JP2017188518A - Metal base circuit board - Google Patents
Metal base circuit board Download PDFInfo
- Publication number
- JP2017188518A JP2017188518A JP2016074899A JP2016074899A JP2017188518A JP 2017188518 A JP2017188518 A JP 2017188518A JP 2016074899 A JP2016074899 A JP 2016074899A JP 2016074899 A JP2016074899 A JP 2016074899A JP 2017188518 A JP2017188518 A JP 2017188518A
- Authority
- JP
- Japan
- Prior art keywords
- metal base
- fiber
- circuit board
- insulating layer
- base circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Insulated Metal Substrates For Printed Circuits (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、発熱部品を実装する際に用いられる金属ベース回路基板に関する。 The present invention relates to a metal base circuit board used when mounting a heat-generating component.
近年、高電圧で駆動するパワートランジスタやハイブリッドIC(Integrated Circuit)を高密度に実装備する例が増加し、放熱設計の問題が重要になっているため放熱性に優れた金属ベース基板が使用されるようになってきた。また、屋外で使用されるケースも増えてきており、絶縁層だけでなく、表面へコーティングする樹脂(ソルダーレジスト)の耐湿性や絶縁性等の信頼性向上も求められており、それに対応するコーティング樹脂が開示されている(特許文献1参照)。 In recent years, examples of high-density power transistors and hybrid ICs (Integrated Circuits) that are driven at high voltages have increased, and the problem of heat dissipation design has become important, so a metal base substrate with excellent heat dissipation has been used. It has come to be. In addition, the number of cases used outdoors is increasing, and not only the insulating layer but also the improvement in reliability such as moisture resistance and insulation of the resin (solder resist) to be coated on the surface is required. Resin is disclosed (refer patent document 1).
しかしながら、かかるコーティング樹脂の多くはエポキシ樹脂とアクリル樹脂を併用した系が多く、耐熱性および耐湿性において不満足で有り、絶縁信頼性に劣ることが危惧されている。 However, many of such coating resins are a combination of epoxy resin and acrylic resin, are unsatisfactory in heat resistance and moisture resistance, and are feared to be inferior in insulation reliability.
一方、特許文献2では、複数の粒径を有する無機フィラーを高充填することにより、高い放熱性を実現し、かつ高湿度に耐えうる金属ベース回路基板が開示されている。 On the other hand, Patent Document 2 discloses a metal base circuit board that achieves high heat dissipation and can withstand high humidity by highly filling an inorganic filler having a plurality of particle sizes.
無機フィラーの高充填により放熱性を改善した絶縁層は、金属ベースおよび回路箔に使用する金属との線膨張係数(CTE)との差が大きく、使用が想定されるパワートランジスタやハイブリッドICにおいては、このCTE差による断線や剥離が生じることが危惧される。 Insulating layers with improved heat dissipation due to high filling of inorganic fillers have a large difference in coefficient of linear expansion (CTE) from the metal used for the metal base and circuit foil, and in power transistors and hybrid ICs that are expected to be used There is a concern that disconnection or peeling due to this CTE difference may occur.
そこで、本発明の目的は、熱伝導性を保持したまま、CTEを金属ベースや回路箔と同等に制御できる絶縁層を構築し、高温動作信頼性の高い金属ベース回路基盤を提供することにある。 Accordingly, an object of the present invention is to construct an insulating layer capable of controlling CTE in the same manner as a metal base or circuit foil while maintaining thermal conductivity, and to provide a metal base circuit board with high reliability of high-temperature operation. .
本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
[1]少なくとも金属ベースと金属ベース上に積層された絶縁層と、絶縁層の上に積層された回路箔からなる金属ベース回路基板において、前記絶縁層に長さ方向の熱伝導率が50W/mK以上であり、繊維径が3μm以上50μm以下である有機繊維を、樹脂100質量部に対して、3質量部以上40質量部以下含むことを特徴とする金属ベース回路基板。
[2]前記絶縁層を構成する樹脂が、シリコーン系樹脂、アクリル系樹脂、ウレタン系樹脂、EPDM系樹脂、ポリカーボネート系樹脂から選択される少なくとも一種であることを特徴とする[1]に記載の金属ベース回路基板。
[3]前記有機繊維が、高強度ポリエチレン繊維、ポリベンザゾール繊維、芳香族ポリアミド繊維から選択される少なくとも1種以上であることを特徴とする[1]または[2]のいずれかに記載の金属ベース回路基板。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention.
That is, this invention consists of the following structures.
