JPH0229496B2 - - Google Patents

Info

Publication number
JPH0229496B2
JPH0229496B2 JP61255893A JP25589386A JPH0229496B2 JP H0229496 B2 JPH0229496 B2 JP H0229496B2 JP 61255893 A JP61255893 A JP 61255893A JP 25589386 A JP25589386 A JP 25589386A JP H0229496 B2 JPH0229496 B2 JP H0229496B2
Authority
JP
Japan
Prior art keywords
fibers
magnetic
ferromagnetic
long fibers
reinforced laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61255893A
Other languages
Japanese (ja)
Other versions
JPS63111038A (en
Inventor
Hide Yamashita
Hiroshi Hatsuta
Toshuki Sugano
Takahiko Watanabe
Shohei Eto
Kunihiko Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61255893A priority Critical patent/JPS63111038A/en
Publication of JPS63111038A publication Critical patent/JPS63111038A/en
Publication of JPH0229496B2 publication Critical patent/JPH0229496B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は構造部材として用いられる繊維強化
積層体及びその製造方法に関するものである。 〔従来の技術〕 繊維強化積層体の諸特性は強化材の向きにより
大きな異方性を示し、その非強化方向の特性向上
が重要な課題となつている。従来はこの異方性を
解消するために強化材をある面内でランダムに配
向させるか、種々の層内で繊維が異なつた配向方
向を持つ多層積層体をつくることによつてある面
内で本質的に等方性とすることが一般的な技術で
あつた。しかしながら複合材料の適用が進むにつ
れ、複雑形状物や厚肉の製品が増え、面内方面よ
りも積層面と垂直な方向への強化材の配向が必要
となる特性、とりわけ層間せん断強度が問題とな
つてきている。上記のように面内方向における異
方性への対処は成されているものの、この積層面
と垂直な方向における異方性への対処は行われて
いない。 従来これに類似したものとして、長繊維系のプ
リプレグを積層する際、ウイスカを混入してプリ
プレグの層間を補強するものが提案されている
(例えば特開昭60−38145号公報)。この技術は第
3図に示すように、長繊維を含むプリプレグ1を
巻回して積層し、管状体を形成する際、ウイスカ
2を混合した熱硬化性合成樹脂をスクリムシート
3に含浸させ、このスクリムシート3をプリプレ
グ1に重合して捲回する方法、およびプリプレグ
1の一側面に溶剤に混合したウイスカ2を塗付し
たり、ウイスカ2を電気植毛したり、吹付けたり
する方法でウイスカ層を形成し、加熱、加圧して
硬化させ、長繊維層の層間にウイスカ層を設けた
管状体を得ている。 〔発明が解決しようとする問題点〕 このように従来技術にあつても長繊維層の層間
へのウイスカの配向は存在するが、これらのウイ
スカは殆んどが長繊維積層面の面内方向へのみ配
向しており、層間強度を向上させるための繊維配
向、即ち長繊維積層面に垂直な方向への配向がな
されておらず、強化材の補助効果を十分に生かし
得ないという問題点があつた。 この発明は上記のような問題点を解消するため
になされたもので、長繊維積層面と垂直な方向へ
強化材を配向させ、しかも磁場配向により強化効
率の高い三次元強化積層体及びその製造方法を得
ることを目的とする。 〔問題点を解決するための手段〕 この発明の第1発明の三次元強化積層体は、積
層された非磁性体の長繊維と、この長繊維積層面
に垂直方向に磁場配向された強磁性体の短繊維
と、上記長繊維及び短繊維を上記配向状態で内蔵
するように硬化したマトリツクスとを備えたもの
である。 この発明の第2発明の三次元強化積層体の製造
方法は、強磁性体の短繊維と非磁性体の長繊維と
を組み合わせたものを磁場におかれた成形型の中
に入れ、マトリツクスを含浸させた状態で、上記
強磁性体の短繊維のみを磁力により長繊維積層面
に垂直方向に磁場配向させて硬化させる方法であ
る。 この発明では、磁極を有する磁気プレスに成形
型を配置し、磁力線の向きを長繊維積層面と垂直
に設定して、磁力により強磁性体である短繊維の
みを長繊維積層面と垂直に配向させた状態でマト
リツクスを硬化させ、三次元強化積層体を得るよ
うにしている。短繊維の長さは、成形時の加圧力
によりすでに配向している短繊維が向きをそらさ
れないように加圧時の各長繊維積層厚さより小さ
くなるように100μmまでとし、十分な補強効果
を得るためにアスペクト比は20以上になるように
するのが好ましい。 この発明の三次元強化積層体は次の様にして製
造される。まず磁気プレスの磁極間に成形型を設
置する。成形型は磁性材料と非磁性材料の合わせ
型にすると、磁場を発生させた時、この磁性材料
間に磁力線が発生する。強磁性体の短繊維はこの
磁力線の向きに配向するので、磁力線の向きが長
繊維積層面と垂直になるように成形型を設置す
る。この成形型の中の一方向材またはクロス材の
長繊維に強磁性体の短繊維を混入したものを入
れ、さらにその中にマトリツクスを真空含浸させ
る。次に磁場を発生させ、強磁性体の短繊維のみ
を長繊維積層面と垂直に配向させる。またこの時
成形型に超音波振動子を取り付け、超音波振動に
より成形型内の短繊維を振動させ、短繊維が浮上
や沈降をしないように一様に分散させて磁力によ
る配向をやりやすくするのが好ましい。この状態
で成形型を加圧してマトリツクスを硬化させて三
次元強化積層体を得る。 非磁性体の長繊維としてセラミツク繊維を用い
る場合は、炭素繊維、ガラス繊維などの繊維状無
機化合物が使用でき、この場合マトリツクスとし
ては樹脂、金属、セラミツクスなどが使用でき
る。また有機繊維を用いる時は、ポリエチレンテ
レフタレート繊維、アラミド繊維などの合成繊維
や絹、綿などの天然繊維が使用でき、この場合マ
トリツクスとしては、金属、セラミツクスを使用
すると、成形温度が高くて有機繊維の方が熱分解
を起こしてしまうので、マトリツクスとしては熱
硬化性または熱可塑性の樹脂が好ましい。 強磁性体の短繊維としては、アスペクト比20以
上の酸化鉄粒子またはメタル粒子、あるいはアス
ペクト比20以上、繊維長100μm以下の強磁性ウ
イスカまたは強磁性体で被覆されたウイスカなど
が使用できる。 〔作 用〕 上記により製造された三次元強化積層体は、長
繊維の積層面に垂直方向に短繊維が配向された状
態でマトリツクスにより固化されているので、層
間せん断強度が著しく向上し、あらゆる応力に対
して強化されており、構造部材として適してい
