JP2015051550A - Member made of fiber-reinforced plastic - Google Patents

Member made of fiber-reinforced plastic Download PDF

Info

Publication number
JP2015051550A
JP2015051550A JP2013184707A JP2013184707A JP2015051550A JP 2015051550 A JP2015051550 A JP 2015051550A JP 2013184707 A JP2013184707 A JP 2013184707A JP 2013184707 A JP2013184707 A JP 2013184707A JP 2015051550 A JP2015051550 A JP 2015051550A
Authority
JP
Japan
Prior art keywords
fiber
ferromagnetic material
reinforced plastic
magnetic
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013184707A
Other languages
Japanese (ja)
Other versions
JP6217254B2 (en
Inventor
守 神田
Mamoru Kanda
守 神田
昇 朝日
Noboru Asahi
昇 朝日
博英 和田
Hirohide Wada
博英 和田
寛 越智
Hiroshi Ochi
寛 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013184707A priority Critical patent/JP6217254B2/en
Publication of JP2015051550A publication Critical patent/JP2015051550A/en
Application granted granted Critical
Publication of JP6217254B2 publication Critical patent/JP6217254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a material which can exhibit required magnetic shield performance without being restricted by a shape, has required physical properties as a structure and achieves light weight as much as possible.SOLUTION: There is provided a member made of a fiber-reinforced plastic which comprises a reinforced fiber composed of at least one ferromagnetic material and a reinforced fiber composed of at least one nonmagnetic material, where the reinforced fiber composed of a ferromagnetic material has magnetic anisotropy.

Description

本発明は、磁気シールド性を持つ繊維強化プラスチックからなる部材に関する。   The present invention relates to a member made of fiber reinforced plastic having magnetic shielding properties.

従来、強力な磁界が発生する核磁気共鳴画像法(MRI)による診断設備や、その他の各種超伝導磁石等を利用した設備・機器等においては、周囲の電子機器の誤作動を防いだり、操作室や試験室、人体等を保護したりする目的で、特定の磁場をシールドするシールド材料が適用されてきた。シールド材料として好適に用いられる強磁性体には、酸化鉄、酸化クロム、コバルト、フェライトなどがあるが、いずれも比重の大きな金属である。特に車両や航空機など、軽量化が強く求められる構造体では、重量的に有利な金属製の磁気異方性材料を使用しても、部材の軽量化には限界がある。また、これらの材料は、変形させることで磁気特性が変化するため、通常の金属材料のようにプレス成形などで曲げることにより、薄板で剛性を高める構造の採用も困難である。このため必要な剛性を確保する点から薄肉化に限界があり、これに伴って部材の軽量化は通常の金属部材よりも困難である。   Conventionally, diagnostic equipment using nuclear magnetic resonance imaging (MRI), which generates a strong magnetic field, and equipment / equipment using other superconducting magnets, prevent malfunctions and operation of surrounding electronic equipment. Shielding materials that shield a specific magnetic field have been applied for the purpose of protecting rooms, test rooms, human bodies, and the like. Ferromagnetic materials that can be suitably used as a shielding material include iron oxide, chromium oxide, cobalt, and ferrite, all of which are metals with a large specific gravity. In particular, in a structure such as a vehicle or an aircraft where weight reduction is strongly demanded, there is a limit to the weight reduction of the member even if a metal magnetic anisotropic material that is advantageous in terms of weight is used. In addition, since these materials change their magnetic properties by being deformed, it is difficult to adopt a structure that increases rigidity with a thin plate by bending them by press molding or the like like a normal metal material. For this reason, there is a limit to reducing the thickness from the viewpoint of securing the necessary rigidity, and accordingly, the weight reduction of the member is more difficult than a normal metal member.

特許文献1によれば、繊維形状の磁性体の場合、形状を反映した形状磁気異方性が支配的になり、繊維の長手方向が磁化容易方向となる。材料中に繊維形状の強磁性体が配向した場合、この材料は磁気異方性を呈し、この磁気異方性の大きさは配向度に依存する。つまり、磁気異方性を測定することで材料中の強磁性体繊維の配向度を測定することが可能なことが示されている。しかしながら、特許文献1では、強磁性体繊維を配向させることの有意な利用方法にまでは言及されていない。   According to Patent Document 1, in the case of a fiber-shaped magnetic body, the shape magnetic anisotropy reflecting the shape becomes dominant, and the longitudinal direction of the fiber becomes the easy magnetization direction. When a fiber-shaped ferromagnetic material is oriented in the material, the material exhibits magnetic anisotropy, and the magnitude of the magnetic anisotropy depends on the degree of orientation. That is, it is shown that the degree of orientation of the ferromagnetic fiber in the material can be measured by measuring the magnetic anisotropy. However, Patent Document 1 does not mention a significant utilization method for orienting ferromagnetic fibers.

また、非特許文献1に示されるように、静磁場をシールドするためには、強磁性体を設置してそこに磁束を集めることにより、その他の部分の磁界を低減することが必要となる。特に、シールドしたい場所の磁界の流れを把握して、必要な方向に磁化容易軸を持つ磁気異方性材料の使用が、材料使用量や重量軽減の点で望ましいことが示されている。   In addition, as shown in Non-Patent Document 1, in order to shield a static magnetic field, it is necessary to reduce the magnetic field of other portions by installing a ferromagnetic material and collecting magnetic flux there. In particular, it has been shown that the use of a magnetic anisotropy material having an easy axis of magnetization in a necessary direction by grasping the flow of a magnetic field at a place to be shielded is desirable in terms of material usage and weight reduction.

