductive sheet
US10689556B2 (en) Thermally conductive sheet
JP6064898B2 (en) Insulating heat conductive sheet manufacturing method
KR102051272B1 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
JP6612584B2 (en) Epoxy resin composition, epoxy resin sheet, and metal base circuit board using the same
US20110262728A1 (en) Thermal conductive sheet, light-emitting diode mounting substrate, and thermal conductive adhesive sheet
JP2017135137A (en) Insulating high thermal conductive sheet, manufacturing method of the same, and laminate
TW201203477A (en) Power module
CN102140257B (en) Heat conductive sheet
JP2012049496A (en) Heat radiation structure
EP2944670B1 (en) Inorganic filler-containing epoxy resin cured product and laminate including the same
WO2019117259A1 (en) Manufacturing method of mounting structure
ES2956260T3 (en) Thermally conductive sheet
US11410898B2 (en) Manufacturing method of mounting structure, and sheet therefor
JP2017188519A (en) Metal base circuit board and manufacturing method of the same
CN1247016A (en) Method and apparatus for fabricating circuit-forming-substrate and circuit-forming-substrate material
JP2016189412A (en) Method of producing conductive sheet
JP5030103B2 (en) Method of manufacturing metal base circuit board for light emitting element and metal base circuit board for light emitting element
TWI590750B (en) Heat-radiation insulating sheet, heat spreader, and electrical device
KR102068492B1 (en) Thermal diffusion sheet and the manufacturing method thereof
KR102068493B1 (en) Thermal diffusion sheet and the manufacturing method thereof
JP2015082651A (en) Method for manufacturing insulative sheet
KR102075360B1 (en) Thermal diffusion sheet and the manufacturing method thereof
JP5114597B1 (en) Laminated body and cut laminated body
JP2017188518A (en) Metal base circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630