る。 〔実施例〕 以下、この発明の実施例を図について説明す
る。 実施例 1 第1図は実施例で使用する三次元強化積層体製
造装置の正面図、第2図はその成形型の垂直断面
図であり、図において4は磁気プレスであり、
上、下の加圧部に磁極5を有する。磁極5の直径
は300mmである。6は磁極5間に介在する成形型
で、上下面の磁性材料部6aと側面の非磁性材料
部6bとからなる。7は超音波振動子である。
CFRPクロス材からなる非磁性体の長繊維8は縦
糸、横糸の密度が共に17.5本/25mmの平織りで、
寸法は100mm×100mm、厚みは0.14mmである。この
長繊維8を成形型6に一枚ずつ積層し、この時各
層間に直径0.03μm、粒子長0.6μmの酸化鉄粒子
からなる強磁性体の短繊維9を均一に散布する。
成形容積に対する長繊維8および短繊維9の容積
含有率をそれぞれ50%および10%とする。このよ
うにして繊維を積層した後に、成形型6内を真空
に引きながらエポキシ樹脂を圧入する。この時積
層した長繊維8および短繊維9が乱れないように
圧入は徐々に行う。次に成形型6を磁気プレス4
の磁極5間に設置し、成形型6に取付けられた超
音波振動子7により型内の短繊維9を振動させ
て、配向の妨げになる粒子間の拘束を防ぎ、均一
に分散するようにする。この状態のままで磁極5
により磁場を発生させ、成形型6内の磁性材料部
6a間に磁力線を発生させる。非磁性体の長繊維
8は磁力線により何も影響を受けないが、強磁性
体である短繊維9はこの磁力線の向き、即ち長繊
維8と垂直な方向に配向する。そして成形型6内
に埋蔵されたヒーターにより加熱を、また磁極5
を通して加圧を行い硬化させる。エポキシ樹脂の
粘度は加熱により変化するので、短繊維9が配向
しやすい低粘度の時に加振および磁場配向を行
う。硬化後成形型6の中から試験片A(高さ3mm
×幅6mm×長さ20mm)を取出して層間せん断強度
FISを測定し、磁場をかけなかつた時の試験片E
およびクロス材からなる長繊維8のみの試験片F
と比較し表1の結果を得た。 実施例 2〜4 実施例1において短繊維9の種類を、直径
0.03μm、粒子長0.7μmのメタル粒子、直径0.3μ
m、繊維長75μmの鉄ウイスカおよび直径0.6μm、
繊維長80μmのニツケル被覆SiCウイスカと変え
た実施例2〜4の試験片B、C、Dの層間せん断
強度の測定結果を表1に示す。
[Industrial Field of Application] The present invention relates to a fiber reinforced laminate used as a structural member and a method for manufacturing the same. [Prior Art] Various properties of fiber-reinforced laminates exhibit large anisotropy depending on the orientation of the reinforcing material, and improving the properties in the non-reinforced direction has become an important issue. Conventionally, this anisotropy can be solved by randomly orienting the reinforcing material in a certain plane or by creating a multilayer laminate in which the fibers have different orientation directions in various layers. A common technique was to make it essentially isotropic. However, as the application of composite materials progresses, the number of products with complex shapes and thick walls increases, and the characteristics that require the orientation of reinforcing materials in the direction perpendicular to the laminated plane rather than in the in-plane direction, especially interlaminar shear strength, are becoming a problem. I'm getting used to it. Although measures have been taken to deal with the anisotropy in the in-plane direction as described above, measures have not been taken to deal with the anisotropy in the direction perpendicular to the laminated plane. Conventionally, as a similar method, a method has been proposed in which whiskers are mixed in to reinforce the interlayers of prepregs when laminating long fiber prepregs (for example, Japanese Patent Application Laid-Open No. 60-38145). As shown in Fig. 3, this technology involves winding and laminating prepregs 1 containing long fibers to form a tubular body, and impregnating a scrim sheet 3 with a thermosetting synthetic resin mixed with whiskers 2. A whisker layer can be formed by polymerizing the scrim sheet 3 onto the prepreg 1 and winding it, or by applying whiskers 2 mixed with a solvent to one side of the prepreg 1, or by electro-flocking or spraying the whiskers 2. is formed and hardened by heating and pressurizing to obtain a tubular body having a whisker layer between the long fiber layers. [Problems to be solved by the invention] As described