特開2001−91502号公報JP 2001-91502 A

「磁界の流れを探る」笹川卓、公益財団法人鉄道総合技術研究所、RRR2008年1月号“Exploring the flow of magnetic fields” Takashi Ayukawa, Railway Technical Research Institute, RRR January 2008 issue

そこで本発明は、上記の問題点に鑑み、形状に制約されることなく必要な磁気シールド性能を発揮することができるとともに、構造体として必要な物理特性を有し、さらにできる限りの軽量化を達成する材料、またその材料を用いた部材を提供することを目的とする。   Therefore, in view of the above problems, the present invention can exhibit the necessary magnetic shielding performance without being restricted by the shape, has the necessary physical characteristics as a structure, and further reduces the weight as much as possible. It is an object to provide a material to be achieved and a member using the material.

鋭意検討の結果、強磁性体からなる強化繊維を有する繊維強化プラスチックとすることで、上記課題を解決することが可能なことを見出した。
(請求項1) つまり、本発明は、少なくとも1種類の強磁性体からなる強化繊維4と、少なくとも1種類の非磁性体からなる強化繊維5とを含むことを特徴とする繊維強化プラスチック製部材を用いるものである。
(請求項2) また、強磁性体からなる強化繊維4が連続繊維であると、配向させた方向に対して荷重を効率的に分担するため、繊維強化プラスチック全体の剛性や強度が向上する。
(請求項3) また、強磁性体からなる強化繊維4が、引き揃えられていくつかの方向に配向されていると、様々な方向の磁気性能を自由に設計できる。
As a result of intensive studies, it has been found that the above problem can be solved by using a fiber reinforced plastic having reinforcing fibers made of a ferromagnetic material.
(Claim 1) That is, the present invention includes a fiber reinforced plastic member comprising the reinforcing fiber 4 made of at least one type of ferromagnetic material and the reinforcing fiber 5 made of at least one type of non-magnetic material. Is used.
(Claim 2) If the reinforcing fiber 4 made of a ferromagnetic material is a continuous fiber, the load is efficiently shared in the oriented direction, so that the rigidity and strength of the entire fiber-reinforced plastic are improved.
(Claim 3) When the reinforcing fibers 4 made of a ferromagnetic material are aligned and oriented in several directions, magnetic performance in various directions can be freely designed.

強磁性体の、磁気異方性の発生要因は主に2通りある。1つは結晶の対称性を反映した結晶磁気異方性であり、もう1つは強磁性体の形状を反映した形状磁気異方性である。   There are two main causes of magnetic anisotropy in ferromagnetic materials. One is magnetocrystalline anisotropy reflecting crystal symmetry, and the other is shape magnetic anisotropy reflecting the shape of a ferromagnetic material.

一般的に用いられている金属製の磁気異方性材料は、通常平板として供給されるが、これは磁気性能に対する形状の与える影響が少なく、結晶の対称性により磁気異方性を実現している。このため、曲げ加工など塑性変形を施すと、磁気性能が変化する可能性がある。   Commonly used magnetic anisotropy materials made of metal are usually supplied as flat plates, but this has little influence on the shape of the magnetic performance, and the magnetic anisotropy is realized by the symmetry of the crystal. Yes. For this reason, when plastic deformation such as bending is performed, the magnetic performance may change.

一方、繊維形状の強磁性体の場合、形状に拠る磁気異方性が支配的になり、繊維の長手方向が磁化容易軸方向となる。このため、本発明で用いるように、強磁性体からなる強化繊維4を引き揃えることによって、これを含む繊維強化プラスチックは、その引き揃えた特定方向の磁化容易軸を持つ磁気異方性材料となる。ここで、繊維状の強磁性体を用いているため、曲面に成形しても形状による磁気異方性発現効果は保たれ、曲面形状の部材でも磁気異方性の方向を設計できる。   On the other hand, in the case of a fiber-shaped ferromagnetic material, the magnetic anisotropy depending on the shape becomes dominant, and the longitudinal direction of the fiber becomes the easy magnetization axis direction. For this reason, as used in the present invention, by aligning the reinforcing fibers 4 made of a ferromagnetic material, the fiber-reinforced plastic including the reinforcing fibers 4 has a magnetic anisotropic material having an aligned easy magnetization axis in a specific direction. Become. Here, since the fibrous ferromagnetic material is used, the magnetic anisotropy effect due to the shape is maintained even if it is formed into a curved surface, and the direction of the magnetic anisotropy can be designed even with a curved member.

