JPS63111038A - Three-dimensional reinforced laminate and its manufacture - Google Patents

Three-dimensional reinforced laminate and its manufacture

Info

Publication number
JPS63111038A
JPS63111038A JP61255893A JP25589386A JPS63111038A JP S63111038 A JPS63111038 A JP S63111038A JP 61255893 A JP61255893 A JP 61255893A JP 25589386 A JP25589386 A JP 25589386A JP S63111038 A JPS63111038 A JP S63111038A
Authority
JP
Japan
Prior art keywords
magnetic
fibers
reinforced laminate
ferromagnetic
long fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61255893A
Other languages
Japanese (ja)
Other versions
JPH0229496B2 (en
Inventor
Hide Yamashita
秀 山下
Hiroshi Hatta
博志 八田
Toshiyuki Sugano
俊行 菅野
Takahiko Watanabe
渡邊 隆比古
Shohei Eto
江藤 昌平
Kunihiko Murayama
邦彦 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61255893A priority Critical patent/JPS63111038A/en
Publication of JPS63111038A publication Critical patent/JPS63111038A/en
Publication of JPH0229496B2 publication Critical patent/JPH0229496B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a three-dimensional reinforced laminate of high reinforcing efficiency, by orientating a reinforcement material in the direction meeting vertically with a lamination plane of a long fiber. CONSTITUTION:A magnetic field is generated with a magnetic pole and a line of magnetic force is generated between magnetic material parts 6a on the inside of a molding tool 6. Although a long fiber 8 of a non-magnetic material is not affected with the line of magnetic force at all, a short fiber 9 which is of a ferromagnetic material is oriented in the direction of the line of magnetic force, that is, the direction meeting vertically with the long fiber 8. Then the same is cured by performing pressurization through a magnetic pole 5. As a matrix is cured by orientating the short fiber in the direction meeting with a lamination plane vertically like this, interlaminar shear strength of a laminate can be improved drastically.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は構造部材として用いられる繊維強化積層体及
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fiber reinforced laminate used as a structural member and a method for producing the same.

C従来の技術〕 繊維強化積層体の諸特性は強化材の向きにより大きな異
方性を示し、その非強化方向の特性向上が重要な課題と
なっている。従来はこの異方性を解消するために強化材
をある面内でランダムに配向させるか、種々の層内で繊
維が異なった配向方向を持つ多層積層体をつくることに
よっである面内で本質的に等方性とすることが一般的な
技術であった。しかしながら複合材料の適用が進むにつ
れ、複雑形状物や厚肉の製品が増え1面内方向よりも積
層面と垂直な方向への強化材の配向が必要となる特性、
とりわけ層閲せん断強度が問題となってきている。上記
のように面内方向における異方性への対処は成されてい
るものの、この積層面と垂直な方向における異方性への
対処は行われていない。
C. Prior Art] Various properties of fiber-reinforced laminates exhibit large anisotropy depending on the direction of the reinforcing material, and improving the properties in the non-reinforced direction has become an important issue. Conventionally, this anisotropy has been overcome by either randomly orienting the reinforcing material within a plane, or by creating a multilayer laminate in which the fibers have different orientation directions in various layers. The common technique was to make it essentially isotropic. However, as the application of composite materials progresses, the number of products with complex shapes and thick walls increases.
In particular, layer shear strength has become a problem. Although measures have been taken to deal with the anisotropy in the in-plane direction as described above, measures have not been taken to deal with the anisotropy in the direction perpendicular to the laminated plane.

従来これに類似したものとして、長繊維系のプリプレグ
を積層する際、ウィスカを混入してプリプレグの層間を
補強するものが提案されている(例えば特開昭60−3
8145号公報)、この技術は第3図に示すように、長
繊維を含むプリプレグ(1)を巻回して積層し、管状体
を形成する際、ウィスカ(2)を混合した熱硬化性合成
樹脂をスクリムシート(3)に含浸させ、このスクリム
シート(3)をブリ、プレグ(1)に重合して捲回する
方法、およびプリプレグ(1)の−側面に溶剤に混合し
たウィスカ(2)・を塗付したり、ウィスカ(2)を電
気植毛したり。
Similar to this, a method has been proposed in which whiskers are mixed in to reinforce the interlayers of prepreg when laminating long fiber prepreg (for example, Japanese Patent Laid-Open No. 60-3
As shown in Figure 3, this technology involves winding and laminating prepregs (1) containing long fibers to form a tubular body using a thermosetting synthetic resin mixed with whiskers (2). A method of impregnating a scrim sheet (3) with a scrim sheet (3), polymerizing the scrim sheet (3) into a preg (1) and winding it, and a method of impregnating a whisker (2) mixed with a solvent on the side of the prepreg (1). or electro-flocking whiskers (2).