above, even in the prior art, whiskers are oriented between layers of long fiber layers, but most of these whiskers are oriented in the in-plane direction of the long fiber lamination surface. The problem is that the fibers are not oriented in the direction perpendicular to the laminated plane of the long fibers to improve the interlaminar strength, and the auxiliary effect of the reinforcing material cannot be fully utilized. It was hot. This invention was made to solve the above-mentioned problems, and it provides a three-dimensional reinforced laminate in which the reinforcing material is oriented in a direction perpendicular to the long fiber laminate surface and has high reinforcement efficiency due to magnetic field orientation, and its production. The purpose is to obtain a method. [Means for Solving the Problems] The three-dimensional reinforced laminate of the first aspect of the present invention comprises laminated non-magnetic long fibers and ferromagnetic material oriented in a magnetic field perpendicular to the laminated surface of the long fibers. It comprises short fibers of the body, and a hardened matrix containing the long fibers and the short fibers in the orientation state. In the method for manufacturing a three-dimensional reinforced laminate according to the second aspect of the present invention, a combination of ferromagnetic short fibers and non-magnetic long fibers is placed in a mold placed in a magnetic field, and a matrix is formed. In this method, only the short fibers of the ferromagnetic material are oriented in a magnetic field in a direction perpendicular to the laminated surface of the long fibers by magnetic force in an impregnated state, and then hardened. In this invention, a mold is placed in a magnetic press with magnetic poles, and the direction of the magnetic lines of force is set perpendicular to the laminated surface of the long fibers, so that only the short fibers, which are ferromagnetic substances, are oriented perpendicularly to the laminated surface of the long fibers by the magnetic force. The matrix is cured in this state to obtain a three-dimensional reinforced laminate. The length of the short fibers is set to 100 μm or less, which is smaller than the laminated thickness of each long fiber when pressurized, so that the already oriented short fibers are not deflected by the pressure applied during molding, and to ensure a sufficient reinforcing effect. In order to achieve this, it is preferable to set the aspect ratio to 20 or more. The three-dimensional reinforced laminate of this invention is manufactured as follows. First, a mold is installed between the magnetic poles of a magnetic press. When the mold is made of a combination of magnetic and non-magnetic materials, when a magnetic field is generated, lines of magnetic force are generated between the magnetic materials. Since the short fibers of the ferromagnetic material are oriented in the direction of these lines of magnetic force, the mold is installed so that the direction of the lines of magnetic force is perpendicular to the laminated surface of the long fibers. The long fibers of the unidirectional material or cloth material mixed with short fibers