この場合、磁化容易軸方向の磁気特性(透磁率や飽和磁束密度など)を決定するのは、使用する強磁性体の材質と、強磁性体としての強化繊維の径や長さ、および部材中における含有量である。つまり、本発明では、強磁性体からなる強化繊維4の材質、径、長さ、さらには部材中における強化繊維4の含有量、および引き揃える方向を調整することで、繊維強化プラスチックに特有の、強度や剛性の設計自由度の高さと同様に、磁気特性についても、その方向や大きさについて高い設計自由度を有する材料とすることができる。
(請求項4) また、磁界の流れが概ね一方向に限定されている磁場においては、強磁性体からなる強化繊維4を一方向に含んだ強化繊維プラスチックが、軽量化や材料費用の面から好ましいことになる。つまり、強磁性体からなる強化繊維4が配向されている方向のうち、少なくとも1つの方向を、部材が配置される箇所の磁界の流れの場に沿った方向とすることで、強化繊維4の使用量を抑えつつ、高い磁気シールド性能を持つ部材を提供することができる。
(請求項5) また、強磁性体からなる強化繊維を用いた繊維強化プラスチックの磁化容易軸方向は、通常、強磁性体を有する繊維の長手方向となる。このとき、反磁界の影響を小さくする観点から、短手方向における磁化の大きさと、長手方向の磁化の大きさとの異方性は大きい方が好ましく、長手方向の磁化の大きさが、短手方向との比で10倍以上有することが好ましい。この場合の磁化の異方性とは、板状に形成した繊維強化プラスチックの面方向における磁化の大きさを測定することにより求めることができる。磁化の大きさの測定には、例えば振動式磁力計((株)東栄科学産業製、PV−M20−5)を用いることができる。
(請求項6)このとき、強磁性体からなる強化繊維4を特定方向に引き揃えた繊維強化プラスチックは、強度や弾性率においても、同じ方向の異方性を有しており、そのままでは他方向の強度・弾性率が不足する場合がある。この場合は、強度・弾性率が必要な、磁化容易軸方向とは異なる方向にも、強化繊維を配向しなければならない。しかしながら、磁化容易軸とは異なる方向の強度・弾性率を高めるためには、上述した磁化の大きさの異方性を確保することも考慮すると、特定方向に引き揃えた強磁性体からなる強化繊維とは異なる種類の強化繊維を用いることが好ましい。より好ましくは、非磁性体からなる強化繊維5が、強磁性体からなる強化繊維4の配向されていない方向に引き揃えられていると、磁化の大きさの異方性を確保しつつ、磁化容易軸方向以外にも高い強度・弾性率を有する材料を提供することができる。すなわち、強化繊維4の配向された方向以外の磁気シールド性と、繊維強化プラスチック自身の高強度、高弾性率といった材料特性とを両立し得ることができる。
(請求項7) また、強磁性体からなる強化繊維4の材質が軟磁性タイプであると繊維の使用量を抑えつつ、高い磁気シールド性能を持つ部材を提供することができるため好ましく、中でも保磁力が10A/m以下の材質を用いることが好ましい。本発明では、Fe(カルボニル鉄)、Fe−Ni合金、Fe−Ni−Mo合金、Fe−Co合金、Fe−Cr合金、Fe−Si合金、Fe−Si−B合金、Fe−Al合金、Fe−Cr−Si合金、Fe−Cr−Al合金、Fe−Al−Si合金などのFe合金類、Fe基アモルファス、Co−Fe−Si−BなどのCo基アモルファス合金、Mg−Znフェライト、Mn−Znフェライト、Mn−Mgフェライト、Cu−Znフェライト、Mg−Mn−Srフェライト、Ni−Znフェライト、Baフェライトなどの各種フェライトを用いることができる。なかでも、高強度の特性を持つ磁性材料が好ましく、Fe基アモルファス合金やCo基アモルファス合金を用いることが好ましい。また、これらの強磁性強化繊維を2種類以上組み合わせて使用しても良い。
(請求項8) 強磁性体からなる強化繊維4の径は、0.001mm以上0.3mm以下であることが好ましい。0.001mm以上あれば繊維の強度を低下させることなく繊維強化プラスチックを形成することができる。0.3mm以下であれば反磁界の影響が小さく、磁化容易方向の磁束を集める効果を大きくすることができる。また、径の異なる繊維を2種類以上組み合わせることで、強磁性体からなる強化繊維の密度を向上させることができる。つまり、適切な繊維径とすることで、本発明により提供される部材の磁気シールド効果を高めることが可能になる。
In this case, the magnetic characteristics (permeability, saturation magnetic flux density, etc.) in the easy axis direction are determined by the material of the ferromagnetic material used, the diameter and length of the reinforcing fiber as the ferromagnetic material, and the member It is content in. That is, in the present invention, the material, diameter, and length of the reinforcing fiber 4 made of a ferromagnetic material, and further the content of the reinforcing fiber 4 in the member and the direction in which the reinforcing fiber 4 is aligned, are unique to the fiber-reinforced plastic. Similarly to the high degree of freedom in design of strength and rigidity, the magnetic characteristics can be made of a material having a high degree of freedom in design with respect to the direction and size.
(Claim 4) Further, in a magnetic field in which the flow of the magnetic field is generally limited to one direction, the reinforcing fiber plastic including the reinforcing fiber 4 made of a ferromagnetic material in one direction is reduced in terms of weight reduction and material cost. Would be preferable. That is, by setting at least one direction among the directions in which the reinforcing fibers 4 made of a ferromagnetic material are oriented to be a direction along the magnetic field flow field where the member is disposed, A member having high magnetic shielding performance can be provided while suppressing the amount used.
(Claim 5) Moreover, the easy axis direction of the fiber reinforced plastic using the reinforcing fiber made of a ferromagnetic material is usually the longitudinal direction of the fiber having the ferromagnetic material. At this time, from the viewpoint of reducing the influence of the demagnetizing field, it is preferable that the anisotropy between the magnitude of the magnetization in the short direction and the magnitude of the magnetization in the longitudinal direction is large, and the magnitude of the magnetization in the longitudinal direction is short. It is preferable to have 10 times or more in the ratio to the direction. The anisotropy of magnetization in this case can be obtained by measuring the magnitude of magnetization in the plane direction of the fiber reinforced plastic formed in a plate shape. For the measurement of the magnitude of magnetization, for example, a vibration type magnetometer (manufactured by Toei Kagaku Sangyo Co., Ltd., PV-M20-5) can be used.
(Claim 6) At this time, the fiber reinforced plastic obtained by aligning the reinforcing fibers 4 made of a ferromagnetic material in a specific direction has anisotropy in the same direction in terms of strength and elastic modulus. The strength and elastic modulus in the direction may be insufficient. In this case, the reinforcing fibers must be oriented in a direction different from the easy axis direction, which requires strength and elastic modulus. However, in order to increase the strength and elastic modulus in the direction different from the easy axis, considering the above-mentioned anisotropy of the magnitude of magnetization, strengthening made of ferromagnetic material aligned in a specific direction It is preferable to use a reinforcing fiber of a different type from the fiber. More preferably, when the reinforcing fibers 5 made of a non-magnetic material are aligned in the non-oriented direction of the reinforcing fibers 4 made of a ferromagnetic material, the magnetization is secured while ensuring the anisotropy of the magnetization size. A material having high strength and elastic modulus other than the easy axial direction can be provided. That is, it is possible to achieve both magnetic shielding properties other than the direction in which the reinforcing fibers 4 are oriented and material properties such as high strength and high elastic modulus of the fiber reinforced plastic itself.
(Claim 7) Further, it is preferable that the material of the reinforcing fiber 4 made of a ferromagnetic material is a soft magnetic type because a member having high magnetic shielding performance can be provided while suppressing the amount of the fiber used. It is preferable to use a material having a magnetic force of 10 A / m or less. In the present invention, Fe (carbonyl iron), Fe—Ni alloy, Fe—Ni—Mo alloy, Fe—Co alloy, Fe—Cr alloy, Fe—Si alloy, Fe—Si—B alloy, Fe—Al alloy, Fe -Fe alloys such as Cr-Si alloy, Fe-Cr-Al alloy, Fe-Al-Si alloy, Fe-based amorphous alloys, Co-based amorphous alloys such as Co-Fe-Si-B, Mg-Zn ferrite, Mn- Various ferrites such as Zn ferrite, Mn—Mg ferrite, Cu—Zn ferrite, Mg—Mn—Sr ferrite, Ni—Zn ferrite, and Ba ferrite can be used. Among them, a magnetic material having high strength characteristics is preferable, and it is preferable to use an Fe-based amorphous alloy or a Co-based amorphous alloy. Two or more of these ferromagnetic reinforcing fibers may be used in combination.
(Claim 8) The diameter of the reinforcing fiber 4 made of a ferromagnetic material is preferably 0.001 mm or more and 0.3 mm or less. If it is 0.001 mm or more, a fiber-reinforced plastic can be formed without reducing the strength of the fiber. If it is 0.3 mm or less, the influence of the demagnetizing field is small, and the effect of collecting the magnetic flux in the easy magnetization direction can be increased. Moreover, the density of the reinforced fiber made of a ferromagnetic material can be improved by combining two or more types of fibers having different diameters. That is, the magnetic shield effect of the member provided by the present invention can be enhanced by setting an appropriate fiber diameter.