吹付けたりする方法でウィスカ層を形成し、加熱。A whisker layer is formed using a method such as spraying and then heated.

加圧して硬化させ、長繊維層の層間にウィスカ層を設け
た管状体を得ている。
By applying pressure and hardening, a tubular body having a whisker layer between the long fiber layers is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来技術にあっても長繊維層の層間へのウィ
スカの配向は存在するが、これらのウィスカは殆んどが
長繊維積層面の面内方向へのみ配向しており、眉間強度
を向上させるための繊維配向、即ち長繊維積層面に垂直
な方向への配向がなされておらず、強化材の補強効果を
十分に生かし得ないという問題点があった。
In this way, although whiskers are oriented between layers of long fiber layers even in the conventional technology, most of these whiskers are oriented only in the in-plane direction of the laminated surface of long fibers, and the glabella strength is There was a problem in that the fiber orientation to improve the fiber orientation, that is, the orientation in the direction perpendicular to the long fiber lamination plane, was not done, and the reinforcing effect of the reinforcing material could not be fully utilized.

この発明は上記のような問題点を解消するためになされ
たもので、長繊維積層面と垂直な方向へ強化材を配向さ
せ、しかも磁場配向により強化効率の高い三次元強化積
層体及びその製造方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it provides a three-dimensional reinforced laminate in which the reinforcing material is oriented in a direction perpendicular to the long fiber laminate surface and has high reinforcement efficiency due to magnetic field orientation, and its production. The purpose is to obtain a method.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の第1発明の三次元強化積層体は、積層された
非磁性体の長繊維と、この長繊維積層面に垂直方向に磁
場配向された強磁性体の短繊維と。
The three-dimensional reinforced laminate of the first aspect of the present invention includes laminated long fibers of non-magnetic material and short fibers of ferromagnetic material oriented in a magnetic field in a direction perpendicular to the laminated surface of the long fibers.

上記長繊維及び短繊維を上記配向状態で内蔵するように
硬化したマトリックスとを備えたものである。
and a hardened matrix containing the long fibers and short fibers in the orientation state.

この発明の第2発明の三次元強化積層体の製造方法は1
強磁性体の短繊維と非磁性体の長繊維とを組み合わせた
ものを磁場におかれた成形型の中に入れ、マトリックス
を含浸させた状態で、上記強磁性体の短繊維のみを磁力
により長繊維積層面に垂直方向に磁場配向させて硬化さ
せる方法である。
The method for producing a three-dimensional reinforced laminate according to the second invention is 1
A combination of ferromagnetic short fibers and non-magnetic long fibers is placed in a mold placed in a magnetic field, and with the matrix impregnated, only the ferromagnetic short fibers are heated by magnetic force. This is a method of curing by orienting the long fibers in a magnetic field in a direction perpendicular to the laminated surface.

この発明では、磁極を有する磁気プレスに成形型を設置
し、磁力線の向きを長繊維積層面と壬直に設定して、磁
力により強磁性体である短繊維のみを長繊維積層面と垂
直に配向させた状態でマトリックスを硬化させ、三次元
強化積層体を得るようにしている。短繊維の長さは、成
形時の加圧力によりすでに配向している短繊維が向きを
そらされないように加圧時の各長繊維積層厚さより小さ
くなるように100μ園までとし、十分な補強効果を得
るためにアスペクト比は20以上になるようにするのが
好ましい。
In this invention, a mold is installed in a magnetic press with magnetic poles, and the direction of the magnetic lines of force is set directly perpendicular to the laminated surface of the long fibers. The matrix is cured in an oriented state to obtain a three-dimensional reinforced laminate. The length of the short fibers should be up to 100 μm, which is smaller than the laminated thickness of each long fiber when pressurized, so that the already oriented short fibers are not deflected by the pressurizing force during molding, and have a sufficient reinforcing effect. In order to obtain this, it is preferable that the aspect ratio is 20 or more.