[1] In a metal base circuit board comprising at least a metal base, an insulating layer laminated on the metal base, and a circuit foil laminated on the insulating layer, the insulating layer has a thermal conductivity in the length direction of 50 W / A metal-based circuit board comprising 3 to 40 parts by mass of organic fibers having a diameter of mK or more and a fiber diameter of 3 to 50 μm with respect to 100 parts by mass of the resin.
[2] The resin constituting the insulating layer is at least one selected from silicone resins, acrylic resins, urethane resins, EPDM resins, and polycarbonate resins. Metal base circuit board.
[3] The organic fiber according to any one of [1] or [2], wherein the organic fiber is at least one selected from high-strength polyethylene fiber, polybenzazole fiber, and aromatic polyamide fiber. Metal base circuit board.
本発明の金属ベース回路基板は、絶縁層部に特定の有機繊維を含むことにより、絶縁層の放熱性能を維持したまま、さらに高信頼性を有する金属ベース回路基板を提供することができる。
絶縁層に繊維を組み合わせて絶縁層のCTEを制御する手法はプリント配線板では広く行われている。しかしながら一般のプリント配線板に使用されるガラス繊維は弾性率が小さいために十分なCTE制御効果を得るためには、相当量を使用することが必要になる。一方でガラス繊維の熱伝導率は低く、CTE制御に十分な量を使用すると絶縁層の熱伝導率が低下してしまう。
しかしながら、本発明で用いる特定の有機繊維は、高い弾性率を有するため比較的少量で十分なCTE制御効果を得ることができる。さらに本発明の特定の有機繊維は繊維軸方向の熱伝導率が非常に高く、絶縁層内で有機繊維とは別に厚さ方向への熱伝導率改善を目的に配合される熱伝導フィラーとの接触ないし近接に存在することにより、絶縁層内での熱の授受を効率化し、繊維の主配向方向である面方向への放熱効果を促進させ、総合的に絶縁層の熱伝導効率を高める効果を発揮する。
By including a specific organic fiber in the insulating layer portion, the metal base circuit board of the present invention can provide a metal base circuit board having higher reliability while maintaining the heat dissipation performance of the insulating layer.
A technique for controlling the CTE of an insulating layer by combining fibers with the insulating layer is widely used in printed wiring boards. However, since the glass fiber used for a general printed wiring board has a low elastic modulus, it is necessary to use a considerable amount in order to obtain a sufficient CTE control effect. On the other hand, the thermal conductivity of the glass fiber is low, and if a sufficient amount is used for CTE control, the thermal conductivity of the insulating layer is lowered.
However, since the specific organic fiber used in the present invention has a high elastic modulus, a sufficient amount of CTE can be obtained with a relatively small amount. Furthermore, the specific organic fiber of the present invention has a very high thermal conductivity in the fiber axis direction, and a thermal conductive filler blended in the insulating layer for the purpose of improving the thermal conductivity in the thickness direction separately from the organic fiber. By being in contact or in the vicinity, heat transfer in the insulating layer is made more efficient, the heat dissipation effect in the surface direction that is the main orientation direction of the fiber is promoted, and the heat conduction efficiency of the insulating layer is comprehensively improved Demonstrate.
本発明の絶縁層に用いる樹脂としては、耐熱性や熱安定性に優れることが好ましく、使用樹脂を適切に選択することで、これらの物性を所望の範囲に調製することが可能である。また、密着性を考慮して、柔軟性に優れる樹脂もしくは接着性を有する樹脂を選定することが好ましい。例えば、柔軟性に優れる材質としては、シリコーン系樹脂、アクリル系樹脂、ウレタン系樹脂、EPDM、ポリカーボネート系樹脂が挙げられ、接着性を有する材質としては、熱可塑性樹脂や熱硬化性樹脂の半硬化状態のものが挙げられる。柔軟性に優れる材質としては、特にヒートサイクルによる物性変化が少なく劣化しにくいシリコーン系樹脂が好ましい。接着性を有する材質としては、発熱体との接着界面での耐熱衝撃性の観点から衝撃吸収性の良いウレタン系樹脂が好ましい。また難燃性の材質を選択することで難燃性を付与することも可能である。 The resin used for the insulating layer of the present invention is preferably excellent in heat resistance and thermal stability, and these physical properties can be adjusted to a desired range by appropriately selecting the resin used. In view of adhesion, it is preferable to select a resin having excellent flexibility or a resin having adhesiveness. For example, examples of materials having excellent flexibility include silicone resins, acrylic resins, urethane resins, EPDM, and polycarbonate resins, and examples of materials having adhesive properties include semi-curing of thermoplastic resins and thermosetting resins. The thing of a state is mentioned. As a material excellent in flexibility, a silicone resin that is less susceptible to deterioration due to a change in physical properties due to heat cycle is particularly preferable. The material having adhesiveness is preferably a urethane-based resin having good shock absorption from the viewpoint of thermal shock resistance at the bonding interface with the heating element. It is also possible to impart flame retardancy by selecting a flame retardant material.