このとき、強磁性体からなる強化繊維4は、必ずしも単一の素材からなるものでなく、強化繊維そのものが一種の複合材料からなっていてもよい。例えば、強化繊維として一般的なガラス繊維や炭素繊維の表面に、一般的な技術を用いてニッケルなどの強磁性体素材をコーティングして、強磁性体からなる強化繊維4とすることも出来る。この場合、強磁性体素材の含有量は少なくなるため、磁気性能としては低下するが、繊維強化プラスチック部材の重量は軽量化することが出来る。   At this time, the reinforcing fiber 4 made of a ferromagnetic material is not necessarily made of a single material, and the reinforcing fiber itself may be made of a kind of composite material. For example, the surface of a glass fiber or carbon fiber, which is a general reinforcing fiber, can be coated with a ferromagnetic material such as nickel using a general technique to form a reinforcing fiber 4 made of a ferromagnetic material. In this case, since the content of the ferromagnetic material is reduced, the magnetic performance is lowered, but the weight of the fiber-reinforced plastic member can be reduced.

ここで、本発明の繊維強化プラスチックに用いられる強化繊維4および5は、単繊維の状態でも、それが束になったストランドの状態でも良い。また、いずれの場合も、繊維そのままの形状でなく、例えば織物や組紐状の中間基材を形成していても良い。中間基材は、強磁性体からなる強化繊維4と、非磁性体からなる強化繊維5の混織状態とすることも出来る。この場合、繊維強化プラスチック製部材に必要な、磁気異方性の方向が実現できるように、中間基材を適切に設計する必要がある。
(請求項9) また、非磁性体からなる強化繊維5の比重が、強磁性体からなる強化繊維4の比重よりも小さければ、繊維強化プラスチック部材全体の軽量化を図ることが出来る。特に強度・弾性率を維持しながら軽量化を図るためには、非磁性体からなる強化繊維5は、強磁性体からなる強化繊維4よりも比強度・比弾性率が高い強化繊維を配向することが好ましい。例えば、炭素繊維やガラス繊維など、繊維強化プラスチックに一般的に使用されている強化繊維は非磁性体であり、強磁性体からなる強化繊維1に比べて、一般的に高い比強度・比弾性率を有しているので、これらの強化繊維を用いることが望ましい。
Here, the reinforcing fibers 4 and 5 used in the fiber-reinforced plastic of the present invention may be in a single fiber state or in a strand state in which they are bundled. Moreover, in any case, not the shape of the fiber as it is, but a woven fabric or braided intermediate base material may be formed, for example. The intermediate base material can be in a mixed woven state of reinforcing fibers 4 made of a ferromagnetic material and reinforcing fibers 5 made of a non-magnetic material. In this case, it is necessary to appropriately design the intermediate substrate so that the direction of magnetic anisotropy necessary for the fiber-reinforced plastic member can be realized.
(Claim 9) If the specific gravity of the reinforcing fiber 5 made of a non-magnetic material is smaller than the specific gravity of the reinforcing fiber 4 made of a ferromagnetic material, the weight of the entire fiber reinforced plastic member can be reduced. In particular, in order to reduce the weight while maintaining the strength and elastic modulus, the reinforcing fiber 5 made of a non-magnetic material is oriented with a reinforcing fiber having a higher specific strength and specific elastic modulus than the reinforcing fiber 4 made of a ferromagnetic material. It is preferable. For example, reinforced fibers generally used for fiber reinforced plastics such as carbon fiber and glass fiber are non-magnetic, and generally have higher specific strength and specific elasticity than reinforced fiber 1 made of ferromagnetic material. Therefore, it is desirable to use these reinforcing fibers.

ここで、構造体としての用途にもよるが、板状の部材には、面外方向の曲げ剛性の高さが求められることが多く、かつ、方向によって曲げ剛性が異なる異方性を持たせることが最適設計につながる場合が多い。本発明では、少なくとも2種類の強化繊維を、一体の繊維強化プラスチック部材に用いることになるので、部材が板状である場合は、より弾性率の高い強化繊維を板厚中心から遠い最表層、または表層に近い位置に配置することで、曲げ剛性を効率的に高める設計が可能である。
(請求項10) 同様の観点から、曲げ剛性を高めるための手段として、通常の繊維強化プラスチックに採用される、コア材を用いたサンドイッチ構造とすることも出来る。
Here, although depending on the use as a structure, the plate-like member is often required to have high bending rigidity in the out-of-plane direction, and has anisotropy with different bending rigidity depending on the direction. This often leads to optimal design. In the present invention, since at least two types of reinforcing fibers are used for an integral fiber-reinforced plastic member, when the member is plate-shaped, the outermost layer far from the center of the thickness of the reinforcing fiber having a higher elastic modulus, Alternatively, it can be designed to increase the bending rigidity efficiently by arranging it at a position close to the surface layer.
(Claim 10) From the same viewpoint, as a means for increasing the bending rigidity, a sandwich structure using a core material, which is employed in a normal fiber-reinforced plastic, can be used.