この発明の三次元強化積層体は次の様にして製造される
。まず磁気プレスの磁極間に成形型を設置する。成形型
は磁性材料と非磁性材料の合わせ型にすると、磁場を発
生させた時、この磁性材料間に磁゛力線が発生する0強
磁性体の短繊維はこの磁力線の向きに配向するので、磁
力線の向きが長繊維積層面と垂直になるように成形型を
設置する。
The three-dimensional reinforced laminate of this invention is manufactured as follows. First, a mold is installed between the magnetic poles of a magnetic press. If the mold is made of a combination of magnetic and non-magnetic materials, when a magnetic field is generated, lines of magnetic force will be generated between the magnetic materials, and the short fibers of the ferromagnetic material will be oriented in the direction of the lines of magnetic force. , the mold is installed so that the direction of the magnetic field lines is perpendicular to the laminated surface of the long fibers.

この成形型の中に一方向材またはクロス材の長繊維に強
磁性体の短繊維を混入したものを入れ、さらにその中に
マトリックスを真空含浸させる0次に磁場を発生させ、
強磁性体の短繊維のみを長繊維積層面と垂直に配向させ
る。またこの時成形型に超音波振動子を取り付け、超音
波振動により成形型内の短繊維を振動させ、短繊維が浮
上や沈降をしないように一様に分散させて磁力による配
向をやりやすくするのが好ましい、この状態で成形型を
加圧してマトリックスを硬化させて三次元強化積層体を
得る。
A mixture of long fibers of unidirectional material or cloth material mixed with short fibers of ferromagnetic material is placed in this mold, and a zero-order magnetic field is generated to vacuum-impregnate the matrix therein.
Only the short fibers of the ferromagnetic material are oriented perpendicularly to the laminated surface of the long fibers. At this time, an ultrasonic vibrator is attached to the mold, and the short fibers inside the mold are vibrated by ultrasonic vibration, and the short fibers are uniformly dispersed so that they do not float or settle, making it easier to align them using magnetic force. In this state, the mold is preferably pressurized to harden the matrix to obtain a three-dimensional reinforced laminate.

非磁性体の長繊維としてセラミック繊維を用いる場合は
、炭素繊維、ガラス繊維などの繊維状無機化合物が使用
でき、この場合マトリックスとしては樹脂、金属、セラ
ミックスなどが使用できる。
When ceramic fibers are used as the nonmagnetic long fibers, fibrous inorganic compounds such as carbon fibers and glass fibers can be used, and in this case, resins, metals, ceramics, etc. can be used as the matrix.

また有機繊維を用いる時は、ポリエチレンテレフタレー
ト繊維、アラミド繊維などの合成繊維や絹。
When using organic fibers, use synthetic fibers such as polyethylene terephthalate fibers and aramid fibers, and silk.

綿などの天然繊維が使用でき、この場合マトリックスと
しては、金属、セラミックスを使用すると、成形温度が
高くて有機繊維の方が熱分解を起こしてしまうので、マ
トリックスとしては熱硬化性または熱可塑性の樹脂が好
ましい。
Natural fibers such as cotton can be used; in this case, if metals or ceramics are used as the matrix, the molding temperature will be higher and organic fibers will undergo thermal decomposition, so thermosetting or thermoplastic materials may be used as the matrix. Resins are preferred.

強磁性体の短繊維としては、アスペクト比20以上の酸
化鉄粒子またはメタル粒子、あるいはアスペクト比20
以上、繊維長100μ璽以下の強磁性ウィスカまたは強
磁性体で被覆されたウィスカなどが使用できる。
The ferromagnetic short fibers include iron oxide particles or metal particles with an aspect ratio of 20 or more, or iron oxide particles or metal particles with an aspect ratio of 20 or more.
As described above, a ferromagnetic whisker with a fiber length of 100 μm or less or a whisker coated with a ferromagnetic material can be used.