熱伝導性向上のために、無機フィラーを絶縁層中に添加し、有機繊維と併用してもよい。 In order to improve thermal conductivity, an inorganic filler may be added to the insulating layer and used in combination with organic fibers.
熱伝導性向上のための無機フィラーとしては酸化アルミニウム、窒化珪素、酸化マグネシウム、窒化アルミニウム、窒化珪素、窒化ホウ素等、電気絶縁性で樹脂よりも熱伝導性に優れるものならば、いずれのものでも使用できる。また、無機フィラーの形状は球状、破砕状、棒状、繊維状のいずれのものでも使用できる。
本発明の無機フィラーの平均粒子径は0.3μm以上、20μm以下である事が好ましく、さらに0.5μm以上12μm以下が好ましく、0.9μm以上、6μm以下が好ましい。ここに平均粒子径は光散乱法で求められるD50である。本発明の有機フィラーの平均粒子径は有機繊維の繊維径と同サイズから繊維径の1/10の範囲である事が好ましい。両者のサイズの比がこの範囲に入る場合に特に好ましく熱の授受が行われる。
As an inorganic filler for improving thermal conductivity, aluminum oxide, silicon nitride, magnesium oxide, aluminum nitride, silicon nitride, boron nitride, etc., as long as they are electrically insulating and have better thermal conductivity than resin, Can be used. In addition, the inorganic filler may be spherical, crushed, rod-shaped, or fibrous.
The average particle size of the inorganic filler of the present invention is preferably from 0.3 μm to 20 μm, more preferably from 0.5 μm to 12 μm, and preferably from 0.9 μm to 6 μm. Here, the average particle diameter is D50 determined by the light scattering method. The average particle diameter of the organic filler of the present invention is preferably in the range of the same size as the fiber diameter of the organic fiber to 1/10 of the fiber diameter. Heat transfer is particularly preferably performed when the ratio of the sizes falls within this range.
このような無機フィラーを含有する系ではシランカップリング剤などのカップリング剤を樹脂中に配合することが好ましい。吸湿時の電気特性を劣化させるイオン性不純物は、無機フィラーにより絶縁層中に多量に導入されるのでイオン吸着無機物質と組み合わせ使用することにより顕著な特性向上を図ることができる。また吸湿時の電気特性の劣化は、無機フィラーと樹脂との界面密着性によっても大きく影響され、界面密着性に寄与するカップリング剤の添加は必須である。絶縁層中の無機フィラーは、添加する目的によるが、樹脂100質量部に対して、10質量部以上80質量部以下の添加が好ましく、さらに20質量部以上50質量部の添加が好ましい。
カップリング剤は、無機フィラー粒子の表面積を少なくても単分子層で覆る添加量として、カップリング剤の単位重量あたりの被覆面積と無機フィラー表面積から計算して求める。
In a system containing such an inorganic filler, it is preferable to add a coupling agent such as a silane coupling agent to the resin. Since ionic impurities that deteriorate the electrical characteristics during moisture absorption are introduced in a large amount into the insulating layer by the inorganic filler, a significant improvement in characteristics can be achieved by using in combination with an ion-adsorbing inorganic substance. In addition, the deterioration of electrical characteristics during moisture absorption is greatly influenced by the interfacial adhesion between the inorganic filler and the resin, and the addition of a coupling agent that contributes to the interfacial adhesion is essential. Although the inorganic filler in an insulating layer is based on the objective to add, addition of 10 mass parts or more and 80 mass parts or less is preferable with respect to 100 mass parts of resin, and also addition of 20 mass parts or more and 50 mass parts is preferable.
The coupling agent is calculated from the coating area per unit weight of the coupling agent and the surface area of the inorganic filler as an addition amount to be covered with the monomolecular layer even if the surface area of the inorganic filler particles is small.