本発明の繊維強化プラスチックに用いられるマトリクス樹脂は、一般的な繊維強化プラスチックのマトリックス樹脂として利用可能な種類の樹脂であれば特に限定されない。例えばエポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、フェノール樹脂などの熱硬化性樹脂を用いることも出来る。また、ナイロン樹脂やポリカーボネート樹脂などの熱可塑樹脂も用いることが出来る。   The matrix resin used in the fiber reinforced plastic of the present invention is not particularly limited as long as it is a kind of resin that can be used as a matrix resin of a general fiber reinforced plastic. For example, a thermosetting resin such as an epoxy resin, a vinyl ester resin, an unsaturated polyester resin, or a phenol resin can be used. A thermoplastic resin such as nylon resin or polycarbonate resin can also be used.

本発明の繊維強化プラスチックの成形方法は特に限定されない。プリプレグ化してオートクレーブやホットプレスで成形する方法や、レジントランスファーモールディング(RTM)法、その他フィラメントワインディング法、引抜成形法、ハンドレイアップ法、など、一般的な繊維強化プラスチックの成形法が適用可能である。   The method for molding the fiber reinforced plastic of the present invention is not particularly limited. General fiber reinforced plastic molding methods such as prepreg molding and molding with autoclave and hot press, resin transfer molding (RTM) method, filament winding method, pultrusion molding method, hand layup method, etc. are applicable. is there.

本発明によれば、必要な磁気シールド性能を持ちながら、形状に制約されることなく必要な磁気シールド性能を発揮することができるとともに、構造体として必要な物理特性を有し、さらにできる限りの軽量化を達成する材料、またその材料を用いた部材を提供することができる。   According to the present invention, while having the necessary magnetic shielding performance, it can exhibit the necessary magnetic shielding performance without being restricted by the shape, has the necessary physical characteristics as a structure, and further, as much as possible A material that achieves weight reduction and a member using the material can be provided.

本発明の実施態様を示す繊維強化プラスチック平板の概略斜視図である。It is a schematic perspective view of the fiber reinforced plastic flat plate which shows the embodiment of this invention. 強磁性体からなる強化繊維を引き揃える方法の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the method of aligning the reinforced fiber which consists of a ferromagnetic material. 本発明の一つの実施態様からなる繊維強化プラスチック製平板1の磁化量の測定結果である。It is a measurement result of the magnetization amount of the flat plate 1 made from fiber reinforced plastics which consists of one embodiment of this invention. 比較例1における0.3mm厚鉄板の磁化量の測定結果である。It is a measurement result of the magnetization amount of the 0.3 mm thick iron plate in the comparative example 1. 実施例2において、投入ワイヤー量を実施例1の半分にしたサンプルの磁化量の測定結果である。In Example 2, it is a measurement result of the magnetization amount of the sample which made the amount of input wires into the half of Example 1. FIG. 実施例3において、投入ワイヤーの長さを実施例2の80%にしたサンプルの磁化量の測定結果である。In Example 3, it is a measurement result of the magnetization amount of the sample which made the input wire length 80% of Example 2. FIG.

以下、本発明の実施の態様について実施例を用いて説明する。   Hereinafter, embodiments of the present invention will be described using examples.

(実施例1)
図1は、本発明に係る実施態様における、繊維強化プラスチック製の平板を示す。繊維強化プラスチック製平板1は、中央層2と、炭素繊維強化プラスチックからなる両面の表層3からなる。
Example 1
FIG. 1 shows a flat plate made of fiber-reinforced plastic in an embodiment according to the present invention. The flat plate 1 made of fiber reinforced plastic includes a central layer 2 and two surface layers 3 made of carbon fiber reinforced plastic.

図2は、中央層2の成形方法を示す。強化繊維4は、一般的に「番線#30」と呼ばれる、鉄製の直径約0.3mmのワイヤーである。これを、事前に離型剤を塗布したアルミ製の平板マンドレル6に、重ならないようにかつ隙間が開かないように、張力をかけながら必要な幅に巻きつけ、その後エポキシ樹脂を塗布して、フィルムでマンドレルごと包み、ホットプレス機で硬化させた。エポキシ樹脂の硬化後に、マンドレル端部の連続するワイヤーと樹脂を切断し、マンドレル両面からワイヤーを強化繊維とした繊維強化プラスチック板2枚を得、うち1枚を100mm角にトリミングして、中央層2を製作した。   FIG. 2 shows a method for forming the central layer 2. The reinforcing fiber 4 is a wire made of iron and having a diameter of about 0.3 mm, which is generally called “number wire # 30”. This is wound around a flat mandrel 6 made of aluminum with a release agent applied in advance so that it does not overlap and a gap is not opened while applying a tension to the required width, and then an epoxy resin is applied, The mandrel was wrapped with a film and cured with a hot press. After curing the epoxy resin, the continuous wire and resin at the end of the mandrel are cut to obtain two fiber reinforced plastic plates with wires as reinforcing fibers from both sides of the mandrel, one of which is trimmed to 100 mm square, and the middle layer 2 was produced.