〔作 用〕[For production]

上記により製造された三次元強化積層体は、長繊維の積
層面に垂直方向に短繊維が配向された状態でマトリック
スにより固化されているので、層閲せん断強度が著しく
向上し、あらゆる応力に対して強化されており、構造部
材として適している。
The three-dimensional reinforced laminate manufactured above is solidified by the matrix with the short fibers oriented perpendicular to the laminated plane of the long fibers, so the layered shear strength is significantly improved and it is resistant to any stress. It is reinforced and suitable as a structural member.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図は実施例で使用する三次元強化積層体製造装置の
正面図、第2図はその成形型の垂直断面図であり、図に
おいて(4)は磁気プレスであり、上、下の加圧部に磁
極(5)を有する。磁極(5)の直径は300+s厘で
ある。(6)は磁極(5)間に介在する成形型で、上下
面の磁性材料部(6a)と側面の非磁性材料部(6b)
とからなる。(7)は超音波振動子である。 CFRP
クロス材からなる非磁性体の長繊維(8)は縦糸、横糸
の密度が共に17.5本/25mmの平織りで、寸法は
100園−×100謬履、厚みは0.14m−である。
Example 1 Figure 1 is a front view of the three-dimensional reinforced laminate manufacturing apparatus used in the example, and Figure 2 is a vertical sectional view of the mold. In the figure, (4) is a magnetic press; The lower pressure section has a magnetic pole (5). The diameter of the magnetic pole (5) is 300+s. (6) is a mold interposed between the magnetic poles (5), with magnetic material portions (6a) on the upper and lower surfaces and non-magnetic material portions (6b) on the side surfaces.
It consists of. (7) is an ultrasonic vibrator. CFRP
The long fibers (8) of a non-magnetic material made of a cloth material are plain woven with warp and weft densities of 17.5/25 mm, dimensions of 100 mm x 100 mm, and thickness of 0.14 m.

この長繊維(8)を成形型(6)に−枚ずつ積層し、こ
の時各層間に直径0.03μ■、粒子長0.3μ−の酸
化鉄粒子からなる強磁性体の短繊維(9)を均一に散布
する。成形容積に対する長繊維(8)および短繊維(9
)の容積含有率をそれぞれ50%および10%とする。
These long fibers (8) are layered one by one in a mold (6), and between each layer there are ferromagnetic short fibers (9 ) evenly. Long fibers (8) and short fibers (9
) are 50% and 10%, respectively.

このようにして繊維を積層した後に、成形型(6)内を
真空に引きながらエポキシ樹脂を圧入する。この時積層
した長繊維(8)および短繊維(9)が乱れないように
圧入は徐々に行う0次に成形型(6)を磁気プレス(4
)の磁極(5)間に設置し、成形型(6)に取付けられ
た超音波振動子(7)により型内の短繊維(9)を振動
させて、配向の妨げになる粒子間の拘束を防ぎ、均一に
分散するようにする。
After the fibers are laminated in this manner, the epoxy resin is press-fitted into the mold (6) while evacuating the inside of the mold (6). At this time, the press-fitting is done gradually so as not to disturb the laminated long fibers (8) and short fibers (9).
) is installed between the magnetic poles (5) of the mold (6), and the short fibers (9) in the mold are vibrated by an ultrasonic vibrator (7) attached to the mold (6), thereby removing the restraint between the particles that hinders their orientation. and ensure uniform dispersion.

この状態のままで磁極(5)により磁場を発生させ、成
形型(6)内の磁性材料部(6a)間に磁力線を発生゛
  させる、非磁性体の長繊維(8)は磁力線により何
も影響を受けないが、強磁性体である短繊維(9)はこ
の磁力線の向き、即ち長繊維(8)と垂直な方向に配向
する。そして成形型(6)内に埋蔵されたヒーターによ
り加熱を、また磁極(5)を通して加圧を行い硬化させ
る。エポキシ樹脂の粘度は加熱により変化するので、短
繊維(9)が配向しやすい低粘度の時に加振および磁場
配向を行う6硬化後成形型(6)の中から試験片A(高
さ3+sm X幅6III+×長さ20■)を取出して
層閲せん断強度Frsを測定し、磁場をかけなかった時
の試験片Eおよびクロス材からなる長繊維(8)のみの
試験片Fと比較し表1の結果を得た。
In this state, a magnetic field is generated by the magnetic pole (5), and lines of magnetic force are generated between the magnetic material parts (6a) in the mold (6). Although not affected, the short fibers (9), which are ferromagnetic materials, are oriented in the direction of the magnetic field lines, that is, in the direction perpendicular to the long fibers (8). Then, it is cured by heating with a heater embedded in the mold (6) and by applying pressure through the magnetic pole (5). Since the viscosity of the epoxy resin changes with heating, vibration and magnetic field orientation are applied when the short fibers (9) are easily oriented when the viscosity is low. 6 After curing, test piece A (height 3 + sm x Width: 6III The results were obtained.