本発明の絶縁層の製造方法としては、公知の方法で得ることができるが、次に示す方法が、絶縁層に気泡が巻き込まれるのを防止し、安定して、金属ベースおよび回路箔との接着性に優れ、工電気絶縁性で熱伝導性に優れ、かつ高温動作信頼性に優れる樹脂硬化体を得ることができることから、好ましい。 As a method for producing the insulating layer of the present invention, it can be obtained by a known method. However, the following method can prevent bubbles from being caught in the insulating layer, and can stably form the metal base and the circuit foil. It is preferable because a cured resin body having excellent adhesiveness, electrical and electrical insulation, excellent thermal conductivity, and excellent high-temperature operation reliability can be obtained.
本発明の絶縁層の製造方法は、ウレタン系樹脂と硬化剤とを混合し、その後、硬化する前に、有機繊維を配合し、混合することを特徴とする。ここで用いる混合機については、万能混合攪拌機、遊星式攪拌脱泡装置、加圧ニーダー等の従来公知の混合機を用いれば良く、また、コーティング条件についても適宜選択すれば良く、格別な条件を設定すべき理由はない。 The method for producing an insulating layer according to the present invention is characterized in that a urethane-based resin and a curing agent are mixed, and then organic fibers are blended and mixed before curing. About the mixer used here, it is sufficient to use a conventionally known mixer such as a universal mixing stirrer, a planetary stirring and defoaming device, a pressure kneader, and the coating conditions may be appropriately selected. There is no reason to set it.
本発明の絶縁層のコーティング方法については、スクリーン印刷、ティップコーター、コンマコーター、ダイコーター等の従来公知のコーティングプロセスを用いればよく、また、コーティング条件についても適宜選択すれば良く、格別な条件を設定すべき理由はない。 As for the coating method of the insulating layer of the present invention, a conventionally known coating process such as screen printing, tip coater, comma coater, die coater, etc. may be used, and the coating conditions may be appropriately selected. There is no reason to set it.
用いる有機繊維は、繊維径が3μm以上50μm以下である。本発明の有機繊維の繊維径は5μm以上30μmであることが好ましく、7μm以上30μm以下である事が好ましい。繊維径は繊維の電子顕微鏡などにより拡大像を得て、スケールで実測すればよい。
有機繊維の繊維径は、別途配合される熱伝導性フィラーとの相互作用を得るために重要であり、繊維径が所定の範囲を上回ると、熱伝導フィラーとの熱の授受が速やかに行われなくなる。繊維径が所定の範囲を下回る場合には、本来的には熱の授受効果が高くなるのであるが、繊維の比表面積が増えるためにバインダー樹脂の吸液量が増し、絶縁層のフォーミュレーションが難しくなる。
The organic fiber to be used has a fiber diameter of 3 μm or more and 50 μm or less. The fiber diameter of the organic fiber of the present invention is preferably 5 μm or more and 30 μm, and more preferably 7 μm or more and 30 μm or less. The fiber diameter may be measured on a scale by obtaining an enlarged image of the fiber with an electron microscope or the like.
The fiber diameter of the organic fiber is important for obtaining an interaction with the thermally conductive filler that is separately blended. When the fiber diameter exceeds a predetermined range, heat is transferred to and from the heat conductive filler quickly. Disappear. When the fiber diameter is below the specified range, the heat transfer effect is essentially increased, but the specific surface area of the fiber increases, so the amount of binder resin absorbed increases and the insulation layer is formed. Becomes difficult.
本発明の有機繊維の熱伝導率は25W/mK以上が必須で有り、さらに35W/mであることが好ましく、さらに50W/mであることがなお好ましい。。
繊維種としては電気絶縁性であり、所定の高い熱伝導性と繊維径を有する繊維であれば特に限定するものではなく、例えば、高強度ポリエチレン繊維、ポリベンザゾール繊維、芳香族ポリアミド繊維などが挙げられるが、特に耐熱性を兼ね備え、入手が容易であるポリベンザゾール繊維が好ましい。ポリベンザゾール繊維としてはポリベンゾオキサゾール繊維、ポリベンゾチアゾール繊維、ポリベンゾイミダゾール繊維を用いることができる。これら内、ポリベンザゾール繊維の一種である東洋紡株式会社製 Zylon を好ましく用いることができる。
The thermal conductivity of the organic fiber of the present invention is essentially 25 W / mK or more, preferably 35 W / m, and more preferably 50 W / m. .
The fiber type is not particularly limited as long as it is electrically insulating and has a predetermined high thermal conductivity and fiber diameter, and examples thereof include high-strength polyethylene fiber, polybenzazole fiber, and aromatic polyamide fiber. Among them, polybenzazole fibers that have heat resistance and are easily available are particularly preferable. Polybenzoxazole fiber, polybenzothiazole fiber, and polybenzimidazole fiber can be used as the polybenzazole fiber. Among these, Zylon manufactured by Toyobo Co., Ltd., which is a kind of polybenzazole fiber, can be preferably used.