製作した中央層2の両面に、片面あたり2層の合計4層の100mm角に切断した東レ(株)製“トレカ(登録商標)”プリプレグP3052S−15を、プリプレグの炭素繊維が中央層2の強化繊維4であるワイヤーと直交する方向に配置し、ホットプレス機により硬化、同時接着して、繊維強化プラスチック製平板1を得た。繊維強化プラスチック製平板1の重量は、約26g、厚さは約0.9mmであった。このうちワイヤーの重量は約16gを占めていた。   “Torayca (registered trademark)” prepreg P3052S-15 manufactured by Toray Industries, Ltd., cut into 100 mm squares with a total of 4 layers, 2 layers per side, on both sides of the produced center layer 2, the carbon fiber of the prepreg is the center layer 2 It arrange | positioned in the direction orthogonal to the wire which is the reinforced fiber 4, and it hardened | cured with the hot press machine and bonded together, and the flat plate 1 made from fiber reinforced plastics was obtained. The weight of the fiber-reinforced plastic flat plate 1 was about 26 g, and the thickness was about 0.9 mm. Among these, the weight of the wire occupied about 16g.

得られた繊維強化プラスチック製平板1から9mm角の磁気特性測定用サンプルを切り出し、振動式磁力計((株)東栄科学産業製、PV−M20−5)用いて、中央層2に配置した強化繊維4であるワイヤーの方向と、それに直交する方向の磁化の大きさを測定した。測定結果を図3に示す。横軸にサンプルに加えた磁場の大きさを、縦軸にサンプルの磁化の大きさを示す。サンプルの磁化が未飽和状態である20mTの印加磁場で比較した場合、ワイヤー方向の磁化の値は16.9mT、直交する方向の磁化の値は1.6mTであった。また磁化の最大値は24.6mTであった。つまり、ワイヤー方向の磁化の大きさは、その垂直方向に比べ10倍以上の大きさとなる10.5倍であり、磁化の大きな異方性を確認することが出来た。
(比較例1)
実施例1で用いた「番線#30」と呼ばれるワイヤーと同材質で、厚さ0.3mmの鉄板より、9mm角の磁気特性測定用サンプルを切り出し、振動式磁力計((株)東栄科学産業製、PV−M20−5)を用いて同様に磁化の大きさを測定した。このとき、100mm角の鉄板の重量は約22gであった。
A 9 mm square sample for measuring magnetic properties was cut out from the obtained fiber reinforced plastic flat plate 1, and reinforced arranged in the central layer 2 using a vibration magnetometer (manufactured by Toei Kagaku Sangyo Co., Ltd., PV-M20-5). The direction of the wire which is the fiber 4, and the magnitude | size of the magnetization of the direction orthogonal to it were measured. The measurement results are shown in FIG. The horizontal axis shows the magnitude of the magnetic field applied to the sample, and the vertical axis shows the magnitude of magnetization of the sample. When compared with an applied magnetic field of 20 mT in which the magnetization of the sample is unsaturated, the magnetization value in the wire direction was 16.9 mT, and the magnetization value in the orthogonal direction was 1.6 mT. The maximum value of magnetization was 24.6 mT. That is, the magnitude of the magnetization in the wire direction was 10.5 times that is 10 times or more that in the perpendicular direction, and a large anisotropy of magnetization could be confirmed.
(Comparative Example 1)
A 9 mm square sample for measuring magnetic properties is cut out from a 0.3 mm thick steel plate made of the same material as the wire called “wire # 30” used in Example 1, and a vibration type magnetometer (Toei Scientific Industrial Co., Ltd.) The magnitude of magnetization was measured in the same manner using PV-M20-5). At this time, the weight of the 100 mm square iron plate was about 22 g.

測定結果は図4に示すとおり、磁化の最大値は24.6mTであった。これは実施例1における中央層の強化繊維であるワイヤー方向の磁化量測定結果とほぼ一致した。これより、強磁性体の形状効果により、特定の方向の磁化特性を、強磁性体の投入量対比向上できることが分かった。
(実施例2)
実施例1と同じ構成で、「番線#30」と呼ばれるワイヤーの投入量を実施例1の半分、すなわち100mm角あたり約8gとした繊維強化プラスチック製平板1を作成し、これより9mm角の磁気特性測定用サンプルを切り出し、振動式磁力計((株)東栄科学産業製、PV−M20−5)を用いて同様に磁化の大きさを測定した。
As a result of the measurement, as shown in FIG. 4, the maximum value of the magnetization was 24.6 mT. This almost coincided with the measurement result of the magnetization amount in the wire direction, which is the reinforcing fiber of the central layer in Example 1. From this, it was found that the magnetization characteristics in a specific direction can be improved by comparing the ferromagnetic material input amount due to the shape effect of the ferromagnetic material.
(Example 2)
A fiber-reinforced plastic flat plate 1 having the same configuration as that of the first embodiment and having a wire amount called “number wire # 30” that is half that of the first embodiment, that is, about 8 g per 100 mm square, is prepared. A sample for characteristic measurement was cut out, and the magnitude of magnetization was similarly measured using a vibration magnetometer (manufactured by Toei Kagaku Sangyo Co., Ltd., PV-M20-5).

測定結果は図5に示すとおり、磁化の最大値は14.1mTであった。これは、実施例1における中央層2に配置した強化繊維4であるワイヤー方向の磁化量測定結果に対し、およそ半分の磁化量であった。これより、強磁性体の形状が同じであれば、磁化量は強磁性体の投入量におよそ比例することが分かった。
(実施例3)
実施例2と同じ構成、かつ同じワイヤー投入量とした繊維強化プラスチック製平板1を作成し、これよりワイヤー方向が7mm、ワイヤーと垂直な方向が9mmの磁気特性測定用サンプルを切り出し、振動式磁力計((株)東栄科学産業製、PV−M20−5)を用いて同様に磁化の大きさを測定した。ワイヤーの投入量は約20%の減少となった。
As a result of the measurement, as shown in FIG. 5, the maximum value of the magnetization was 14.1 mT. This was about half the magnetization amount compared to the measurement result of the magnetization amount in the wire direction, which is the reinforcing fiber 4 arranged in the central layer 2 in Example 1. From this, it was found that if the shape of the ferromagnetic material is the same, the magnetization amount is approximately proportional to the input amount of the ferromagnetic material.
(Example 3)
A fiber-reinforced plastic flat plate 1 having the same configuration and the same wire input amount as in Example 2 was prepared, and a sample for measuring magnetic properties having a wire direction of 7 mm and a direction perpendicular to the wire of 9 mm was cut out. The magnitude | size of magnetization was similarly measured using the total (Corporation | KK Toei Scientific Industrial Co., Ltd. product, PV-M20-5). Wire input decreased by about 20%.