of ferromagnetic material are placed in this mold, and the matrix is vacuum impregnated into the mold. Next, a magnetic field is generated to orient only the short ferromagnetic fibers perpendicular to the laminated surface of the long fibers. At this time, an ultrasonic vibrator is attached to the mold, and the short fibers inside the mold are vibrated by ultrasonic vibration, and the short fibers are uniformly dispersed so that they do not float or settle, making it easier to align them using magnetic force. is preferable. In this state, the mold is pressurized to harden the matrix to obtain a three-dimensional reinforced laminate. When ceramic fibers are used as the nonmagnetic long fibers, fibrous inorganic compounds such as carbon fibers and glass fibers can be used, and in this case, resins, metals, ceramics, etc. can be used as the matrix. In addition, when using organic fibers, synthetic fibers such as polyethylene terephthalate fibers and aramid fibers, and natural fibers such as silk and cotton can be used.In this case, if metals or ceramics are used as the matrix, the molding temperature is high and organic fibers can be used. Thermosetting or thermoplastic resins are preferable as the matrix because they cause thermal decomposition. As short ferromagnetic fibers, iron oxide particles or metal particles with an aspect ratio of 20 or more, ferromagnetic whiskers with an aspect ratio of 20 or more and a fiber length of 100 μm or less, or whiskers coated with a ferromagnetic material can be used. [Function] The three-dimensional reinforced laminate produced as described above is solidified by a matrix with the short fibers oriented perpendicular to the laminated plane of the long fibers, so the interlaminar shear strength is significantly improved, and all types of It is reinforced against stress and is suitable as a structural member. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. Example 1 FIG. 1 is a front view of a three-dimensional reinforced laminate manufacturing apparatus used in the example, and FIG. 2 is a vertical cross-sectional view of its mold, and in the figure, 4 is a magnetic press;
It has magnetic poles 5 on the upper and lower pressurizing parts. The diameter of the magnetic pole 5 is 300 mm. A mold 6 is interposed between the magnetic poles 5, and is composed of magnetic material portions 6a on the upper and lower surfaces and non-magnetic material portions 6b on the side surfaces. 7 is an ultrasonic vibrator.
The non-magnetic long fibers 8 made of CFRP cloth material are plain woven with warp and weft densities of 17.5 threads/25 mm.
The dimensions are 100mm x 100mm and the thickness is 0.14mm. These long fibers 8 are laminated one by one in a mold 6, and at this time, ferromagnetic short fibers 9 made of iron oxide particles having a diameter of 0.03 μm and a particle length of 0.6 μm are uniformly sprinkled between each layer.
The volume content of long fibers 8 and short fibers 9 with respect to the molding volume is 50% and 10%, respectively. After the fibers are laminated in this manner, the epoxy resin is press-fitted into the mold 6 while evacuating the inside of the mold 6. At this time, the press-fitting is performed gradually so that the laminated long fibers 8 and short fibers 9 are not disturbed. Next, press the mold 6 into the magnetic press 4.