本発明の有機繊維は、絶縁層の主として面方向に配置される。本発明では有機繊維は平織、ないし不織布形態で配合することが好ましい。本発明において特に好ましくは、該有機繊維をパイル織りの形で配合することが好ましい。パイル織物とは、平織か綾織で編地の片面または両面にパイルを織り出した織物の総称であり、添毛織り(てんもうおり)とも云う。ここにパイルとは下地から出ている繊維のことで、織った後の処理により2種類に分類される。パイルをループのままにしたものをループパイル(輪奈)またはアンカットパイルといい、ループをカットしたものをカットパイル(切毛)という。
本発明の有機繊維の配合量は、絶縁層の樹脂成分100質量部に対して、3質量部以上40質量部以下である。有機繊維の配合量はさらに好ましくは4質量部以上24質量部以下であり、なお好ましくは5質量部以上12質量部以下である。
The organic fiber of the present invention is disposed mainly in the surface direction of the insulating layer. In the present invention, the organic fibers are preferably blended in a plain woven or non-woven form. In the present invention, it is particularly preferable to blend the organic fibers in the form of a pile weave. The pile woven fabric is a general term for a woven fabric obtained by weaving a pile on one side or both sides of a knitted fabric with plain weave or twill weave, and is also called garment weaving. Here, the pile is a fiber coming out of the base and is classified into two types according to the treatment after weaving. The one in which the pile is left in the loop is called a loop pile (Wana) or uncut pile, and the one in which the loop is cut is called a cut pile (cut hair).
The compounding quantity of the organic fiber of this invention is 3 to 40 mass parts with respect to 100 mass parts of resin components of an insulating layer. The blending amount of the organic fiber is more preferably 4 parts by mass or more and 24 parts by mass or less, and still more preferably 5 parts by mass or more and 12 parts by mass or less.
本発明の金属ベース回路基板は、本発明によれば、アルミニウムなどの金属ベースに絶縁層を積層し、その後銅箔などの回路箔をプレスあるいはラミネートなどにより貼り合わせることで製作される。
本発明で好ましく用いられる金属ベースは金属の板材であれば、特に限定されないが、アルミニウム、アルミニウム合金、銅、銅合金を好ましく用いることができる。
本発明における回路箔としては、銅箔、銅合金泊、ニッケル箔、アルミニウム箔、銀箔、銀合金箔を好ましく用いることができる
According to the present invention, the metal base circuit board of the present invention is manufactured by laminating an insulating layer on a metal base such as aluminum and then bonding the circuit foil such as copper foil by pressing or laminating.
The metal base preferably used in the present invention is not particularly limited as long as it is a metal plate material, but aluminum, aluminum alloy, copper, and copper alloy can be preferably used.
As the circuit foil in the present invention, copper foil, copper alloy stay, nickel foil, aluminum foil, silver foil, silver alloy foil can be preferably used.
本発明では回路箔を一般的なエッチング加工、あるいは高出力のレーザーによる切削加工など適宜公知の加工方法を選択してパターン化することができる。 In the present invention, the circuit foil can be patterned by appropriately selecting a known processing method such as general etching processing or cutting processing with a high-power laser.
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。
1.シートの線膨張係数(CTE)
作製した金属ベース回路基板の回路箔を塩化第二銅エッチング液で、金属ベースを関東化学株式会社性アルミエッチング液で全て除去して得られた絶縁層を下記条件にて伸縮率を測定し、15℃間隔(30〜45℃、45℃〜60℃、・・・)での伸縮率/温度を測定し、この測定を300℃まで行い、全測定値の平均値を線膨張係数(CTE)として算出した。
使用機器 : MACサイエンス社製「TMA4000S」
試料長さ : 20mm
試料幅 : 2mm
昇温開始温度 : 25℃
昇温終了温度 : 400℃
昇温速度 : 5℃/分
雰囲気 : アルゴン
初荷重 : 34.5g/mm2
2.金属ベース回路基板の耐電圧
測定用試料として、作製した金属ベース回路基板の原板をエッチング処理し、所望の回路を作製したものを試料とし、
・初期
・マイグレーション試験後:85℃、湿度85%RH、DC1000V、1000時間の条件(マイグレーション試験)下に暴露した後
・PCT試験後:121℃、湿度100%RH、2atm、96時間の条件(PCT処理)下に暴露した後、
についてJIS C 2110に基づき平行平板、直流印可時の絶縁破壊電圧を測定し、絶縁破壊電圧を絶縁層の厚さで除して絶縁破壊強度を求めた。測定器には、菊水電子工業社製TOS−8700を用いた。
3.金属ベース回路基板の熱抵抗
銅箔上にTO−220型トランジスターを半田付けし、水冷した放熱フィン上に放熱グリースを介して固定した。トランジスターに通電し、トランジスターを発熱させ、トランジスター表面と金属基裏面の温度差を測定し、熱抵抗値を測定し、放熱グリースの熱抵抗値を補正することにより求める試験片の熱抵抗値を測定した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited by a following example. In addition, the evaluation method of the physical property in the following examples is as follows.