測定結果は図6に示すとおり、磁化の最大値は9.7mTであった。実施例2に対して磁化量は約30%減少した。これより、強磁性体の形状効果としては、単純に比例はしないが、形状が細長い方が特定の方向の磁化特性を、強磁性体の投入量対比向上できることが分かった。   As a result of the measurement, as shown in FIG. 6, the maximum value of magnetization was 9.7 mT. Compared to Example 2, the amount of magnetization decreased by about 30%. From this, it was found that the shape effect of the ferromagnetic material is not simply proportional, but that the elongated shape can improve the magnetization characteristics in a specific direction compared to the input amount of the ferromagnetic material.

1:繊維強化プラスチック製平板
2:中央層(強磁性体からなる強化繊維を含む繊維強化プラスチック層)
3:表層(非磁性体からなる強化繊維を含む繊維強化プラスチック層)
4:強磁性体からなる強化繊維
5:非磁性体からなる強化繊維
6:成形用マンドレル
1: Flat plate made of fiber reinforced plastic 2: Central layer (fiber reinforced plastic layer including reinforcing fiber made of ferromagnetic material)
3: Surface layer (fiber reinforced plastic layer containing reinforcing fibers made of non-magnetic material)
4: Reinforcing fiber made of ferromagnetic material 5: Reinforcing fiber made of non-magnetic material 6: Mandrel for molding

Claims (10)

少なくとも1種類の強磁性体からなる強化繊維と、少なくとも1種類の非磁性体からなる強化繊維とを含み、前記強磁性体からなる強化繊維が磁気異方性を有することを特徴とする繊維強化プラスチック製部材。   A fiber reinforcement comprising a reinforcing fiber made of at least one ferromagnetic material and a reinforcing fiber made of at least one non-magnetic material, wherein the reinforcing fiber made of the ferromagnetic material has magnetic anisotropy. Plastic parts. 強磁性体からなる強化繊維が連続繊維であることを特徴とする、請求項1に記載の繊維強化プラスチック製部材。   The fiber-reinforced plastic member according to claim 1, wherein the reinforcing fiber made of a ferromagnetic material is a continuous fiber. 強磁性体からなる強化繊維が、引き揃えられていくつかの方向に配向されていることを特徴とする、請求項1または2に記載の繊維強化プラスチック製部材。   The fiber-reinforced plastic member according to claim 1 or 2, wherein the reinforcing fibers made of a ferromagnetic material are aligned and oriented in several directions. 前記強磁性体からなる強化繊維が配向されている方向の内少なくとも1方向が、部材が配置される箇所の磁界の流れの場に沿った方向であることを特徴とする、請求項3に記載の繊維強化プラスチック部材。   The at least one direction among the directions in which the reinforcing fibers made of the ferromagnetic material are oriented is a direction along a magnetic field flow field where the member is disposed. Fiber reinforced plastic parts. 強磁性体からなる強化繊維が配置された方向における磁化の大きさが、前記方向に直交する方向の10倍以上であることを特徴とする請求項3または4に記載の繊維強化プラスチック部材。   The fiber-reinforced plastic member according to claim 3 or 4, wherein the magnitude of magnetization in a direction in which the reinforcing fibers made of a ferromagnetic material are arranged is 10 times or more that in a direction orthogonal to the direction. 非磁性体からなる強化繊維が、強磁性体からなる強化繊維の配向されていない方向に引き揃えられて配向されていることを特徴とする、請求項3〜5のいずれかに記載の繊維強化プラスチック製部材。   The fiber reinforcement according to any one of claims 3 to 5, wherein the reinforcing fiber made of a non-magnetic material is aligned by being aligned in a direction in which the reinforcing fiber made of a ferromagnetic material is not oriented. Plastic parts. 強磁性体からなる強化繊維の材質が、軟磁性材料であることを特徴とする、請求項1〜6のいずれかに記載の繊維強化プラスチック製部材。   The fiber-reinforced plastic member according to any one of claims 1 to 6, wherein the material of the reinforcing fiber made of a ferromagnetic material is a soft magnetic material. 強磁性体からなる強化繊維の径が0.001mm以上0.3mm以下であることを特徴とする、請求項1〜7のいずれかに記載の繊維強化プラスチック製部材。   The fiber-reinforced plastic member according to any one of claims 1 to 7, wherein the diameter of the reinforcing fiber made of a ferromagnetic material is 0.001 mm or more and 0.3 mm or less. 非磁性体からなる強化繊維の比重が、強磁性体からなる強化繊維の比重よりも小さいことを特徴とする、請求項1〜8のいずれかに記載の繊維強化プラスチック製部材。   The fiber-reinforced plastic member according to any one of claims 1 to 8, wherein the specific gravity of the reinforcing fiber made of a nonmagnetic material is smaller than the specific gravity of the reinforcing fiber made of a ferromagnetic material. 少なくとも1種類の強磁性体からなる強化繊維と、少なくとも1種類の非磁性体からなる強化繊維とを含み、前記強磁性体からなる強化繊維が磁気異方性を有する外皮層と、外皮層に挟まれたコア層とが一体化されてサンドイッチ構造を有することを特徴とする、請求項1〜9のいずれかに記載の繊維強化プラスチック製部材。   An outer skin layer including a reinforcing fiber made of at least one type of ferromagnetic material and a reinforcing fiber made of at least one type of non-magnetic material, wherein the reinforcing fiber made of the ferromagnetic material has magnetic anisotropy; and The fiber-reinforced plastic member according to any one of claims 1 to 9, wherein the sandwiched core layer is integrated with the sandwiched core layer.
JP2013184707A 2013-09-06 2013-09-06 Fiber reinforced plastic parts Active JP6217254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013184707A JP6217254B2 (en) 2013-09-06 2013-09-06 Fiber reinforced plastic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013184707A JP6217254B2 (en) 2013-09-06 2013-09-06 Fiber reinforced plastic parts