The short fibers 9 in the mold are vibrated by an ultrasonic vibrator 7 installed between the magnetic poles 5 of the mold 6, and the short fibers 9 in the mold are prevented from being restrained from interfering with the orientation of the particles, so that they are uniformly dispersed. do. In this state, magnetic pole 5
A magnetic field is generated, and lines of magnetic force are generated between the magnetic material portions 6a in the mold 6. The long fibers 8 made of non-magnetic material are not affected by the lines of magnetic force, but the short fibers 9 made of ferromagnetic material are oriented in the direction of the lines of magnetic force, that is, in the direction perpendicular to the long fibers 8. Then, heating is performed by a heater embedded in the mold 6, and the magnetic pole 5
Pressure is applied to harden the material. Since the viscosity of the epoxy resin changes due to heating, vibration and magnetic field orientation are performed when the epoxy resin has a low viscosity so that the short fibers 9 are easily oriented. After curing, test piece A (height 3mm
× Width 6 mm × Length 20 mm) and interlaminar shear strength
Specimen E when F IS was measured and no magnetic field was applied
and test piece F with only long fibers 8 made of cloth material.
The results shown in Table 1 were obtained. Examples 2 to 4 In Example 1, the type of short fiber 9 was changed to
0.03μm, particle length 0.7μm metal particles, diameter 0.3μm
m, iron whiskers with fiber length 75 μm and diameter 0.6 μm,
Table 1 shows the measurement results of the interlaminar shear strength of test pieces B, C, and D of Examples 2 to 4 in which nickel-coated SiC whiskers with a fiber length of 80 μm were used.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、長繊維の積層
面に垂直方向に短繊維を配向させてマトリツクス
を硬化させたので、従来の積層体の弱点であつた
層間せん断強度を著しく向上させることができ、
あらゆる応力に対応した高品質の積層体が得られ
る効果がある。
As described above, according to the present invention, the matrix is hardened by orienting short fibers in a direction perpendicular to the laminated surface of long fibers, so that the interlaminar shear strength, which was a weak point of conventional laminates, can be significantly improved. I can,
This has the effect of producing a high-quality laminate that can withstand all types of stress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による三次元強化積
層体製造装置の正面図、第2図はその成形型の垂
直断面図、第3図は従来の製造方法による管状体
を形成する素材の一部切欠平面図である。 各図中、同一符号は同一部分を示し、4は磁気
プレス、5は磁極、6は成形型、6aは磁性材料
部、6bは非磁性材料部、7は超音波振動子、8
は長繊維、9は短繊維である。
FIG. 1 is a front view of a three-dimensional reinforced laminate manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a vertical sectional view of a mold thereof, and FIG. 3 is a view of a material forming a tubular body according to a conventional manufacturing method. FIG. 3 is a partially cutaway plan view. In each figure, the same reference numerals indicate the same parts, 4 is a magnetic press, 5 is a magnetic pole, 6 is a mold, 6a is a magnetic material part, 6b is a non-magnetic material part, 7 is an ultrasonic vibrator, 8
9 is a long fiber, and 9 is a short fiber.