1. Sheet linear expansion coefficient (CTE)
Stretch rate is measured under the following conditions for the insulating layer obtained by removing all metal base with Kanto Chemical Co., Ltd. aluminum etchant with cupric chloride etching solution on the circuit foil of the produced metal base circuit board, The stretch rate / temperature at intervals of 15 ° C. (30 to 45 ° C., 45 ° C. to 60 ° C.,...) Is measured, this measurement is performed up to 300 ° C., and the average value of all measured values is the linear expansion coefficient (CTE). Calculated as
Equipment used: “TMA4000S” manufactured by MAC Science
Sample length: 20mm
Sample width: 2 mm
Temperature rise start temperature: 25 ° C
Temperature rise end temperature: 400 ° C
Temperature increase rate: 5 ° C./min Atmosphere: Argon initial load: 34.5 g / mm 2
2. As a sample for measuring the withstand voltage of the metal base circuit board, the original plate of the metal base circuit board that was produced was etched, and the desired circuit was produced as a sample.
・ Initial ・ After migration test: after exposure under conditions of 85 ° C., humidity 85% RH, DC 1000V, 1000 hours (migration test) ・ After PCT test: conditions of 121 ° C., humidity 100% RH, 2 atm, 96 hours ( After exposure under PCT treatment)
In accordance with JIS C 2110, the dielectric breakdown voltage was measured when a parallel plate and DC were applied, and the dielectric breakdown strength was determined by dividing the dielectric breakdown voltage by the thickness of the insulating layer. As a measuring instrument, TOS-8700 manufactured by Kikusui Electronics Co., Ltd. was used.
3. A TO-220 type transistor was soldered on the heat resistance copper foil of the metal base circuit board, and fixed on the water-cooled heat radiation fin via heat radiation grease. Energize the transistor, heat the transistor, measure the temperature difference between the transistor surface and the back of the metal base, measure the thermal resistance value, and correct the thermal resistance value of the heat dissipation grease to measure the thermal resistance value of the test piece did.
〔実施例〕
以下に具体的な実施例を述べる。
(実施例1)
有機繊維として、ZylonHM(東洋紡製:繊維径12μm、繊維軸方向の熱伝導率は、60W/mK、有機繊維A)のパイル織り布に、
樹脂溶液として、東洋紡製 飽和共重合ポリエステルウレタン樹脂 UR3600/80.9重量部、東洋紡製飽和共重合ポリエステルウレタン樹脂BX−10SS/12.0重量部、東洋紡製 エポキシ樹脂 AH−120/7.1重量部、メチルエチルケトン200重量部を混合した溶液(樹脂溶液X)に含浸させた。
〔Example〕
Specific examples will be described below.
Example 1
As an organic fiber, a pile woven fabric of ZylonHM (manufactured by Toyobo: fiber diameter 12 μm, thermal conductivity in the fiber axis direction is 60 W / mK, organic fiber A),
As resin solutions, Toyobo saturated copolymer polyester urethane resin UR3600 / 80.9 parts by weight, Toyobo saturated copolymer polyester urethane resin BX-10SS / 12.0 parts by weight, Toyobo epoxy resin AH-120 / 7.1 parts by weight Part and 200 parts by weight of methyl ethyl ketone were impregnated with a mixed solution (resin solution X).