実施例2〜4 実施例1において短繊維(9)の種類を、直径0.03
μ園、粒子長0.2μmのメタル粒子、直径0.3μm
、繊維長75μ−の鉄ウィスカおよび直径0.6μm。
Examples 2 to 4 In Example 1, the type of short fiber (9) was changed to a diameter of 0.03
μen, metal particles with particle length 0.2 μm, diameter 0.3 μm
, iron whiskers with a fiber length of 75 μm and a diameter of 0.6 μm.

繊維長80μ脂のニッケル被覆Sicウィスカと変えた
実施例2〜4の試験片B、C,Dの層閲せん断強度の測
定結果を表1に示す。
Table 1 shows the measurement results of the cross-layer shear strength of test pieces B, C, and D of Examples 2 to 4 in which the nickel-coated SiC whiskers with a fiber length of 80 μm were used.

表1 層閲せん断強度FTs 表1の結果より、本発明による試験片A−Dはいずれも
比較例の試験片E、Fよりも層間せん断°強度が高く、
特にメタル粒子を用いた試験片Bは。
Table 1 Interlaminar shear strength FTs From the results in Table 1, the interlaminar shear strength of test specimens A to D according to the present invention is higher than that of comparative example test specimens E and F.
Especially test piece B using metal particles.

層閲せん断強度が最高18kgf/+s■2に達し、磁
場配向を行わなかった試験片Eに対し200%、長繊維
(8)のみの試験片Fに対して280%もの特性向上が
見られた。
The layered shear strength reached a maximum of 18 kgf/+s2, and the properties were improved by 200% compared to specimen E, which was not subjected to magnetic field orientation, and by 280% compared to specimen F, which had only long fibers (8). .

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、長繊維の積層面に垂直
方向に短繊維を配向させてマトリックスを硬化させたの
で、従来の積層体の弱点であった層間せん断強度を著し
く向上させることができ、あらゆる応力に対応した高品
質の積層体が得られる効果がある。
As described above, according to the present invention, the matrix is hardened by orienting the short fibers in a direction perpendicular to the laminated surface of the long fibers, so it is possible to significantly improve the interlaminar shear strength, which was a weak point of conventional laminates. This has the effect of producing a high-quality laminate that can withstand all types of stress.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による三次元強化積層体製造
装置の正面図、第2図はその成形型の垂直断面図、第3
図は従来の製造方法による管状体を形成する素材の一部
切欠平面図である。 各図中、同一符号は同一部分を示し、(4)は磁気プレ
ス、(5)は磁極、(6)は成形型、(6a)は磁性材
料部、(6b)は非磁性材料部、(7)は超音波振動子
、(8)は長繊維、(9)は短繊維である。 特許出願人 工業技術院長 飯 塚 幸 三手続補正書
FIG. 1 is a front view of a three-dimensional reinforced laminate manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a vertical sectional view of the mold, and FIG.
The figure is a partially cutaway plan view of a material forming a tubular body according to a conventional manufacturing method. In each figure, the same reference numerals indicate the same parts, (4) is a magnetic press, (5) is a magnetic pole, (6) is a mold, (6a) is a magnetic material part, (6b) is a non-magnetic material part, ( 7) is an ultrasonic vibrator, (8) is a long fiber, and (9) is a short fiber. Patent applicant: Director of the Agency of Industrial Science and Technology Yuki Iizuka Three procedural amendments

Claims (8)