Claims (1)

【特許請求の範囲】 1 積層された非磁性体の長繊維と、この長繊維
積層面に垂直方向に磁場配向された強磁性体の短
繊維と、上記長繊維及び短繊維を上記配向状態で
内蔵するように硬化したマトリツクスとを備えた
ことを特徴とする三次元強化積層体。 2 強磁性体の短繊維がアスペクト比20以上の酸
化鉄粒子またはメタル粒子であることを特徴とす
る特許請求の範囲第1項記載の三次元強化積層
体。 3 強磁性体の短繊維がアスペクト比20以上で繊
維長が100μm以下の強磁性ウイスカまたは強磁
性体で被覆されたウイスカであることを特徴とす
る特許請求の範囲第1項記載の三次元強化積層
体。 4 非磁性体の長繊維がセラミツク繊維であり、
マトリツクスが樹脂、金属またはセラミツクスで
あることを特徴とする特許請求の範囲第1項ない
し第3項のいずれかに記載の三次元強化積層体。 5 非磁性体の長繊維が有機繊維であり、マトリ
ツクスが熱硬化性または熱可塑性樹脂であること
を特徴とする特許請求の範囲第1項ないし第3項
のいずれかに記載の三次元強化積層体。 6 強磁性体の短繊維と非磁性体の長繊維とを組
み合わせたものを磁場におかれた成形型の中に入
れ、マトリツクスを含浸させた状態で、上記強磁
性体の短繊維のみを磁力により長繊維積層面に垂
直方向に磁場配向させて硬化させることを特徴と
する三次元強化積層体の製造方法。 7 磁場配向させる時に超音波振動により繊維を
振動させ、配向しやすくすることを特徴とする特
許請求の範囲第6項記載の三次元強化積層体の製
造方法。 8 成形型が磁性材料と非磁性材料から成り、磁
性材料間で磁力を発生させることを特徴とする特
許請求の範囲第6項または第7項記載の三次元強
化積層体の製造方法。
[Claims] 1 Laminated non-magnetic long fibers, ferromagnetic short fibers oriented in a magnetic field in a direction perpendicular to the laminated surface of the long fibers, and the long fibers and short fibers in the oriented state. A three-dimensional reinforced laminate characterized by having a hardened matrix incorporated therein. 2. The three-dimensional reinforced laminate according to claim 1, wherein the ferromagnetic short fibers are iron oxide particles or metal particles with an aspect ratio of 20 or more. 3. Three-dimensional reinforcement according to claim 1, wherein the ferromagnetic short fibers are ferromagnetic whiskers with an aspect ratio of 20 or more and a fiber length of 100 μm or less, or whiskers coated with ferromagnetic material. laminate. 4 The non-magnetic long fibers are ceramic fibers,
The three-dimensional reinforced laminate according to any one of claims 1 to 3, wherein the matrix is resin, metal, or ceramic. 5. The three-dimensional reinforced laminate according to any one of claims 1 to 3, wherein the long fibers of the non-magnetic material are organic fibers, and the matrix is a thermosetting or thermoplastic resin. body. 6 A combination of ferromagnetic short fibers and non-magnetic long fibers is placed in a mold placed in a magnetic field, and with the matrix impregnated, only the ferromagnetic short fibers are subjected to magnetic force. A method for producing a three-dimensional reinforced laminate, which comprises curing the long fibers by orienting them in a magnetic field in a direction perpendicular to the laminate surface. 7. The method for manufacturing a three-dimensional reinforced laminate according to claim 6, characterized in that the fibers are vibrated by ultrasonic vibrations during magnetic field orientation to facilitate orientation. 8. The method for manufacturing a three-dimensional reinforced laminate according to claim 6 or 7, wherein the mold is made of a magnetic material and a non-magnetic material, and a magnetic force is generated between the magnetic materials.
JP61255893A 1986-10-29 1986-10-29 Three-dimensional reinforced laminate and its manufacture Granted JPS63111038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255893A JPS63111038A (en) 1986-10-29 1986-10-29 Three-dimensional reinforced laminate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255893A JPS63111038A (en) 1986-10-29 1986-10-29 Three-dimensional reinforced laminate and its manufacture