Publications (2)

Publication Number Publication Date
JP2015051550A true JP2015051550A (en) 2015-03-19
JP6217254B2 JP6217254B2 (en) 2017-10-25

Family

ID=52700962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184707A Active JP6217254B2 (en) 2013-09-06 2013-09-06 Fiber reinforced plastic parts

Country Status (1)

Country Link
JP (1) JP6217254B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216721A (en) * 2015-05-21 2016-12-22 新日鐵住金株式会社 Steel wire-reinforced tabular resin
JP2017126644A (en) * 2016-01-13 2017-07-20 藤倉化成株式会社 Magnetic shield laminate
JP2020062768A (en) * 2018-10-15 2020-04-23 有限会社ヒロセ金型 Manufacturing method of carbon fiber-reinforced resin molded article, and carbon fiber-reinforced resin molded article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111038A (en) * 1986-10-29 1988-05-16 Agency Of Ind Science & Technol Three-dimensional reinforced laminate and its manufacture
JPS63111039A (en) * 1986-10-29 1988-05-16 Agency Of Ind Science & Technol Three-dimensional reinforced composite and its manufacture
JPH04125115A (en) * 1990-09-14 1992-04-24 Isuzu Motors Ltd Molding method for resin outer board of electromagnetic shielding properties
JP2003128937A (en) * 2001-10-29 2003-05-08 Polymatech Co Ltd High molecular composite material molded product and method for producing the same
JP2006261618A (en) * 2005-03-18 2006-09-28 Kyushu Univ Magnetic shielding apparatus
JP2007124638A (en) * 2005-09-30 2007-05-17 Nitta Ind Corp Sheet body, antenna device, and electronic information transmission device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111038A (en) * 1986-10-29 1988-05-16 Agency Of Ind Science & Technol Three-dimensional reinforced laminate and its manufacture
JPS63111039A (en) * 1986-10-29 1988-05-16 Agency Of Ind Science & Technol Three-dimensional reinforced composite and its manufacture
JPH04125115A (en) * 1990-09-14 1992-04-24 Isuzu Motors Ltd Molding method for resin outer board of electromagnetic shielding properties
JP2003128937A (en) * 2001-10-29 2003-05-08 Polymatech Co Ltd High molecular composite material molded product and method for producing the same
JP2006261618A (en) * 2005-03-18 2006-09-28 Kyushu Univ Magnetic shielding apparatus
JP2007124638A (en) * 2005-09-30 2007-05-17 Nitta Ind Corp Sheet body, antenna device, and electronic information transmission device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216721A (en) * 2015-05-21 2016-12-22 新日鐵住金株式会社 Steel wire-reinforced tabular resin
JP2017126644A (en) * 2016-01-13 2017-07-20 藤倉化成株式会社 Magnetic shield laminate
JP2020062768A (en) * 2018-10-15 2020-04-23 有限会社ヒロセ金型 Manufacturing method of carbon fiber-reinforced resin molded article, and carbon fiber-reinforced resin molded article
JP7149577B2 (en) 2018-10-15 2022-10-07 有限会社ヒロセ金型 Method for manufacturing carbon fiber reinforced resin molded product, and carbon fiber reinforced resin molded product

Also Published As

Publication number Publication date
JP6217254B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6217254B2 (en) Fiber reinforced plastic parts
EP2252731B1 (en) Uncured composite rope including a plurality of different fiber materials
JPH03173530A (en) Inclined magnetic field coil of magnetic resonance imaging device
AU2009313722B2 (en) Rigging Terminals and Methods of Assembling Rigging Terminals
JP4726458B2 (en) Magnetic materials, passive shims and magnetic resonance imaging systems
JP2015515143A5 (en)
JP2018113313A (en) Magnetic shield member, manufacturing method of magnetic shield member, and magnetic shield panel
Feuchtwanger et al. Mechanical energy absorption in Ni–Mn–Ga polymer composites
US20130089733A1 (en) Structural panels stiffened by magnetically-assisted application of thick polymer coatings
Wang et al. Experiment and numerical analysis on the YOROI structure for high-strength REBCO coil
Chen et al. Effects of ferromagnetic & carbon-fibre Z-Pins on the magnetic properties of composites
JP4706082B2 (en) Magnetic shield device
Paranthaman et al. Additive manufacturing of permanent magnets
JP4794353B2 (en) Magnetic shield structure and magnetic shield method
JPH02501003A (en) Magnetic block with adjustable magnetization to generate a permanent magnetic field in the area of interest
CN105603305B (en) Magnetically soft alloy, wireless power transmission apparatus and reception device comprising it
US11500049B2 (en) Pulsable superconducting coil setup for magnetically sensitive operations
Yoshino et al. Low magnetostrictive amorphous Fe‐Nb‐Si‐B alloys
JP2009184521A (en) Pneumatic tire
JP5051845B2 (en) Pneumatic tire
US20050110603A1 (en) Magnetic shielding system
Wun‐Fogle et al. Suppression of large Barkhausen jumps in annealed amorphous wires with an imposed twist as a function of current, external axial stress, and axial field
JP4433369B2 (en) Magnetic shield device
Collings et al. Design of coupled or uncoupled multifilamentary SSC-type strands with almost zero retained magnetization at fields near 0.3 T
Psarras Editorial corner–a personal view A'backstage force': magnetic properties of polymer composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R151 Written notification of patent or utility model registration

Ref document number: 6217254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151