【特許請求の範囲】[Claims] (1)積層された非磁性体の長繊維と、この長繊維積層
面に垂直方向に磁場配向された強磁性体の短繊維と、上
記長繊維及び短繊維を上記配向状態で内蔵するように硬
化したマトリックスとを備えたことを特徴とする三次元
強化積層体。
(1) Laminated non-magnetic long fibers, ferromagnetic short fibers oriented in a magnetic field perpendicular to the laminated surface of the long fibers, and the long fibers and short fibers are incorporated in the oriented state as described above. A three-dimensional reinforced laminate comprising a hardened matrix.
(2)強磁性体の短繊維がアスペクト比20以上の酸化
鉄粒子またはメタル粒子であることを特徴とする特許請
求の範囲第1項記載の三次元強化積層体。
(2) The three-dimensional reinforced laminate according to claim 1, wherein the ferromagnetic short fibers are iron oxide particles or metal particles with an aspect ratio of 20 or more.
(3)強磁性体の短繊維がアスペクト比20以上で繊維
長が100μm以下の強磁性ウィスカまたは強磁性体で
被覆されたウィスカであることを特徴とする特許請求の
範囲第1項記載の三次元強化積層体。
(3) The tertiary material according to claim 1, wherein the short fibers of the ferromagnetic material are ferromagnetic whiskers having an aspect ratio of 20 or more and a fiber length of 100 μm or less, or whiskers coated with a ferromagnetic material. Original reinforced laminate.
(4)非磁性体の長繊維がセラミック繊維であり、マト
リックスが樹脂、金属またはセラミックスであることを
特徴とする特許請求の範囲第1項ないし第3項のいずれ
かに記載の三次元強化積層体。
(4) The three-dimensional reinforced laminate according to any one of claims 1 to 3, wherein the long fibers of the non-magnetic material are ceramic fibers, and the matrix is resin, metal, or ceramics. body.
(5)非磁性体の長繊維が有機繊維であり、マトリック
スが熱硬化性または熱可塑性樹脂であることを特徴とす
る特許請求の範囲第1項ないし第3項のいずれかに記載
の三次元強化積層体。
(5) The three-dimensional structure according to any one of claims 1 to 3, wherein the long fibers of the nonmagnetic material are organic fibers, and the matrix is a thermosetting or thermoplastic resin. Reinforced laminate.
(6)強磁性体の短繊維と非磁性体の長繊維とを組み合
わせたものを磁場におかれた成形型の中に入れ、マトリ
ックスを含浸させた状態で、上記強磁性体の短繊維のみ
を磁力により長繊維積層面に垂直方向に磁場配向させて
硬化させることを特徴とする三次元強化積層体の製造方
法。
(6) A combination of ferromagnetic short fibers and non-magnetic long fibers is placed in a mold placed in a magnetic field, and with the matrix impregnated, only the ferromagnetic short fibers are placed. A method for producing a three-dimensional reinforced laminate, which comprises curing the long fibers by orienting them in a magnetic field in a direction perpendicular to the laminate surface using magnetic force.
(7)磁場配向させる時に超音波振動により繊維を振動
させ、配向しやすくすることを特徴とする特許請求の範
囲第6項記載の三次元強化積層体の製造方法。
(7) A method for manufacturing a three-dimensional reinforced laminate according to claim 6, characterized in that the fibers are vibrated by ultrasonic vibrations during magnetic field orientation to facilitate orientation.
(8)成形型が磁性材料と非磁性材料から成り、磁性材
料間で磁力を発生させることを特徴とする特許請求の範
囲第6項または第7項記載の三次元強化積層体の製造方
法。
(8) A method for manufacturing a three-dimensional reinforced laminate according to claim 6 or 7, wherein the mold is made of a magnetic material and a non-magnetic material, and a magnetic force is generated between the magnetic materials.
JP61255893A 1986-10-29 1986-10-29 Three-dimensional reinforced laminate and its manufacture Granted JPS63111038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255893A JPS63111038A (en) 1986-10-29 1986-10-29 Three-dimensional reinforced laminate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255893A JPS63111038A (en) 1986-10-29 1986-10-29 Three-dimensional reinforced laminate and its manufacture

Publications (2)

Publication Number Publication Date
JPS63111038A true JPS63111038A (en) 1988-05-16
JPH0229496B2 JPH0229496B2 (en) 1990-06-29

Family

ID=17285031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255893A Granted JPS63111038A (en) 1986-10-29 1986-10-29 Three-dimensional reinforced laminate and its manufacture

Country Status (1)