Publications (2)

Publication Number Publication Date
JPS63111038A JPS63111038A (en) 1988-05-16
JPH0229496B2 true JPH0229496B2 (en) 1990-06-29

Family

ID=17285031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255893A Granted JPS63111038A (en) 1986-10-29 1986-10-29 Three-dimensional reinforced laminate and its manufacture

Country Status (1)

Country Link
JP (1) JPS63111038A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880986B2 (en) * 2005-12-02 2012-02-22 ポリマテック株式会社 Method for producing article formed using epoxy resin composition
CZ2010336A3 (en) * 2010-04-30 2012-01-11 Vysoká škola technická a ekonomická v Ceských Budejovicích Composite component and process for producing thereof
JP5606881B2 (en) * 2010-11-19 2014-10-15 津田駒工業株式会社 Carbon fiber substrate and carbon fiber reinforced plastic
US9457521B2 (en) * 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts
JP6217254B2 (en) * 2013-09-06 2017-10-25 東レ株式会社 Fiber reinforced plastic parts
US10096396B2 (en) 2014-08-25 2018-10-09 The Boeing Company Composite materials with improved electrical conductivity and methods of manufacture thereof
JP7149577B2 (en) * 2018-10-15 2022-10-07 有限会社ヒロセ金型 Method for manufacturing carbon fiber reinforced resin molded product, and carbon fiber reinforced resin molded product

Also Published As

Publication number Publication date
JPS63111038A (en) 1988-05-16

Similar Documents

Publication Publication Date Title
US5641366A (en) Method for forming fiber-reinforced composite
JP4803028B2 (en) Preform, FRP, and production method thereof
US8741198B2 (en) Process for producing fiber reinforced resin
DE69034172D1 (en) Composite materials with thermoplastic particles at interfaces between layers
US5580514A (en) Composite material and method for production of improved composite material
US3889035A (en) Fiber-reinforced plastic articles
US4992317A (en) Reinforced three dimensional composite parts of complex shape and method of making
JPH0229496B2 (en)
JP4984973B2 (en) Manufacturing method of fiber reinforced resin
JP2007152672A (en) Three-dimensional fiber-reinforced resin composite material and three-dimensional fabric
KR20120009128A (en) Fabric reinforcement for composites and fiber reinforced composite prepreg having the fabric reinforcement
US11554573B2 (en) Plastic fiber composite material/aluminum laminate, production and use thereof
JPH0229497B2 (en)
JPH025979A (en) Golf club
JP2006138031A (en) Reinforcing fiber substrate, preform and method for producing them
KR102300526B1 (en) Hybrid composite fiber material, manufacturing method thereof, and aircraft wing structure including the same
JPH06206222A (en) Prepreg laminated resin base composite material
JPH04251715A (en) Manufacture of carbon fiber reinforced composite material
JPH01114422A (en) Improvement of strength of frp material
JPH06206221A (en) Prepreg laminated resin base composite material
JPS58171945A (en) Multilayer prepreg
JPH0349934A (en) Manufacture of fiber reinforced composite material
JPH02255324A (en) Method for molding three-dimensional woven fabric reinforced composite material
JPH04268342A (en) Production of carbon fiber-reinforced composite material
JPH02209234A (en) Preparation of fiber reinforced composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term