厚さ1.5mmのアルミニウム金属ベース上に前記樹脂溶液を含浸させたパイル織り布を重ね、100℃、60分間加熱して溶剤を揮発させ、適宜溶液の塗布乾燥を繰り返し継続して有機繊維が概ね埋没する程度に樹脂層の厚さを増し、半硬化状態にした後、厚さ70μmの銅箔を重ね、真空プレスにて加圧し、更に140℃2時間加熱して硬化させ、金属ベース回路基板原板を作製した。 A pile woven fabric impregnated with the above resin solution is layered on an aluminum metal base having a thickness of 1.5 mm, heated at 100 ° C. for 60 minutes to volatilize the solvent, and repeatedly repeated coating and drying of the solution as appropriate to form organic fibers. After increasing the thickness of the resin layer to the extent that it is almost buried and making it a semi-cured state, a copper foil with a thickness of 70 μm is stacked, pressurized with a vacuum press, and further cured by heating at 140 ° C. for 2 hours to form a metal base circuit A substrate original plate was produced.
金属ベース回路基板原板の銅箔上にドライフィルムレジストと塩化第二銅エッチング液を用いた常法によりパワートランジスタ実装用の回路パターンと、絶縁耐圧評価用の電極パターンを有する、金属ベース回路基板を得た。 A metal base circuit board having a circuit pattern for mounting a power transistor and an electrode pattern for dielectric breakdown voltage evaluation by a conventional method using a dry film resist and cupric chloride etching solution on a copper foil of a metal base circuit board original plate Obtained.
得られた金属ベース回路基板について、上述のとおりに各特性を調べ、その結果を表1に示した。 Each characteristic of the obtained metal base circuit board was examined as described above, and the results are shown in Table 1.
(実施例2)
有機繊維をDyneemaSK71(東洋紡製;繊維径11μm、繊維軸方向の熱伝導率は50W/mK、有機繊維B)の平織り布に替え、乾燥温度を60℃、真空プレスでの加圧過熱時の温度を80℃に加熱時間を4時間に下以外は実施例1と同様に操作し、金属ベース回路基板原板を作製した。
以下同様にパターンを形成し評価した、結果を表1.に示す
(実施例3)
有機繊維をケブラー(東レデュポン製、アラミド繊維、繊維径11μm、繊維軸方向の熱伝導率は、60W/mK、有機繊維C)のパイル織り布に変更したこと以外は、実施例1と同様にして金属ベース回路基板を得た。同様に評価した結果を表1に示す
(Example 2)
The organic fiber is replaced with a plain woven fabric of Dyneema SK71 (Toyobo; fiber diameter 11 μm, thermal conductivity in the fiber axis direction is 50 W / mK, organic fiber B). A metal base circuit board original plate was produced in the same manner as in Example 1 except that the heating time was set to 80 ° C. and the heating time was set to 4 hours.
Hereinafter, patterns were similarly formed and evaluated. (Example 3)
Example 1 except that the organic fiber was changed to a pile woven fabric of Kevlar (manufactured by Toray DuPont, aramid fiber, fiber diameter 11 μm, thermal conductivity in the fiber axis direction is 60 W / mK, organic fiber C). A metal base circuit board was obtained. The results evaluated in the same manner are shown in Table 1.
(実施例4)
樹脂をモメンティブ・パフォーマンス・マテリアルズ社製 液状シリコーンゴム主剤TSE3431−A/100質量部、モメンティブ・パフォーマンス・マテリアルズ社製 液状シリコーンゴム硬化剤 TSE3431−C/30質量部を混合した樹脂溶液(樹脂溶液Y)に替えた以外は、実施例1と同様にして金属ベース回路基板を得た。以下同様に評価した結果を表1.に示す
Example 4
Resin solution (resin solution) mixed with liquid silicone rubber base TSE3431-A / 100 parts by mass of Momentive Performance Materials, and liquid silicone rubber curing agent TSE3431-C / 30 parts by mass of Momentive Performance Materials A metal base circuit board was obtained in the same manner as in Example 1 except for changing to Y). The results evaluated in the same manner are shown in Table 1. Shown in
(実施例5)
樹脂に無機フィラーとして、二酸化ケイ素(無機フィラーα)平均粒子径0.15μmを添加したこと以外は、実施例1と同様にして金属ベース回路基板を得た。
(実施例6)
樹脂に無機フィラーとして、酸化アルミニウム(無機フィラーβ)平均粒子径3.6μmを添加したこと以外は、実施例1と同様にして金属ベース回路基板を得た。
(Example 5)
A metal base circuit board was obtained in the same manner as in Example 1 except that silicon dioxide (inorganic filler α) average particle size of 0.15 μm was added to the resin as an inorganic filler.
(Example 6)
A metal base circuit board was obtained in the same manner as in Example 1 except that aluminum oxide (inorganic filler β) average particle diameter of 3.6 μm was added as an inorganic filler to the resin.