Country Link
JP (1) JPS63111038A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154003A (en) * 2005-12-02 2007-06-21 Polymatech Co Ltd Method for producing article formed by using epoxy resin composition
CZ302900B6 (en) * 2010-04-30 2012-01-11 Vysoká škola technická a ekonomická v Ceských Budejovicích Composite component and process for producing thereof
JP2012106461A (en) * 2010-11-19 2012-06-07 Tsudakoma Corp Carbon fiber base material and carbon fiber-reinforced plastic
JP2013063641A (en) * 2011-09-01 2013-04-11 Boeing Co:The Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced part
JP2015051550A (en) * 2013-09-06 2015-03-19 東レ株式会社 Member made of fiber-reinforced plastic
JP2016044302A (en) * 2014-08-25 2016-04-04 ザ・ボーイング・カンパニーTheBoeing Company Composite materials with improved electrical conductivity and methods of manufacture thereof
JP2020062768A (en) * 2018-10-15 2020-04-23 有限会社ヒロセ金型 Manufacturing method of carbon fiber-reinforced resin molded article, and carbon fiber-reinforced resin molded article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154003A (en) * 2005-12-02 2007-06-21 Polymatech Co Ltd Method for producing article formed by using epoxy resin composition
CZ302900B6 (en) * 2010-04-30 2012-01-11 Vysoká škola technická a ekonomická v Ceských Budejovicích Composite component and process for producing thereof
JP2012106461A (en) * 2010-11-19 2012-06-07 Tsudakoma Corp Carbon fiber base material and carbon fiber-reinforced plastic
JP2013063641A (en) * 2011-09-01 2013-04-11 Boeing Co:The Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced part
JP2015051550A (en) * 2013-09-06 2015-03-19 東レ株式会社 Member made of fiber-reinforced plastic
JP2016044302A (en) * 2014-08-25 2016-04-04 ザ・ボーイング・カンパニーTheBoeing Company Composite materials with improved electrical conductivity and methods of manufacture thereof
US10096396B2 (en) 2014-08-25 2018-10-09 The Boeing Company Composite materials with improved electrical conductivity and methods of manufacture thereof
US10497488B2 (en) 2014-08-25 2019-12-03 The Boeing Company Composite materials with improved electrical conductivity and methods of manufacture thereof
JP2020062768A (en) * 2018-10-15 2020-04-23 有限会社ヒロセ金型 Manufacturing method of carbon fiber-reinforced resin molded article, and carbon fiber-reinforced resin molded article

Also Published As

Publication number Publication date
JPH0229496B2 (en) 1990-06-29

Similar Documents

Publication Publication Date Title
US5641366A (en) Method for forming fiber-reinforced composite
JP4803028B2 (en) Preform, FRP, and production method thereof
AU2020201610B2 (en) Fabrication of composite laminates using temporarily stitched preforms
US5466506A (en) Translaminar reinforcement system for Z-direction reinforcement of a fiber matrix structure
Amirkhosravi et al. Improving laminate quality in wet lay-up/vacuum bag processes by magnet assisted composite manufacturing (MACM)
US11820880B2 (en) Compositions and methods for carbon fiber-metal and other composites
JP2017128705A (en) Carbon fiber sheet material, prepreg, laminate, molded body and method for manufacturing them
JPS63111038A (en) Three-dimensional reinforced laminate and its manufacture
US20050058805A1 (en) Polymer composite molded body and method for producing the same
Ranabhat et al. Feasibility study of novel magnetic compaction force assisted additive manufacturing (MCFA-AM) methodology for continuous carbon fiber reinforced polymer (C-CFRP) composites
JP2717618B2 (en) Method for producing fiber-reinforced composite material
JPS63111039A (en) Three-dimensional reinforced composite and its manufacture
US20200094517A1 (en) Fiber composites with reduced surface roughness and methods for making them
JPH025979A (en) Golf club
JP7473416B2 (en) Method for producing fiber-reinforced composite material
JP2767329B2 (en) Prepreg for resin mold to form surface layer of resin mold
JPH04251715A (en) Manufacture of carbon fiber reinforced composite material
Bambal Mechanical evaluation and FE modeling of composite sandwich panels
AU686122B2 (en) Translaminar reinforcement system for Z-direction reinforcement of a fiber matrix structure
JPS62189124A (en) Manufacture of three-dimensional fiber reinforced resin composite material
JPH04288229A (en) Three-dimensional reinforced laminate, molding base material thereof and apparatus for preparing molding base material
JP2872282B2 (en) Carbon fiber reinforcing material, method for producing the same, and hydraulic composite material using the same
JPH06206221A (en) Prepreg laminated resin base composite material
KR20220102639A (en) molding material
JPH0558390B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term