(比較例1)
有機繊維を用いず、絶縁層の厚さが80μmになるように塗布乾燥した以外は、実施例1と同様にして金属ベース回路基板を得た。以下同様に評価した結果を表1.に示す
(Comparative Example 1)
A metal base circuit board was obtained in the same manner as in Example 1 except that organic fibers were not used and coating and drying were performed so that the insulating layer had a thickness of 80 μm. The results evaluated in the same manner are shown in Table 1. Shown in
(比較例2)
有機繊維を絶縁層の厚さが80μmになるように塗布乾燥した以外は、実施例5と同様にして金属ベース回路基板を得た。以下同様に評価した結果を表1.に示す
(Comparative Example 2)
A metal base circuit board was obtained in the same manner as in Example 5 except that the organic fiber was applied and dried so that the insulating layer had a thickness of 80 μm. The results evaluated in the same manner are shown in Table 1. Shown in
本発明による金属ベース回路基板は、金属ベースと銅箔との間に、有機繊維を有した絶縁層を積層することにより、金属と絶縁層のCTEを近接させており、その結果、低い熱抵抗、高い耐電圧、高い耐湿信頼性、高い高温動作信頼性を有する優れた特性を示すものである。 In the metal base circuit board according to the present invention, the CTE of the metal and the insulating layer is brought close to each other by laminating an insulating layer having an organic fiber between the metal base and the copper foil. It exhibits excellent characteristics with high withstand voltage, high humidity resistance, and high temperature operation reliability.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016074899A JP6750284B2 (en) | 2016-04-04 | 2016-04-04 | Metal base circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016074899A JP6750284B2 (en) | 2016-04-04 | 2016-04-04 | Metal base circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017188518A true JP2017188518A (en) | 2017-10-12 |
JP6750284B2 JP6750284B2 (en) | 2020-09-02 |
Family
ID=60045724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016074899A Active JP6750284B2 (en) | 2016-04-04 | 2016-04-04 | Metal base circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6750284B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022176448A1 (en) * | 2021-02-18 | 2022-08-25 |
-
2016
- 2016-04-04 JP JP2016074899A patent/JP6750284B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022176448A1 (en) * | 2021-02-18 | 2022-08-25 | ||
WO2022176448A1 (en) * | 2021-02-18 | 2022-08-25 | 住友ベークライト株式会社 | Thermosetting resin composition, susbstrate for power modules, and power module |
Also Published As
Publication number | Publication date |
---|---|
JP6750284B2 (en) | 2020-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7053579B2 (en) | Heat transfer member and heat dissipation structure including it | |
JP5080295B2 (en) | Heat dissipating mounting board and manufacturing method thereof | |
US7291381B2 (en) | Thermally conductive formed article and method of manufacturing the same | |
EP3761355B1 (en) | Insulating heat dissipation sheet | |
EP1039537A2 (en) | Heat conductive resin substrate and semiconductor package | |
JP6023474B2 (en) | Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof | |
KR20200070435A (en) | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device | |
JP2010053224A (en) | Thermally conductive resin sheet, heat conduction plate, thermally conductive printed wiring board and radiating member | |
JP2008186590A (en) | High heat and electric conductivity composition, conductive paste, and conductive adhesive | |
JP6481494B2 (en) | Inorganic filler-containing cured epoxy resin and laminate using the same | |
US10681808B2 (en) | Metal-base printed circuit board | |
JPWO2020153377A1 (en) | Thermally conductive resin sheet | |
WO2010070890A1 (en) | Prepreg, process for production thereof, and printed wiring board using same | |
JP2012116715A (en) | Method for producing magnesium oxide powder, method for producing thermosetting resin composition, and method for producing prepreg and laminate | |
JP2017092345A (en) | Heat conduction sheet and method of manufacturing the same, and semiconductor device | |
JP2002138205A (en) | Thermal conductive molded article | |
WO2016132564A1 (en) | Heat-curable resin composition, prepreg, and laminated sheet | |
JP2014189701A (en) | High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition | |
JP7164527B2 (en) | Heat dissipation sheet with high thermal conductivity and high insulation | |
JP6750284B2 (en) | Metal base circuit board | |
JP6650736B2 (en) | High thermal conductivity, high insulation heat dissipation sheet | |
CN116964731A (en) | Heat conductive resin sheet | |
JP2002020501A (en) | Thermo-conductive resin substrate and semiconductor package | |
CN107851624B (en) | Substrate for power module, circuit substrate for power module, and power module | |
JP2007084704A (en) | Resin composition and circuit board and package using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200714 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200727 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6750284 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |